Online Quality Control

Prof. Krishna R. Pattipati Dept. of Electrical and Computer Engineering University of Connecticut Contact: <u>krishna@engr.uconn.edu</u> (860) 486-2890

ECE 6161 Modern Manufacturing System Engineering

Copyright ©2013 by K.R. Pattipati

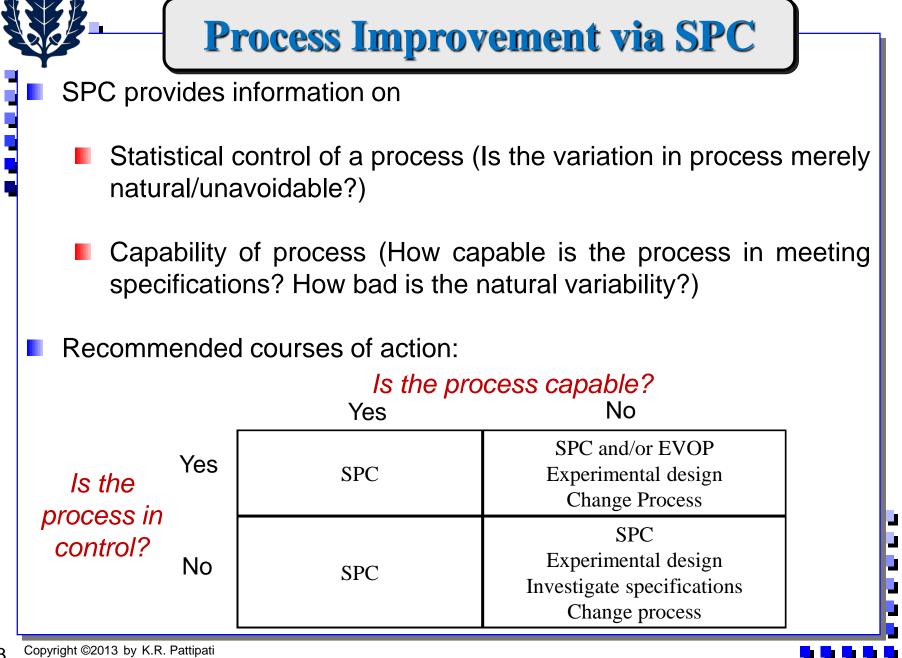
Quality Control and Online Improvement

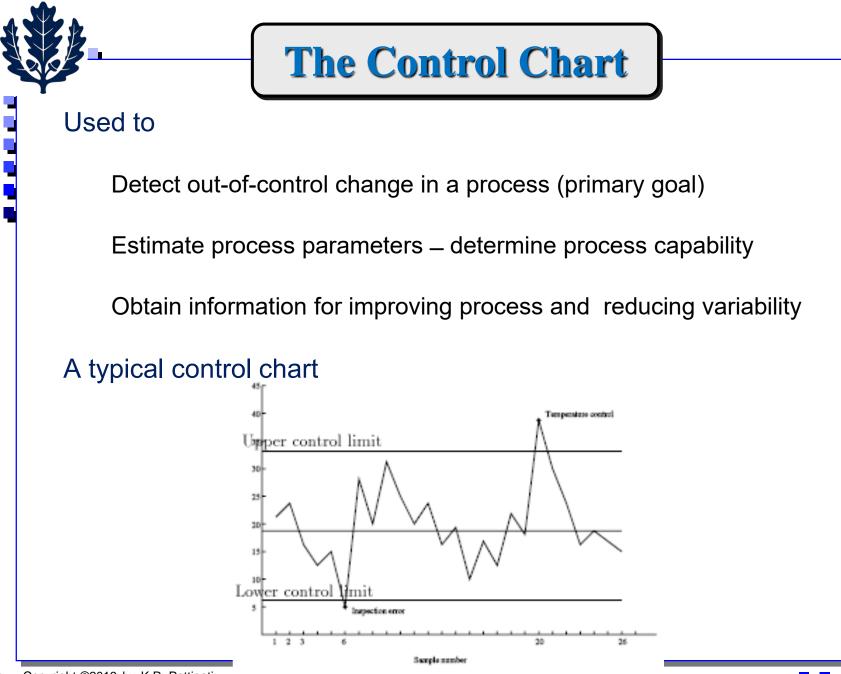
Offline design for quality: obtain best design based on the knowledge about the product and process *before* production

Goal of on-line control: monitor manufacturing process for conformance to design specifications and tune parameters for further improvement

Outline of topics

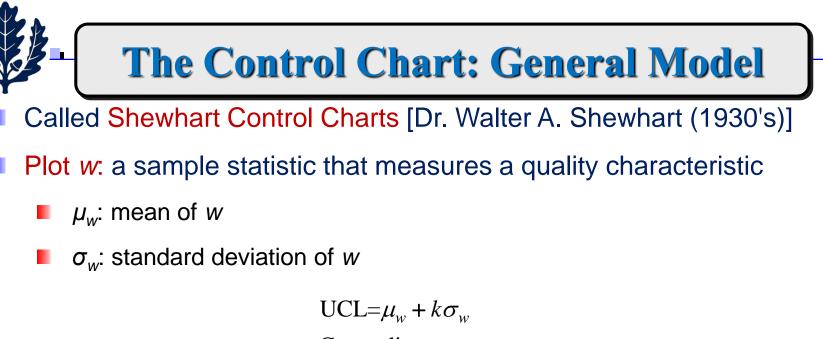
- 1. Statistical Process Control (SPC) general methodology
- 2. Control Charts
- 3. Process Capability Analysis (use of control charts for ...)
- 4. Evolutionary Operation (EVOP) on-line use of experiments
- 5. Quality and Manufacturing Operations





Copyright ©2013 by K.R. Pattipati

6



Center line= μ_w

 $LCL = \mu_w - k\sigma_w$

- *k*: "distance" of control limits from center line in units of standard deviation; typically k = 3 (3 σ control limits → 99.73% confidence for Normal distribution)
- Control chart essentially a repeated test of null hypothesis that the process is in control (hypothesis that w is distributed with mean and standard deviation corresponding to in-control state)

Computing Control Chart Parameters

- Problem: control diameter of hole in steel castings
 - desired nominal diameter of $\mu = 10 \text{ mm}$
 - observations have shown $\sigma = 0.025$ mm

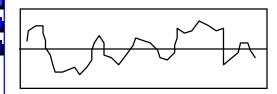
$$\sigma_{\bar{x}} = \sigma / \sqrt{n} = 0.025 / \sqrt{1} = 0.025$$

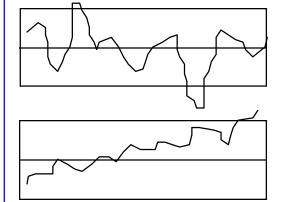
LCL = $\mu - 3\sigma_{\bar{x}} = 10 - 3(0.025) = 9.925$
UCL = $\mu + 3\sigma_{\bar{x}} = 10 + 3(0.025) = 10.075$

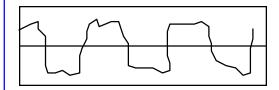
Note: variability would be reduced by taking n>1, due to pooling.

