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The University of Connecticut       Fall 2018 

Dept. of ECE         KRP 

 

Problem Set # 1 

(Due September 17, 2018) 

 

1. (15 points) (Calculus) Consider the following two nonlinear functions:  
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            Softplus function is a continuously differentiable approximation to x+ =max (0, x). 
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b) Compute the gradient and Hessian of the following functions with respect to w.  Here zn 

and xn are known for n=1, 2… N. 
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               Is the function in (1) convex with respect to w (that is, Hessian is positive (semi) definite)? 

     Is the function in (ii) convex?  Is the function in (iii) convex? Check your answers for scalar  

              {xn}.    

 

2. (10 points) (ECE 6111 review:  Bayes rule) These are three simple applications of Bayesian 

Inference.  

a) Using Bayes rule, prove the following logic statement:  Given “If A is true then B is true”, 

one may deduce that “if B is false, A is false”.  
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b) Consider a “noisy” XOR gate with the conditional probabilities as shown in the following 

Table. 

B C P(A=1|B,C) 

0 0 0.10 

0 1 0.99 

1 0 0.80 

1 1 0.25 

    Assume that events B and C are independent with prior probabilities P(B=1)=0.65 and P(C=1)=0.77.  

What is P(B=1|A=0), P(C=1|A=0), P(B=1|A=1) and P(C=1|A=1)? 

c) Suppose there are two opaque bags, each containing 2 balls.  It is known that one bag has 

2 black balls and the other has a black ball and a white ball. You pick a bag at random and 

then one of the balls in that bag at random.  When you look at the ball, it is black.  You 

now pick the second ball from that same bag.  What is the probability that this ball is also 

black?  What is the probability that this ball is a white one? 

d) Draw factor graphs for problems (b) and (c) and compute the requisite probabilities.  

 

3. (15 points) (Review moments and functions of random variables) Let X ~ Ga (a,b) where Ga 

denotes gamma density. That is,  
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Wishart density is a generalization of gamma density to multiple dimensions, while inverse Wishart 

density is a generalization of inverse gamma density to multiple dimensions.  Inverse gamma 

has a number of applications in survival analysis.  

 

Hint:  Exploiting the properties of exponential family of densities will make this and the 

next problem easier to solve. 
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4. (10 points) (Review moments of random variables) Suppose  ~ Beta (a,b), that is, 
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Find E(), Var(), mode() & entropy H().   
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5. (10 points) (Kullback-Leibler divergence):  Compute KL (p || q) when p(x) and q(x) are multivariate 

Gaussian distributions?  What happens when p(x) is a weighted sum of Gaussian distributions? 

Discuss why it is difficult to compute when q(x) is a weighted sum of Gaussian distributions. Do 

the problem first when x is a scalar and then generalize the scalar results to multivariate Gaussian 

distributions.   

6. (5 points) (Information-theoretic Measures) Problem 1.39 of Bishop, Chapter 1, pp. 65. 

7. (5 points) Using I(X;Y|Z)=H(X|Z)-H(X|Y,Z), compute I(X;Y|Z) when X,Y and Z are Gaussian 

random variables.  

8. (5 points) Problem 2.43 of Bishop, Chapter 2, pp. 135.   

9.  (10 points) (Linear Regression) Consider a noisy target z =wTx +v for generating the data, where v 

is a noise term with zero mean and variance 2, independently generated for every sample (x, z).   

 

For the data D = {(x1, z1), (x2, z2) …. (xN, zN)}, denote the noise term in zn as vn and let v = [ v1, v2…. 

vN]T, z = [ z1, z2,…, zN]T, X= [ x1, x2,…, xN]T an N by p matrix. Assume that the p by p matrix XTX is 

invertible.   

Let the objective function to be minimized be 
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a) Compute the optimal estimate ŵ that minimizes J(w). 

b) Compute the optimal prediction ẑ and show that  
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e) Now suppose that we get test data xN+1 with a noisy target zN+1 and noise term vN+1.  

Assume that the second moment matrix [ ] =
T

xE xx is nonsingular. Show that the error 
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10. (10 points) (A Simple Perceptron) Consider a two-dimensional plane. Choose a random 

line in the x1-x2 plane 
0 1 1 2 2 0 1 2 1
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x

as your 

target function, where one side of the line sign (
T

w x ) =1 maps to z=+1 (label *) and the 

other side sign (
T

w x ) =-1 maps to z = -1 (label o).   
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a) Generate a dataset {xn , zn: n=1,2..,20}, that is, N=20.   Plot the samples as well as the 

target function in the x1-x2 plane.  Be sure to mark the examples from different classes 

differently, and add labels to the axes of the plot. 

b) You want to learn the weights to classify the dataset correctly.  Start with any w(0) at 

iteration t=0.  At iteration t, the algorithm picks a sample from {xn , zn: n=1,2..,20}that is 

currently misclassified, call it {x(t), z(t)} and use it to update w(t).  Since the sample is 

misclassified, we have z(t) sign ( ( ) ( )
T

w t x t ), the update rule is a type of reinforcement 

learning (“training with a critic”) of the form 

( 1) ( ) ( ) ( )+ = +w t w t z t x t  

Experiment with how you pick the misclassified sample (e.g., train using the same 

sequence of samples and pick the first one; randomly shuffle the samples after each run 

through the samples and pick the first misclassified one in the new sequence, etc.).   Report 

the number of updates for convergence.  Plot the samples, the target function and the final 

converged estimated classes on the same figure.  Comment on whether the target and the 

estimated target are close. 

c) Repeat everything in b) for datasets of sizes N = 100, 1000 and 10000. 

d) Summarize your conclusions with respect to the running time as a function of N and the 

selection method used.    

10. Consider the joint density of three random variables a,b,c given by

( , , ) ( ) ( | ) ( | ).p a b c p a p b a p c b=   It is desired to find the best approximating density   q(a) to 

minimize the Kullback-Leibler (KL) divergence  
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              Note that when p (c |b) = p(c), q(a)=p(a), as it should!   

Hint:  use the definition of KL divergence and impose the constraint ( ) 1 0
a

q a da − =  .  


