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 Slogan: Lean versus Six Sigma  

 Quality Engineering 

  Off-line Design for Quality and On-line Quality Control 

  Goal: Variability Reduction 

  Process Capability 

 Basic Factory Dynamics  

 Factory:  A goal-oriented network of processes through which parts 

flow  

 Little’s Theorem linking Work in Process (WIP, Queue length) with 

Cycle time (Response time) and Throughput 

  Variability makes a difference here as well 

Overview 
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Lean versus Six Sigma 

Lean focuses on cycle time reduction 

− Cycle time = value-added time + non-value added time 

− 5S: sort, straighten, scrub, standardize, sustain 

Six Sigma focuses on reducing variability, thereby 

improving product/process quality 

− Widely used in industry (Motorola, GE, P&W, Boeing…) 

 

 

Figure from: http://www.ckc-group.de/uploads/media/praesentation-Lean-Six-Sigma.pdf 
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Why Quality? 

LEVEL OF ASSEMBLY COST PER FAILURE
($)

COMPONENT LEVEL 1
CIRCUIT BOARD LEVEL 10

BOX LEVEL 100
SYSTEM LEVEL 1000

FIELD OPERATION LEVEL 2000-20,000

Latest Example:  Boeing 787 grounded for Li-ion Battery Problems  

Quality: key to economic success   

– increase in productivity at little cost  

– vital for business growth and enhanced 

competitive position  

Cost of fixing problems in the field increases 

exponentially! 
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The Goal: Variability Reduction 

Six sigma  3.4 parts in 

a Million defective and  

process capability ratio, 

CPk = 2.  Why? 



Normal (Gaussian, Bell) pdf and CDF 
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Controversial Assumption of Six Sigma!   

2

Six Sigma analysis assumes that mean changes by 1.5  in the long run!

1.5

Assume, without loss of generality, 1.5
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Defects per Million Opportunities (DPMO)  

n =  Level DPMO (if 

mean does 

not change) 

DPMO (if 

mean 

changes by 

1.5) 

 

DPMO (if 

mean 

changes by 

1.5 and one 

sided 6 

assumption) 

 

Experience-

based Cost 

of Quality 

1 317,311 697,672 691,462 NA 

2 45,500 308,770 308,538 NA 

3 2,700 66,811 66,807 25%-40% of 

sales 

4 63 6,210 6,210 15%-25% of 

sales 

5 0.57 233 233 5%-15% of 

sales 

6 0.002 3.4 3.4 <1% of sales 

( ( 1.5);0,1)n  
( ( 1.5);0,1)

( ( 1.5);0,1)

n

n

  

  

Free stat calculator at ww.xuru.org/st/PD.asp and many others 
8 



9 

Process capability analysis is an activity involving 

Quantification of process variability 

Analysis of process variability relative to product specifications 

Assists manufacturing in eliminating/reducing variability 

Measure of process capability: customarily the 6-sigma spread in 

distribution of the product quality characteristic 

Natural tolerance limits (UNTL and LNTL) of a process 

 

 

Specification limits on the process: USL (upper specification limit) 

and LSL (lower specification limit) 

 

UNTL 3

LNTL 3

 

 
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Process Capability 
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Process capability ratio 

 

Interpretation  

P: percentage of specification band used up by the process 

One-sided specifications (if only either USL or LSL is relevant) 

 

 

 

 

Process capability for off-centered process: take the one-sided 

Cpk for the specification limit closest to the process average 

 

Six Sigma: Centered   Cpk =2; 1.5 off-centered  Cpk = 1.5 
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Measures of Quality Loss 



15 

Other Loss Functions 
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Robust Design 
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Measure of Variability/Robustness 
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Scope for Robust Design: AC Circuit Example 
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AC Circuit: MSE Contours 
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AC Circuit: MSE Profiles 
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AC Circuit: Performance Summary 

USL = 12.5 A 

LSL =   7.50A 
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Quality Control and On-line Improvement 



Why Speed? 

 Speed  Optimized Process Flow  Lean 

 Lean Principles: Level Loading, Reduce Setups, Create Flows, 

    Link suppliers, Time and waste Reduction,… 

Lean identifies the 

sources of  waste to 

reduce the Non-value 

added elements 

 Less work, less 

time, same result 

Figure from: http://www.isssp.com/Media/LC04-

Presentation-Slides/eckhardtezrabo.pdf 
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1. Response time (Cycle Time):  

 E [time of completion of a part - time of arrival of part] 

 = Average time a part spends at each node (workstation)  

 = Average waiting time + Average service time 

Performance Metrics - 1 

waiting 

time 

Service/ 

processing  

time 
time of 

arrival 
time of 

completion/ 

departure 

time of 

entry 

into 

service 



s
WtWR 

(Assuming a single server node) 

Can also talk about system response time  

=         Response time at node i 
i

Response time 

2. Queue length (Work in Porcess (WIP))  

 Average number of parts at each node (including the part in 

service) = Average number waiting + Average number in 

service  Q  = QW + Average number in service 
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3. Throughput  

 Average number of parts processed per unit time  a measure 

of productivity of the system 

 

     X  =                                                             =                              

 

       

 You can also talk of nodal and system throughputs. 

 

4. Utilization of a node  

 Fraction of the time (or the probability that) the node is busy 

 

Number of parts completed during (to , tf) 

Observation interval (tf  - to) 

C 

T 

Performance Metrics - 2 
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Little’s Theorem - 1 

work 

station A() D() 

Arrival 

time of 

jth part 

Departu

re time 

of jth 

part 

a

jt d

jt

Little’s Theorem (formula) is simply an accounting identity. 