Control Chart Patterns

Pattern





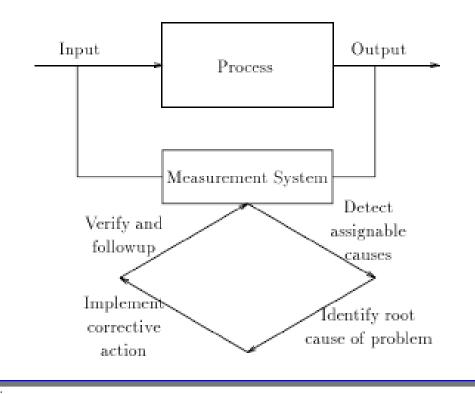


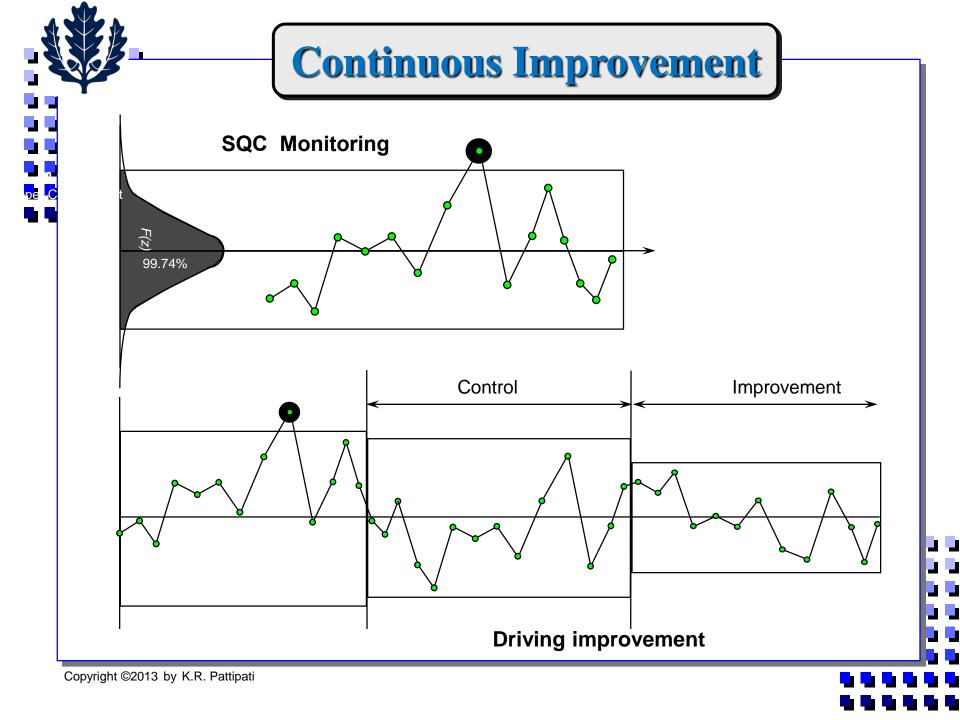
Description	Possible Causes
Normal	Random Variation
Lack of Stability	Assignable (or special) causes (e.g., tool, material, operator, overcontrol
Cumulative trend	Tool Wear
Cyclical	Different work shifts, voltage fluctuations,

seasonal effects

Copyright ©2013 by K.R. Pattipati

- Most processes do not operate in statistical control => routine use of control chart can identify assignable causes
- Control chart can only detect assignable causes: management, operator, and engineering action necessary to eliminate the causes => process *improved* by reducing variability





Utility of Control Charts

A technique for improving productivity – reduce scrap/rework

Defect prevention-"do it right the first time"

Prevent unnecessary adjustments in response to background noise (do not over-react to possibly natural variation)

Provide diagnostic information

Provide information about process capability – useful for product and process designers (how much really is the natural variability?)

Example Uses of Control Charts

Product Quality

- Dimensions and other physical attributes
- Fraction nonconforming
- Range of attributes (for monitoring variability)

Times

- Process times
- Repair times

Other Non-Quality Applications

- Tracking throughput
- Due date quoting

- Choice of control limits: based on risk (probability) of making an error
 - Type I error: point falls outside control limits even when no assignable cause present (a.k.a. false alarm)
 - Type II error: point falls inside control limits when process actually out of control (a.k.a. missed detection)
- Warning limits: 2-sigma limits in addition to 3-sigma control-limits if sample-point falls outside warning limits but inside control limits take additional data to investigate state of control of process
- Allocation of sampling effort: sample size and sampling frequency
 - Larger sample size => enables detection of small shifts in process
 - Frequent sampling => early detection of out-of-control state
- Current practice: take smaller, more frequent samples
 - Can also base decision on average run length (ARL)

AT&T Rules for Control Charts

Investigate if

2 out of 3 points in a row in zones A and above $\ ^{\sigma}$

4 out of 5 in a row in B or above

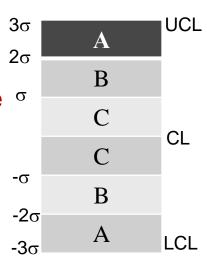
8 consecutive in C or beyond

1 point beyond A

6 points in a row steadily increasing

6 points in a row steadily decreasing

14 points in a row alternating up and down



ARL (Average Run Length) of control-chart: average number of points plotted before out-of-control situation is indicated

Shewhart control-charts (only the most recent sample statistic used to test in-control hypothesis):

Control Charts: Design Issues

$$ARL = \frac{1}{p}$$

p: probability that any point exceeds control limits

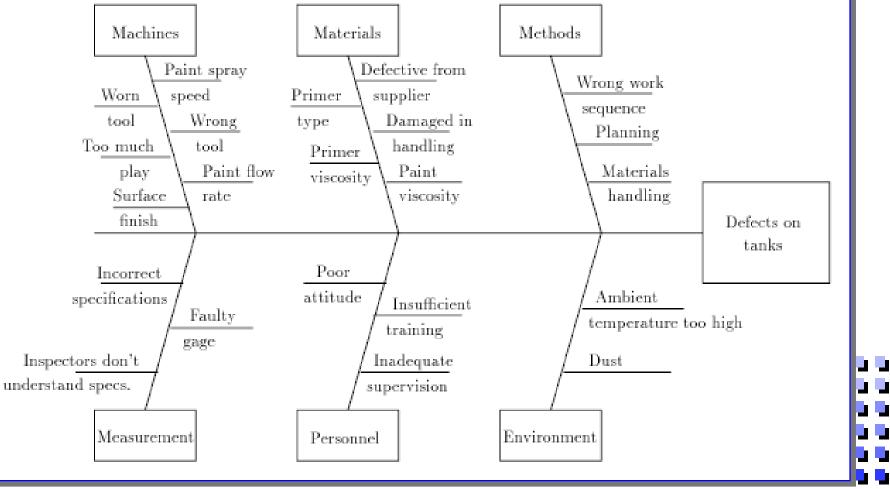
Example: 3- σ control limits => p = 0.0027 when process in control ARL = $\frac{1}{0.0027}$ = 370

 \Rightarrow 370 samples plotted before false-alarm

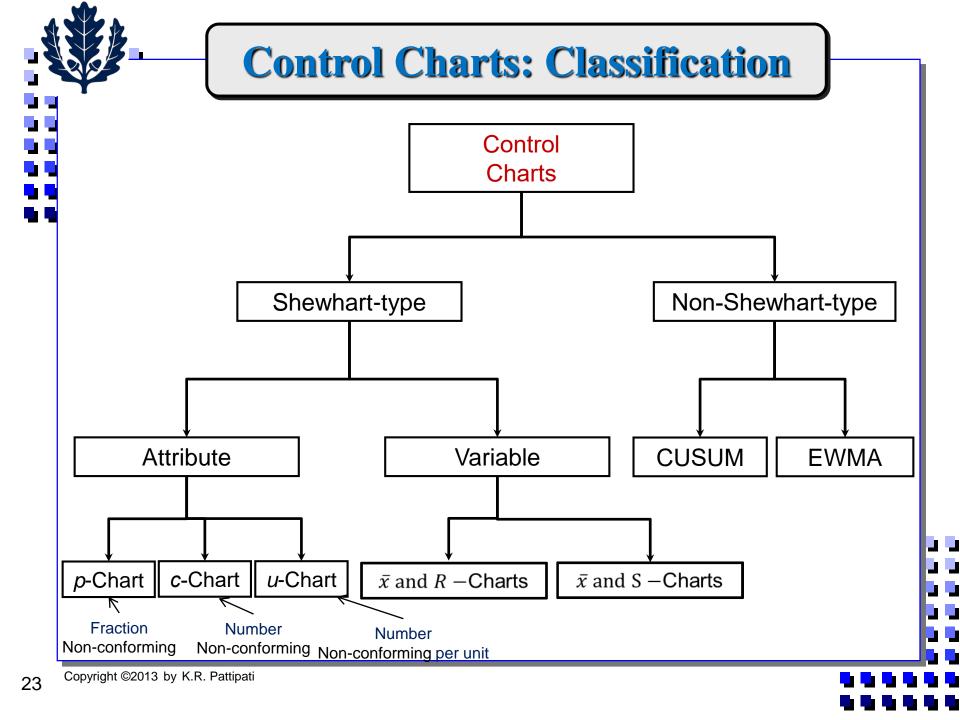
- Mean shifts from center-line => p increases => ARL reduces (need fewer points to detect actual out-of-control)
- Rational subgroups: samples (subgroups) should be chosen so that if assignable cause(s) present, chance for differences between subgroups is maximized and chances for differences within subgroups are minimized

Cause and Effect Diagrams

Cause and Effect Diagram: formal tool useful in unlayering potential causes of an undesirable effect (Ishikawa/Fishbone/Herringbone diagrams)



- Start with a symptom: a condition where evidence of a problem is manifested ("observed effect")
- Ask: What are the major stimuli ("root causes") behind the observed effect?
- Process of constructing a CE diagram:
 - Start with a symptom and draw the basic shell ("fishbone")
 - Identify the major causes
 - Brainstorm for all possible causes
 - Circle the root causes, then prioritize them
 - Verify the selected major causes with further data collection



Control Charts for Attributes

Attributes: quality characteristics that cannot be represented numerically

Product declared *conforming/nonconforming* to the specifications of an attribute-type quality characteristic

Three widely used control charts for attributes

p chart: plot fraction of nonconforming products

c chart: plot number of nonconformities or defects

u chart: plot number of nonconformities per unit

p-Chart: Control Chart for Fraction Nonconforming

Fraction nonconforming =

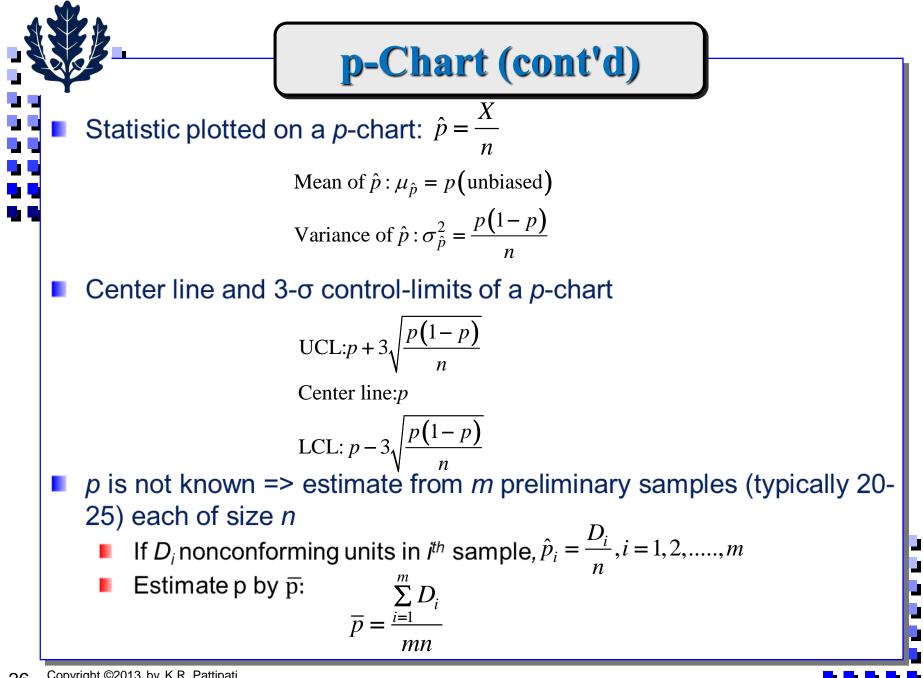
Number of nonconforming items in a population

Total number of items in the population

- Statistical principle: based on the *binomial distribution*
- probability that any unit will not conform to specifications
- X: number of units of product that are nonconforming in a random sample of n units
- Probability that X = x units out of *n* are nonconforming

$$P(X = x) = \binom{n}{x} p^{x} (1-p)^{n-x}$$

Mean of $x: \mu_X = np$ Variance of $x: \sigma_X^2 = np(1-p)$



p-Chart Example

$\bar{p} = 347/(30)(50) = 0.2313$	Sample	trial control limits, sa Number of	Sample size $n =$ Sample Fraction
UCL = $\bar{p} + 3\sqrt{\frac{\bar{p}(1-\bar{p})}{n}} = 0.2313 + 0.1789 = 0.4102$	Number	Nonconforming Units	Nonconforming
UCL = $\bar{p} + 3\sqrt{\frac{p(1-p)}{p}} = 0.2313 + 0.1789 = 0.4102$	1	12	0.24
$0.01 = p + 3\sqrt{-2.010} = 0.2313 + 0.1789 = 0.4102$	2	15	0.30
n	3	8	0.16
$\overline{\pi}(1, \overline{\pi})$	4	10	0.20
LCL = $\bar{p} - 3\sqrt{\frac{\bar{p}(1-\bar{p})}{n}} = 0.2313 - 0.1789 = 0.0524$	5	4	0.08
LCL = $p - 3\sqrt{\frac{1}{2}} = 0.2313 - 0.1789 = 0.0524$	6	7	0.14
\cdot n	7	16	0.32
	8	9	0.18
0.55r	9	14	0.28
0.70	10	10	0.20
0.50 ⁻	11	5	0.10
	12	6	0.12
$\exists 0.40$ Trial UCL = 0.4102	13	17	0.34
$\exists 0.40$	14	12	0.24
	15	22	0.44
Ξ 0.35 ⁺ Λ / Λ / Λ	16	8	0.16
	17	10	0.20
<u>ёо.зерд Д. /\/ / \</u>	18	5	0.10
[0.25]/ / / / / / / / / / / / / / / / / / /	19	13	0.26
	20	11	0.22
$\ddot{e} 0.20$ $\lambda / V \lambda / \lambda / V \lambda / \lambda$	21	20	0.40
	22	18	0.36
	23	24	0.48
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	24	15	0.30
$\frac{1}{2}$ o - Trial LCL = 0.0524	25 26	9 12	0.18 0.24
$\frac{3}{20} 0.05$ 1 mal LCL = 0.0524			
91 mm	27 28	7 13	0.14 0.26
	28 29	9	0.26
1 2 15 21 23 30	29	6	0.18
Sample number	30	347	$\bar{p} \equiv 0.2313$

Copyright ©2013 by K.R. Pattipati 27

p-Chart Example (cont'd)

Samples 15 and 23 outside control limits; any assignable causes?

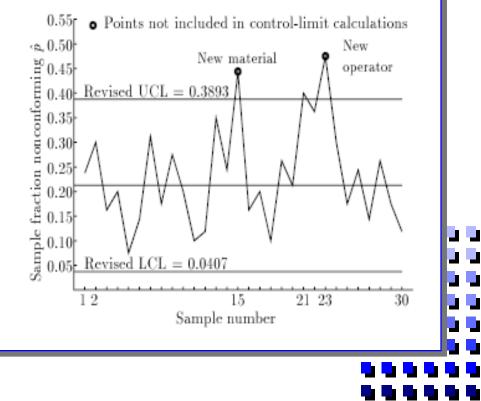
- Sample 15: new batch of raw material introduced (possibly caused irregular production performance)
- Sample 23: Inexperienced operator temporarily assigned
- Eliminate samples 15 and 23 and calculate new control limits

$$\bar{p} = 301/(28)(50) = 0.2150$$

UCL = $\bar{p} + 3\sqrt{\frac{\bar{p}(1-\bar{p})}{n}} = 0.3893$
LCL = $\bar{p} - 3\sqrt{\frac{\bar{p}(1-\bar{p})}{n}} = 0.0407$

Sample 21 now exceeds UCL — retain if no assignable cause found

New control limits adopted for subsequent monitoring



c-Chart: Control Chart for Nonconformities (Defects in a Unit)

Several defects/nonconformities possible in a single product

Number of broken rivets in an aircraft wing

Number of defective welds in 100m of oil pipeline

Assumption: occurrence of defects in samples of constant size (*inspection units*) modeled by *Poisson distribution*

x: number of nonconformities in an inspection unit

Probability of x nonconformities

$$p(x) = \frac{e^{-c}c^x}{x!}, x = 0, 1, 2, \dots$$

c > 0: parameter of the Poisson distribution

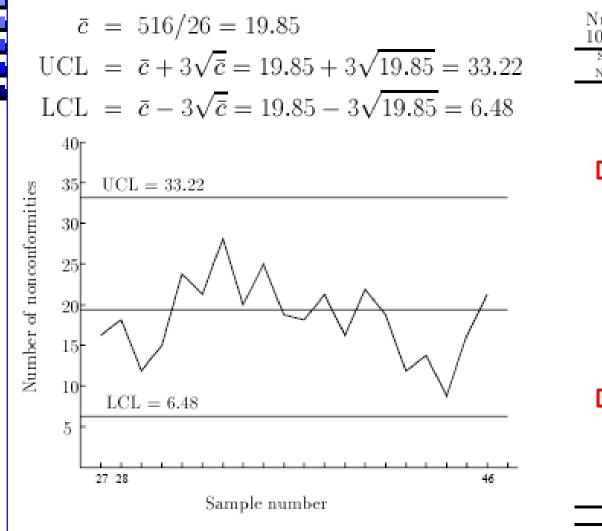
Mean of x = Variance of x = c

- Statistic plotted on a c-chart: number of defects x
- Center line and 3-o control-limits of a c-chart