Let us look at the sample paths of A(),D( and Q( 

Q(  A()-D( 
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 

Q() 

R1 

R2 

R3 

Q() 

A() sample path 

D() sample path 
 

 

A() 

D() 

t  

R1: Part 1 

R2: Part 2 

R3: Part 3 

Busy Period 

at1

at2

dt1
at3

dt2

at4
dt3

at5
dt4

dt5

Busy Period 

Little’s Theorem - 2 
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Note that no assumption is made on the arrival or departure distributions. 

Also, no assumption is necessary on the scheduling discipline. Figure 

assumes FCFS, but is valid for any queuing system that reaches statistical 

equilibrium      busy periods must be finite or Q() is “ergodic.” 

 

Little’s theorem relates: 

• The average number of parts in the system (i.e., the “typical” # of 

parts either waiting in the queue or undergoing service), Q or WIP 

• The average response time (cycle time) per part (i.e., the “typical” time a 

part spends waiting in the queue plus the service time), R in hours 

• Part throughput in parts/hour.  For open systems, we use the notation λ.  

For closed systems (CONWIP, knaban), we use the notation X. 

 

 

 

 

 

 



systemsopen for   RQ 

Little’s Law: 
systems  closedfor  RXQ 

Little’s Theorem - 3 
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Need to prove           Q = λ R  

 

We will show for FCFS only (LCFS and arbitrary service HW problem). In 

fact, it is valid for any scheduling discipline.   Proof involves computing the 

area under the sample path curve in two ways:  

 

One way:  

 

Second way:  

 

 

Define 

 

= Time average of number of parts in the system in the interval [0,t] 
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t

tA
t

)(
)(  = Time average of part arrival rate in the interval [0,t] 
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Arrivals = Departures as  t

Proof of Little’s Law - 4 
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Applications of Little’s Theorem -1 

Example 1: Single server node (single workstation) 

D(t) 

λ parts/hour 

A(t) 

W 

R 

Workstation 
WQW 

tU 

Utilization law is a special 

case of Little’s formula! 

 

UQRQ W  

t
U

1
1  

Throughput =  )
1

,min(
t



 for 

stability  
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2 

m 

1 N 

N > m    system 

is always full  

t
Nm

N
NR

so

NNRNX

NmtNX

),min(
)(

,

)()(

),min()(







Example 2 : A closed system (CONWIP) with a multi-

server node (Cell with multiple workstations) 

Applications of Little’s Theorem -2 
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m N 

X (N) 

/m 

m N 

R (N) 
t

t

A Closed System with a Multi-server Node 

1 

Throughput versus N 

Response time (cycle time)  versus N 

waitingno

tNRm



 )(

min( , )
( )

m N
X N

t


( )
min( , )

N
R N t

m N

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Example 3:  Machine Repairman Model or Machine interference model  

2 

N 

1 
X (N) 

A B C 

Repairman/ 

Test Station 

W 

Mean Time 

Between failures,  Z 

Rc (N) 

Response time of  

Repairman/Test station 

R (N) System response 

time (Cycle time, Time 

between renewals) 

Probabilistically 

Failing Machines 

t

Applications of Little’s Theorem -3 



39 

Points  A and C               NNRNX )()(
)(

)(
NR

N
NX 

Also  ZNRNR c  )()(

We will obtain bounds on Rc(N) via the so called Asymptotic Bounding 

Analysis (ABA). 

 

Let us consider two extreme cases:  

 

No waiting tNRc  )(

Wait for (N-1) customers  tNttNNRc  )1()(

Note: if multiple servers/repair men/ test stations: tmNNRc )1()( 

So,  tNNRt c  )(

ZtNNRZt  )(

ZtNRZtN 




1

)(

11

Machine Repairman Model 
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So,      
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Machine Repairman Model 
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N  

Guaranteed throughput curve 

Bounded by service capacity of repairman/test station 

Bound induced by machines in the field 

X (N) 

)1(
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Z
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Zt
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

Machine Repairman Model 
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
t

Z
N 1   Throughput limited by number of machines  

  repairman/test station is idle or most machines working! 

 


t

Z
N 1 Throughput is limited by service capacity of repairman 

 Repairman is saturated and linear increase in response time 


t

Z
1

 Suggests a method of selecting # of machines and # of repairmen. 

 is called saturation point. 1+ 
Meantime to Failure (MTTF) 

Service time (Mean time 

to Repair (MTTR)) 

Machine Repairman Model 
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R (N) 

Actual R (N) 

lies here ZtN 

tZ 

tN

t

Z
NCr 1

tZ 

Z

1 N 

Machine Repairman Model 

Like to be closer to this line! 



• Variability Measures: 
– Coefficient of  variation  (CV) of effective process times 

– Coefficient of  variation of inter-arrival times 

• Components of Process Variability 
– failures 

– setups 

– many others - deflate capacity and inflate variability 

– long infrequent disruptions worse than short frequent ones 
 

• Consequences of Variability: 
– variability causes congestion (i.e., WIP/Cycle Time inflation) 

– variability propagates 

– variability and utilization interact 

– pooled variability less destructive than individual variability 

Variability Matters in Lean Also  

CV




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 Quality : Key to Economic Success 

  Off-line Design for Quality and On-line Quality Control 

 Goal: Variability Reduction and Larger Process   Capability 

 Six Sigma and Robust Design 

 Lean  Increase speed and reduce waste 

 Basic Factory Dynamics to Quantify Lean  

 Queuing Networks provide mathematical formalisms 

 Little’s Theorem linking Work in Process (WIP, Queue length) with 

Cycle time (Response time) and Throughput 

  Variability makes a difference here as well! 

Conclusion 
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