UCL = $c + 3\sqrt{c}$ Center line = cLCL = $c - 3\sqrt{c}$

c not known => use estimate \bar{c} obtained from preliminary samples

c-Chart Example



Number of defects in samples of 100 printed circuit boards

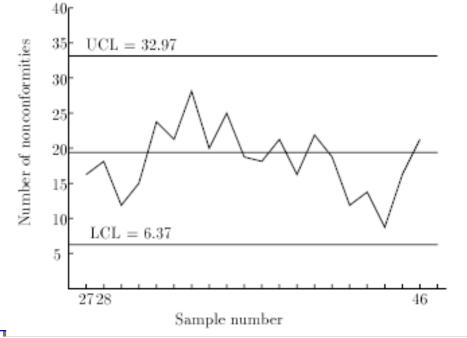
100 printed circuit boards				
-	Sample Number of			
Number	Nonconformities			
1	21			
2	24			
3	16			
4	12			
5	1.5			
6	5			
7	238			
8	20			
9	31			
10	2.5			
11	20			
1.2	24			
13	16			
14	19			
1.5	10			
16	17			
17	13			
18	2:2			
19	18			
20	39			
21	30			
22	24			
23	16			
24	19			
2.5	17			
26	15			
	516			

c-Chart Example (cont'd)

Assignable causes found for samples 6 and $20 \rightarrow$ revise control limits

$$\bar{c} = 472/24 = 19.67$$

UCL = $\bar{c} + 3\sqrt{\bar{c}} = 19.67 + 3\sqrt{19.67} = 32.97$
LCL = $\bar{c} - 3\sqrt{\bar{c}} = 19.67 - 3\sqrt{19.67} = 6.37$



Use revised limits as standard for next period

Additional defect data for printed-circuit-boards example

Part definition of the state of the	sere is order one constant pro-
Sample	Number of
Number	Nonconformities
27	16
28	18
29	12
30	15
31	24
32	21
33	28
34	20
35	25
36	19
37	18
38	21
39	16
40	22
41	19
42	12
43	14
-44	9
45	16
46	21

Use *n* inspection units

c total nonconformities in n inspection units

Average nonconformities per inspection unit

$$u = \frac{c}{n}$$

c is Poisson random variable =>

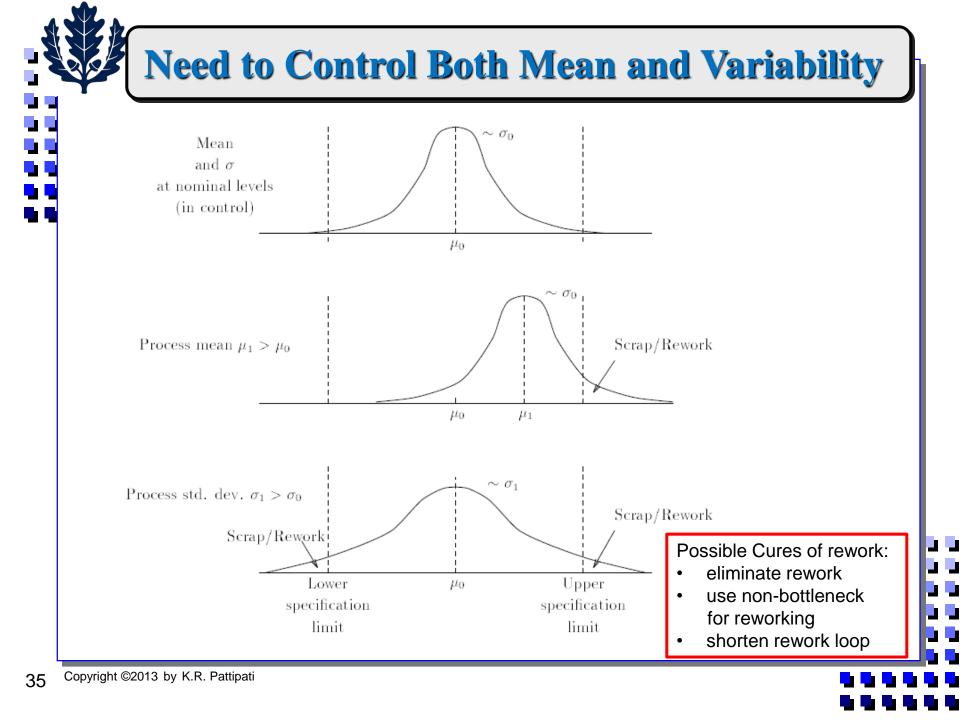
UCL =
$$\overline{u} + 3\sqrt{\frac{\overline{u}}{n}}$$

Center line = \overline{u}
LCL = $\overline{u} - 3\sqrt{\frac{\overline{u}}{n}}$

 $\overline{u} \rightarrow$ estimated average nonconformities per unit from preliminary data

Control Charts for Variables

- Variable: a single measurable (quantitative) quality characteristic, e.g., a dimension, weight, or volume
- Control charts for variables provide more information about process performance than attribute control charts
- Need to control both mean and variability of the quality characteristic
 - Control chart for mean of variable: \bar{x} -chart
 - Control chart for variability: two options
 - S-chart (for standard deviation)
 - R-chart (for range) \rightarrow more frequently used



 \overline{x} - and *R*-Charts

Assume quality characteristic is normally distributed as $N(\mu, \sigma)$ Sample of size *n* of the quality characteristic considered: x_1, x_2, \dots, x_n

Statistic for \bar{x} -chart: sample average

$$\overline{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

 \bar{x} is distributed as N(μ , σ/\sqrt{n})

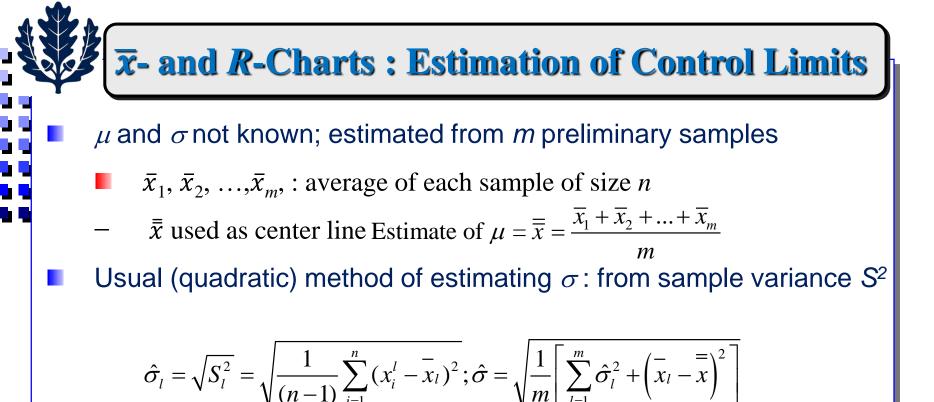
3- σ control limits of \bar{x} -chart:

UCL=
$$\mu$$
+3 $\frac{\sigma}{\sqrt{n}}$

Center line= μ

LCL=
$$\mu - 3\frac{\sigma}{\sqrt{n}}$$

 μ and $\sigma \, {\rm not}$ known; estimated from preliminary samples



- Range method to estimate σ : almost as good as quadratic estimator for small sample sizes (n < 10); relative efficiency deteriorates as n increases
 - Small samples: typically 4, 5, or 6 due to rational subgrouping, high cost of sampling and inspection associated with variable measurements

Range method to estimate σ

- Range of sample: difference between the largest and smallest observations $R = x_{max} x_{min}$
- Define relative range $W = R/\sigma$
 - d₂: mean of W tabulated values available ($d_2 \sim 1.1-3.9$ for $n \sim 2-25$)
- Estimate σ by $\hat{\sigma} = \overline{R}/d_2$, $\overline{R} = (R_1 + R_2 + ... + R_m) / m$
- R-chart: plot range values from successive samples to control variability
 - Standard deviation of *R*, σ_R : $\sigma_R = d_3 \sigma$
 - d₃: standard deviation of \underline{W} -tables of values available ($d_3 \sim 0.7-0.85$)

 \mathbf{d}_3

0.729

0.708

 \mathbf{d}_2

3.735

3.931

Estimate of σ_{R} : $\hat{\sigma}_{R} = d_{3} \frac{R}{d_{2}}$ Control limits $- \overline{R}$ $- - \overline{R}$ 20

UCL=
$$\overline{R}$$
+3 $d_3 \frac{R}{d_2}$ Center line= \overline{R} LCL= \overline{R} -3 $d_3 \frac{R}{d_2}$ ²⁵

Control Charts for Individual Measurements

What if n = 1? (sample for inspection is an individual unit), e.g.,

- every unit is analyzed (e.g., use of automated inspection and measurement)
- slow rate of production cannot allow sample sizes of n > 1 to accumulate
- measurements made on a batch differ very little treated as one measurement (e.g., thickness at various locations of a roll of paper)
- Options
 - Control chart for individual units
 - Cumulative sum (CUSUM) or exponentially-weighted moving-average (EWMA) control charts - for detecting small shifts in process (discussed later)
 - Control chart for individual units: in manner of \bar{x} and R-charts
 - Plot individual measurements, and
 - Plot variability measure estimated from moving range of two successive observations

Individuals Control Chart Example

	Quality characteristic: viscosity of primer	Viscosity of aircraft primer paint		
	paint for aircrafts	Batch Number	Viscosity <i>x</i>	Moving Range <i>MR</i>
	Control limits for MR-chart (using n = 2 for _ moving range)	1	33.75	
	UCL= $\overline{MR}(1+3\frac{d_3}{d_2}) = 0.48(3.267) = 1.57$	2	33.05	0.70
	$d_2 = \frac{1.57}{1.57}$	3	34.00	0.95
(Center line= $\overline{MR} = 0.48$ $d_3 = 0.8525$ $d_2 = 1.1280$	4	33.81	0.19
		5	33.46	0.35
	LCL= $\overline{MR}(1-3\frac{d_3}{d_2}) = 0.48(0) = 0$	6	34.02	0.56
	[For $n = 2, d_2 = 1.128, d_3 = 0.853,$	7	33.68	0.34
		8	33.27	0.41
	$1 + 3\frac{0.853}{1.128} = 1 + 2.267 = 3.267]$	9	33.49	0.22
		10	33.20	0.29
	Control limits for individual-measurement	11	33.62	0.42
	chart UCL = \sqrt{MR} 22.52 + 2.0.48 24.80	12	33.00	0.62
	UCL= $\overline{x} + 3\frac{MR}{d_2} = 33.52 + 3\frac{0.48}{1.128} = 34.80$	13	33.54	0.54
	Center line= $\overline{x} = 33.52$	14	33.12	0.42
		15	33.84	0.72
_	LCL= $\overline{x} - 3\frac{MR}{d_2} = 33.52 - 3\frac{0.48}{1.128} = 32.24$		$\bar{x} = 33.52$	$\overline{MR} = 0.48$

42 Copyright ©2013 by K.R. Pattipati

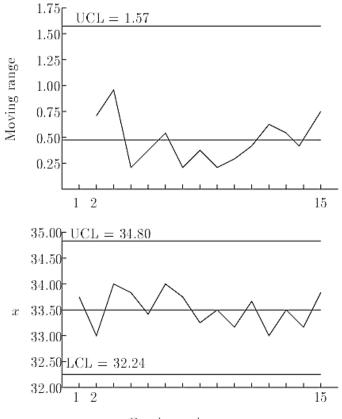
Individuals Control Chart Example (cont'd)

Control charts for moving range and individual observations on viscosity

Process is in control

Note on interpretation:

MR-chart is correlated *x* measurements are assumed uncorrelated \Rightarrow any pattern in *x*-chart must be investigated



Batch number

- \bar{x}_{i} : average of f^{th} sample (or x_{i} if sample size n = 1)
- μ_0 : target for process mean
- CUSUM chart: plot cumulative sum S_i against sample number i $S_i = \sum_{i=1}^{i} (\overline{x}_i - \mu_0) = S_{i-1} + (\overline{x}_i - \mu_0)$
 - combine information from several samples effective for detecting small shifts
 - **good for** n = 1
- Trends in CUSUM chart
 - If process is in control at target value μ_0 , S_i should fluctuate about zero (random walk with mean zero)
 - If process mean $\mu_1 > \mu_0$, upward drift in S_i
 - If process mean $\mu_1 < \mu_0$, downward drift in S_i
- Control limits: V-mask

Example: Shewhart vs. CUSUM

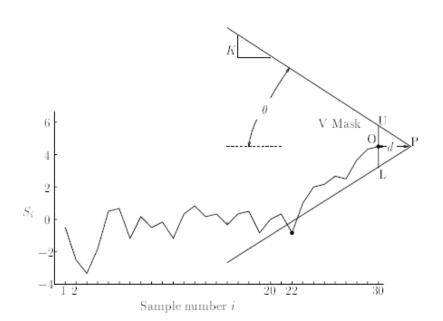
Sample <i>i</i>	x _i	<i>x</i> _{<i>i</i>} -10	S_i	
1	9.45	-0.55	-0.55	
2	7.99	-2.01	-2.56	20 F Showbert Control Chart
3	9.29	-0.71	-3.27	Snewnart Control Chart
4	11.66	1.66	-1.61	15 UCL = 13
5	12.16	2.16	0.55	
6	10.18	0.18	0.73	· ·
7	8.04	-1.96	-1.23	5 LCL = 7
8	11.46	1.46	0.23	12 20 30
9	9.20	-0.80	0.57	1 2 20 30
10	10.34	0.34	-0.23	4 CUSUM Control Chart
11	9.03	-0.97	-1.20	
12	11.47	1.47	0.27	$\mu = 10$
13	10.51	0.51	0.78	
14	9.40	-0.60	0.18	S_i $($
15	10.08	0.08	0.26	
16	9.37	-0.63	-0.37	
17	10.62	0.62	0.25	-2 $\mu = 10.5$
18	10.31	0.31	0.56	
19	8.52	-1.48	-0.92	$-4\frac{1}{12}$ 20 30
20	10.84	0.84	-0.08	Sample number i
21	10.40	0.40	0.32	
22	8.83	-1.17	-0.85	
23	11.79	1.79	0.94	
24	11.00	1.00	1.94	
25	10.10	0.10	2.04	
26	10.58	0.58	2.62	
27	9.88	-0.12	2.50	
28	11.12	1.12	3.62	
29	10.81	0.81	4.43	
30	10.02	0.02	4.45	
yright ©2013				

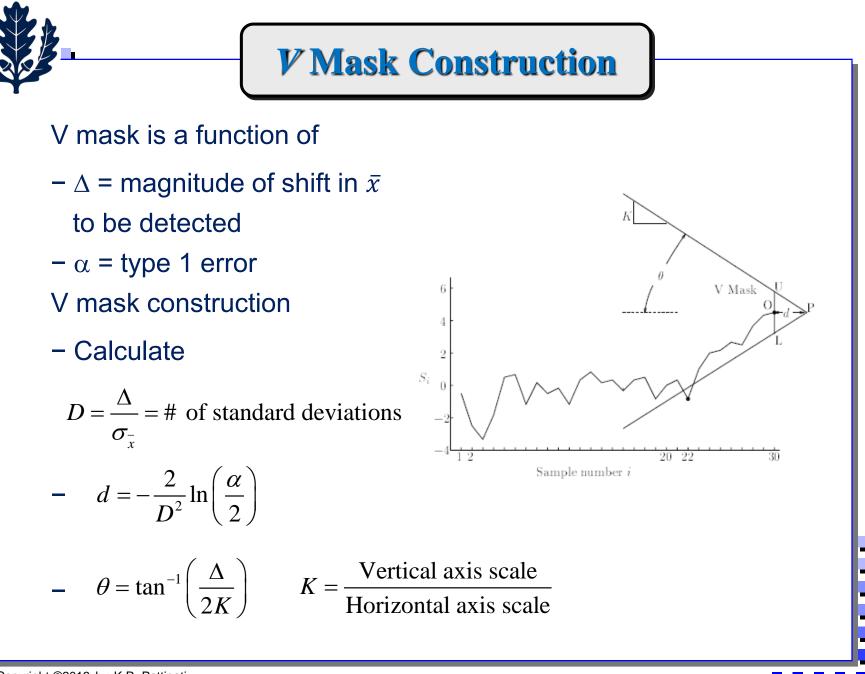
V Mask: Limits on Slope of CUSUM Chart

Control V mask centered at each observation; if all previous S_i lie within the arms of the V mask, process is in control

Sample 22 lies below the lower arm when mask centered at 30th sample ⇒ have detected upward shift in process mean

 Calculation of parameters d and θ of the V mask (see Montgomery)





Plot z_j versus j: exponentially weighted moving average of samples upto the j^{th} sample

$$z_{j} = \lambda \overline{x}_{j} + (1 - \lambda) z_{j-1}, 0 < \lambda \le 1$$

where $z_{0} = \overline{\overline{x}}$

- EWMA is weighted average of current and all past observations \Rightarrow insensitive to normality assumption (central limit theorem) \rightarrow ideal control chart for individual observations (n = 1)
- If \overline{x}_i are independent with variance σ^2 / n , variance of z_i is

$$\sigma_{z_j}^2 = \frac{\sigma^2}{n} \left(\frac{\lambda}{2 - \lambda} \right) \left[1 - (1 - \lambda)^{2j} \right]$$
solve Lyapunov Equation:
$$\sigma_{z_j}^2 = \frac{\sigma^2}{n} \left(\frac{\lambda}{2 - \lambda} \right)$$

$$\sigma_{z_j}^2 = (1 - \lambda)^2 \sigma_{z_j-1}^2 + \lambda^2 \frac{\sigma^2}{n}$$

The EWMA Control Chart (cont'd)

Control limits of EWMA chart (for large sample number *j*)

UCL=
$$\overline{x} + 3\sigma \sqrt{\frac{\lambda}{(2-\lambda)n}}$$

LCL= $\overline{x} - 3\sigma \sqrt{\frac{\lambda}{(2-\lambda)n}}$

If σ unknown, must be estimated from R-chart

UCL=
$$\overline{\overline{x}} + 3\frac{\overline{R}}{d_2}\sqrt{\frac{\lambda}{(2-\lambda)n}}$$

LCL= $\overline{\overline{x}} - 3\frac{\overline{R}}{d_2}\sqrt{\frac{\lambda}{(2-\lambda)n}}$

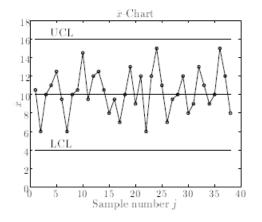
- Choice of λ and k (= 3 above) can be determined on the basis of ARL
 - Popular choices of λ : 0.08, 0.10, and 0.15 \rightarrow use smaller λ to detect smaller shifts
 - Use k = 3 except when $\lambda \le 0.10$, use k = 2.75

EWMA Example

Construct EWMA chart from given \bar{x} -chart

Use $\lambda = 0.2$

Sample j	\bar{x}_j	z_j	LCL	UCL	Sample j	\bar{x}_{j}	z_j	LCL	UCL
1	10.5	10.10	8.00	11.20	20	9.0	10.05	8.00	12.00
2	6.0	9.28	8.46	11.54	21	12.0	10.44	•	
3	10.0	9.42	8.26	11.72	22	6.0	9.55	•	
4	11.0	9.74	8.18	11.82	23	12.0	10.04	•	
5	12.5	10.29	8.11	11.89	24	15.0	11.03		
6	9.5	10.13	8.07	11.93	25	11.0	11.00		
7	6.0	9.31	8.04	11.96	26	7.0	10.22		
8	10.0	9.45	8.03	11.97	27	9.5	10.08		
9	10.5	9.66	8.00	12.00	28	10.0	10.06		
10	14.5	10.62		•	29	12.0	10.45		
11	9.5	10.40			30	8.0	9.96		
12	12.0	10.72			31	9.0	9.77		
13	12.5	11.07			32	13.0	10.41		
14	10.5	10.96			33	11.0	10.53		
15	8.0	10.37			34	9.0	10.23		
16	9.5	10.19			35	10.0	10.18		
17	7.0	9.56			36	15.0	11.14		
18	10.0	9.64			37	12.0	11.32		
19	13.0	10.32			38	8.0	10.65		



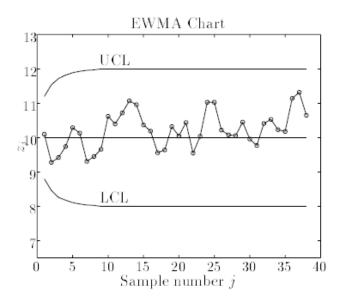
EWMA Example (cont'd)

Control limits for EWMA chart

UCL=
$$\overline{\overline{x}} + 3\frac{\sigma}{\sqrt{n}}\sqrt{\frac{\lambda}{(2-\lambda)}} = 10.0 + 6.0\sqrt{\frac{0.2}{1.8}} = 12.0$$

Center line= $\overline{\overline{x}} = 10.0$

LCL=
$$\overline{\overline{x}} - 3\frac{\sigma}{\sqrt{n}}\sqrt{\frac{\lambda}{(2-\lambda)}} = 10.0 - 6.0\sqrt{\frac{0.2}{1.8}} = 8.0$$



Capability Analysis Using a Control Chart: Example

	Bursting strength of 20 samples of soft-drink bottles								Specification on bursting		
	Sample	Data					x	R	strength: LSL= 200		
	1	265	205	263	307	220	252.0	102			
	2	268	260	234	299	215	255.2	84	R-chart		
-	3	197	286	274	243	231	246.2	89	Center line= \overline{R} = 77.3		
	4	267	281	265	214	318	269.0	104	Center line= $K = 77.5$		
	5	346	317	242	258	276	287.8	104	-(3d)		
	6	300	208	187	264	271	246.0	113	UCL= $\overline{R}\left(1+\frac{3d_3}{d_2}\right)=163.49$		
	7	280	242	260	321	228	266.2	93	$\begin{pmatrix} & d_2 \end{pmatrix}$		
	8	250	299	258	267	293	273.4	49			
	9	265	254	281	294	223	263.4	71	$LCL = \overline{R} \left(1 - \frac{3d_3}{d_2} \right) = 0$		
	10	260	308	235	283	277	272.6	73	$L \in L = R \begin{pmatrix} 1 & d_2 \end{pmatrix} = 0$		
	11	200	235	246	328	296	261.0	128	\bar{x} -chart		
	12	276	264	269	235	290	266.8	55			
	13	221	176	248	263	231	227.8	87			
	14	334	280	265	272	283	286.8	69	Center line= $\overline{\overline{x}} = 264.06$		
	15	265	262	271	245	301	268.8	56	UCL= $\overline{\overline{x}} + 3\frac{\overline{R}}{d_2\sqrt{n}} = 308.66$		
	16	280	274	253	287	258	270.4	34	$UCI = \frac{\pi}{2} + 3 \frac{R}{R} = 308.66$		
	17	261	248	260	274	337	276.0	89	$0CL = x + 3\frac{1}{d\sqrt{n}} = 300.00$		
	18	250	278	254	274	275	266.2	28			
	19	278	250	265	270	298	272.2	48	$- \text{LCL} = \overline{\overline{x}} - 3\frac{\overline{R}}{d_2\sqrt{n}} = 219.46$		
	20	257	210	280	269	251	253.4	70	$-$ LCL= $x - 3\frac{1}{d} = 219.46$		
						Ā	$\overline{c} = 264.06$	<u>R</u> = 77.3			

ength: LSL= 200 :hart line= \overline{R} = 77.3 UCL= $\overline{R}\left(1+\frac{3d_3}{d_2}\right)=163.49$ $LCL = \overline{R} \left(1 - \frac{3d_3}{d_2} \right) = 0$ hart $ne=\overline{\overline{x}}=264.06$ $CL = \overline{\overline{x}} + 3\frac{\overline{R}}{d_2\sqrt{n}} = 308.66$ $CL = \overline{\overline{x}} - 3\frac{\overline{R}}{d_2\sqrt{n}} = 219.46$

Copyright ©2013 by K.R. Pattipati 56

Capability Analysis Using a Control Chart (cont'd)

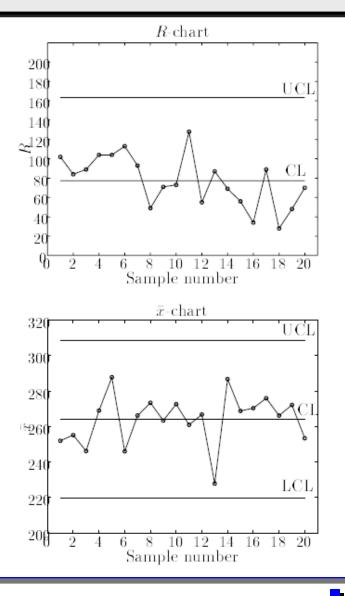
Process parameters from the control charts $\hat{\mu} = \overline{\overline{x}} = 264.06$

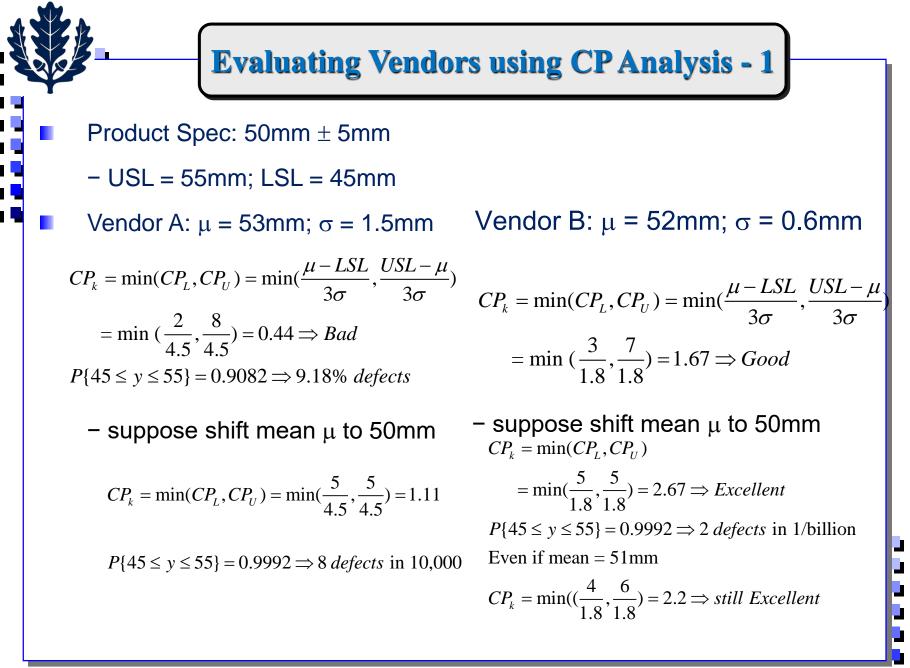
$$\hat{\sigma} = \frac{\bar{R}}{d_2} = \frac{77.3}{2.326} = 33.23$$

One-sided process capability ratio

$$CP_L = \frac{\hat{\mu} - LSL}{3\hat{\sigma}} = \frac{264.06 - 200}{3(33.23)} = 0.64$$

CP inadequate This (bottle strength safety is а factor) \rightarrow process in control but operating at unacceptable level \rightarrow management intervention required to improve the process





Evaluating Vendors using CP Analysis - 2

- Product Spec: 50mm ± 5mm
- USL = 55mm; LSL = 45mm
- Vendor C: μ = 50mm; σ = 2.2mm

$$CP_{k} = \min(CP_{L}, CP_{U})$$

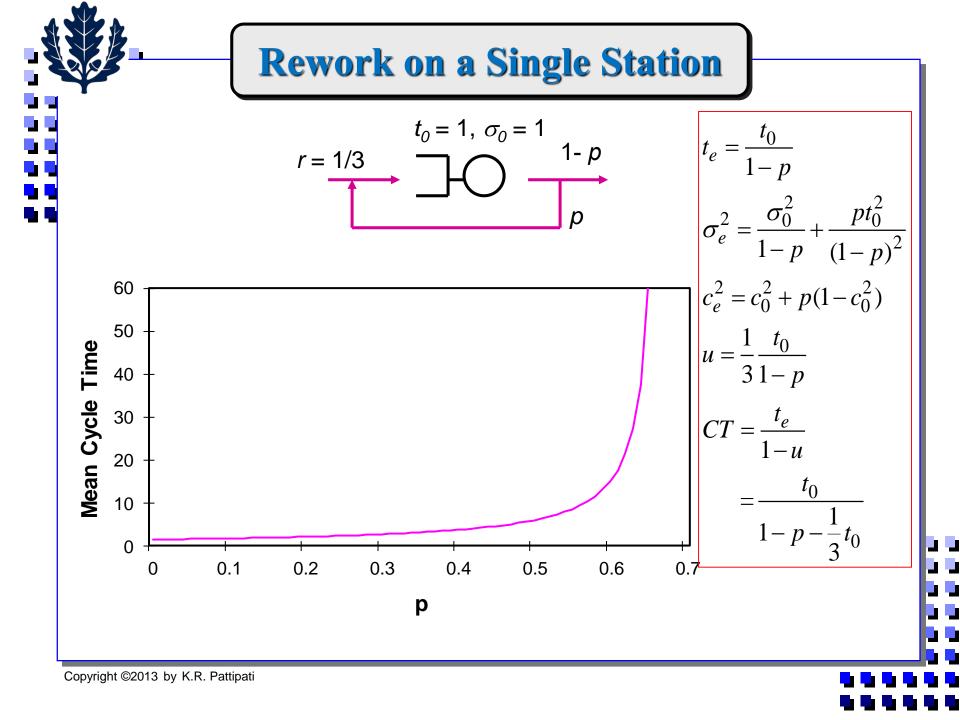
= $\min(\frac{5}{6.6}, \frac{5}{6.6}) = 0.76$
 $P\{45 \le y \le 55\} = 0.9768 \Longrightarrow 2.32\%$ defects

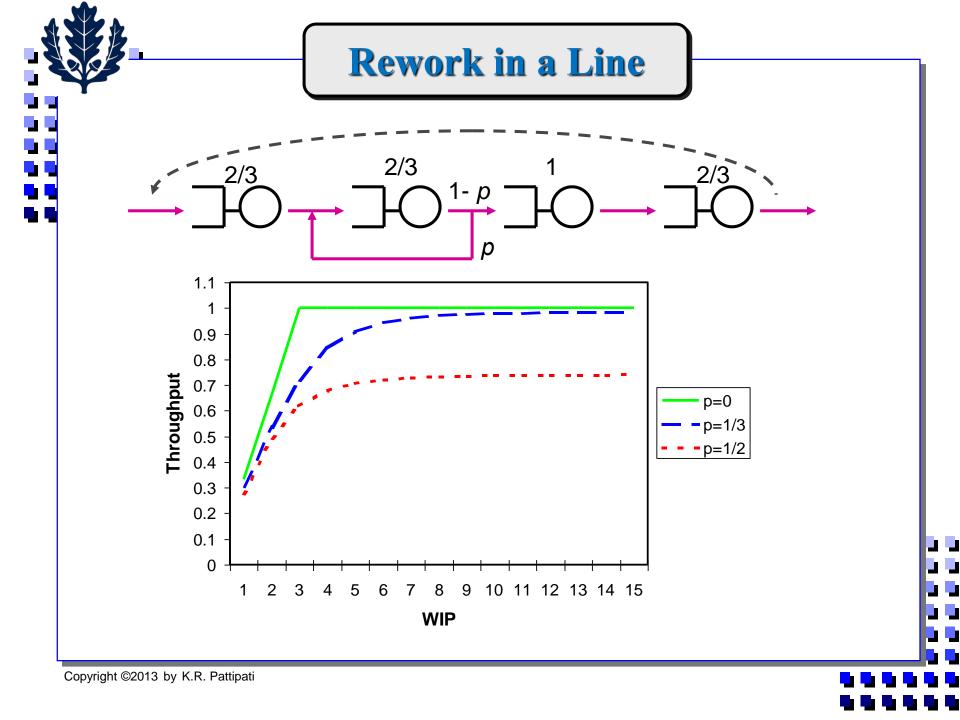
– Need to reduce $\boldsymbol{\sigma}$

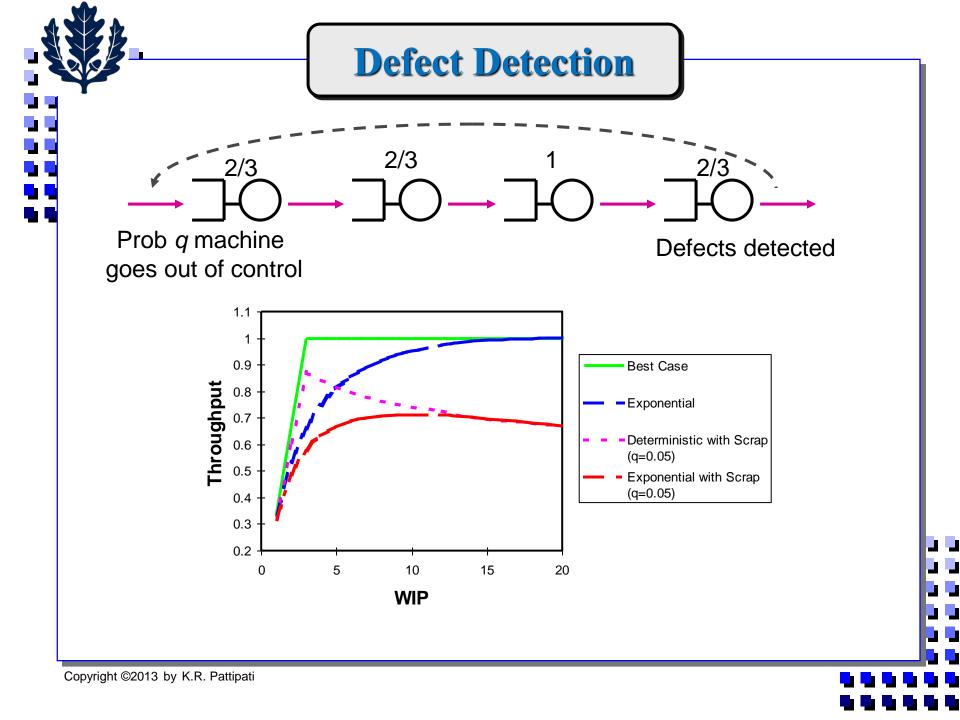
$$\sigma = 0.833 \Longrightarrow CP_k = 2$$

Quality and Logistics

- Quality and Cost:
 - Cost increases with quality? (e.g., better materials)
 - Cost decreases with quality? (e.g., less correction cost)
 - Reality is a balance
- Quality Promotes Logistics:
 - Law: Variability degrades performance
 - Law: Congestion effects increase nonlinearly with utilization
 - Yield loss and rework are *major* sources of variability and lost capacity
- Logistics Promotes Quality:
 - Excess WIP obscures problems and delays/prevents diagnosis
 - Excess WIP magnifies losses
 - Excess cycle time degrades quality of service







Safety and Lead Times in Assembly Systems

Required Service:

- *Single Component*: 95% service level
- 10 Component Assembly: If each has 95% service level, then

Prob{All components arrive on time} = $(0.95)^{10} = 0.5987$

so to get 95% service on the assembly we need each component to have p% service, where

$$p^{10} = 0.95$$

 $p = 0.95^{1/10} = 0.9949$

Safety and Lead Times in Assembly Systems

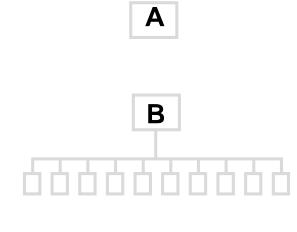
Consequences:

- Single Component:

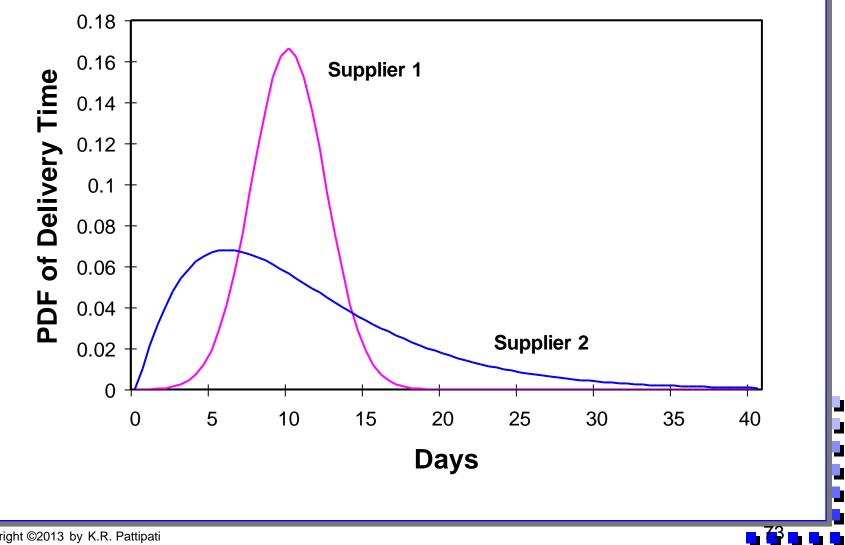
- Supplier 1: 14 day lead time
- Supplier 2: 23 day lead time

- 10 Component Assembly:

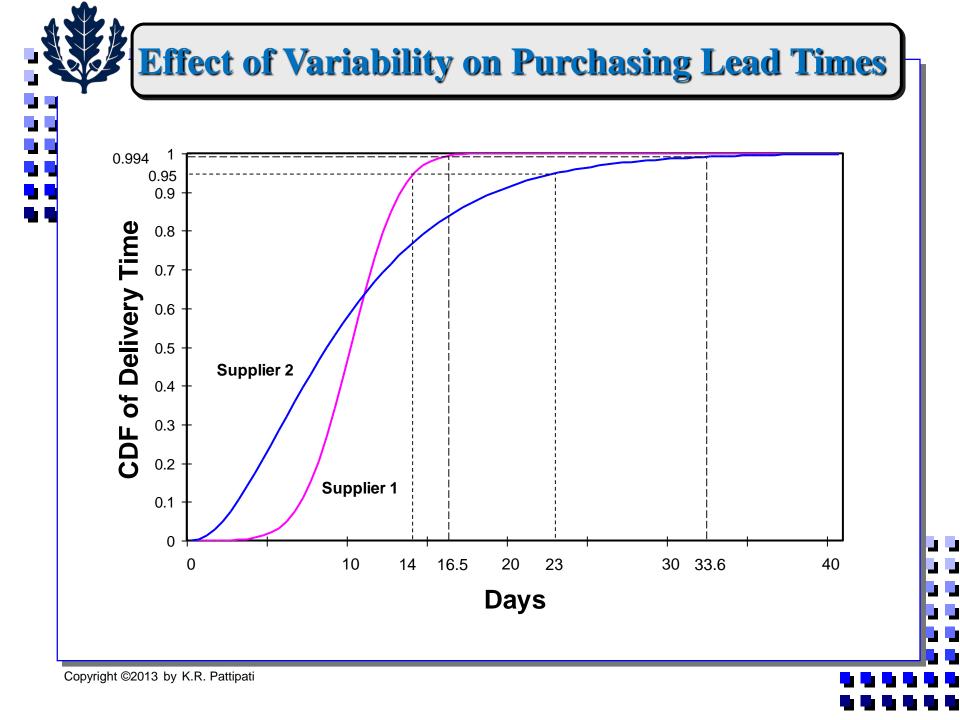
- Supplier 1: 16.3 day lead time
- Supplier 2: 33.6 day lead time



Effect of Variability on Purchasing Lead Times



Copyright ©2013 by K.R. Pattipati



References

- 1. Badavas, P. C., *Real-Time Statistical Process Control*, P.T.R. Prentice-Hall, Englewood Cliffs, New Jersey, 1993.
- 2. Kane, V., Process Capability Indices, *Journal of Quality Technology*, vol. 18, pp 41-52, January 1986.
- 3. Kaplan, G. (ed.), Manufacturing À La Carte, Making war on defects, *IEEE Spectrum*, pp 43-50, September 1993.
- 4. Montgomery, D. C., *Introduction to Statistical Quality Control*, John Wiley & Sons, New York, 1991.
- 5. Ryan, T. P., *Statistical Methods for Quality Improvement*, John Wiley & Sons, New York, 1989.
- 6. Schmidt, S. R. and Launsby, R. G., *Understanding Industrial Designed Experiments*, Air Academy Press, Colorado Springs, Third edition, 1992.