# Design for Quality

### Prof. Krishna R. Pattipati Dept. of Electrical and Computer Engineering University of Connecticut Contact: <u>krishna@engr.uconn.edu</u> (860) 486-2890

### ECE 6161 Modern Manufacturing System Engineering

Copyright ©2013 by K.R. Pattipati

Outline

This Lecture

- Attributes of Quality
- Measures of Quality Loss
  - Robust Parameter Design (Taguchi)
  - Response Surface Methods
- Multi-objective optimization
- On-line quality control (Next Lecture)
  - Statistical Process Control
  - On-line improvement

# **Attributes of Quality**

### Quality Definitions:

- Transcendent: innate excellence or "I know it when I see it" view.
- Feature-based: function of product attributes or "more is better" view.
- User-based: customer satisfaction or "beauty is in the eye of the beholder" view.
- Manufacturing-based: conformance to specifications, related to "do it right the first time" view.
- Value-based: price/performance or "affordable excellence" view.

# Attributes of Quality (Cont'd)

### **Customer Orientation:**

- Customer satisfaction depends on external quality
- External quality depends on *internal* quality
- Quality must address product, process, system

### Promoting Internal Quality:

- Error prevention
- Inspection improvement
- Environment enhancement

# **Design for Quality**

- Goal: obtain design parameter settings so that the least inherent variability is achieved
- Outline of topics
  - 1. Quality measures
  - 2. Design of experiments
  - 3. Taguchi's robust design
  - 4. Response surface methods
  - 5. Multiple quality characteristics (time permitting)
  - 6. Illustrations and case studies





### **Other Loss Functions**

#### Asymmetric loss function





### 2. Robust Design

- An *off-line* design technique: using experiments, find the settings of the product process parameters (*design parameters*) which minimize sensitivity of the quality characteristic to external uncontrollable variations (achieve *robustness*) a.k.a. Taguchi's method
  - 1. <u>Identify a measure of variability</u> (performance measure) that is a function of the design parameters, e.g., an average loss function, or a *signal-to-noise ratio*
  - 2. <u>Identify factors</u> (variables) associated with the uncontrollable variation  $\rightarrow$  noise factors distinct from the design factors
  - 3. <u>Conduct experiment</u>: systematically vary the design parameters as well as the noise factors to get estimates of the variability measure for chosen set of design parameter settings
  - 4. <u>Conduct data analysis</u> to obtain process model and to identify the best design parameter settings (those that minimize the variability measure)

44

5. <u>Run verification experiment</u> to ensure that the 'best' design yields the expected improvement

### **Measure of Variability/Robustness**

Ideal measure for nominal-the-best type characteristic: the *expected quadratic loss function* (average quality loss per product)

$$MSE(x) = E[L(y(x))]$$
  
=  $kE[(y(x)-m)^{2}]$   
= $kE[(y(x)-\mu(x)+\mu(x)-m)^{2}]$   
= $k\underbrace{E[(y(x)-\mu(x))^{2}] + 2k}_{Variance} \underbrace{E[(y(x)-\mu(x))(\mu(x)-m)]}_{=0} + k\underbrace{E[(\mu(x)-m)^{2}]}_{Bias^{2}}$   
=  $k\sigma^{2}(x) + k(\mu(x)-m)^{2}$ 

Typical Bias-variance tradeoff in most modeling and learning problems

Objective: Minimize MSE(x) with respect to design parameters x

### Surrogate Measure used by Taguchi

Taguchi: instead of minimizing MSE(x), maximize a *signal-to-noise ratio*, e.g.,

$$SN_T(x) = 10\log_{10}\frac{\mu^2(x)}{\sigma^2(x)} = 20\log_{10}\frac{\mu(x)}{\sigma(x)}$$

- 1. Fix levels for each factor  $x_i$ , run an experiment at different combinations of factor-levels,  $x_i$  measure y(x) and  $SN_T(x)$
- 2. Separate out signal factors from the other design factors (control factors)
  - Signal factors: affect the mean  $\mu(x)$  of the response y(x), but not  $SN_T(x)$
- 3. Maximize  $SN_T(x)$  with respect to control factors  $\Rightarrow$  minimize  $\sigma(x)$
- 4. Adjust signal factors to bring mean  $\mu(x)$  close to target, m









### **Robust Design Example: Wave Solder Process**

Minimize the number of solder defects per million joints in a printed circuit board assembly plant

| Controllable Factor      | Levels  |         |  |  |
|--------------------------|---------|---------|--|--|
| Controllable Factor      | Low     | High    |  |  |
| S=Solder Pot Temperature | 480°F   | 510°F   |  |  |
| C=Conveyor Speed         | 7.2ft/m | 10ft/m  |  |  |
| F=Flux density           | 0.9°    | 1.0°    |  |  |
| P=Preheat Temperature    | 150°F   | 200°F   |  |  |
| W=Wave Height            | 0.5 in. | 0.6 in. |  |  |

| Uncontrollable Factor    | Levels     |            |  |
|--------------------------|------------|------------|--|
| Product Noise            | Assembly 1 | Assembly 2 |  |
| Conveyor Speed Tolerance | -0.2ft/m   | +0.2ft/m   |  |
| Solder Pot Tolerance     | -0.5°F     | +0.5°F     |  |

# Wave Solder Process: Inner and Outer Arrays

#### Inner Array

| Run | Solder Pot<br>Temperature | Conveyor<br>Speed | Flux<br>Density | Preheat<br>Temperature | Wave<br>Height |
|-----|---------------------------|-------------------|-----------------|------------------------|----------------|
| 1   | 510                       | 10                | 1               | 150                    | 0.5            |
| 2   | 510                       | 10                | 0.9             | 200                    | 0.6            |
| 3   | 510                       | 7.2               | 1               | 150                    | 0.6            |
| 4   | 510                       | 7.2               | 0.9             | 200                    | 0.5            |
| 5   | 480                       | 10                | 1               | 200                    | 0.5            |
| 6   | 480                       | 10                | 0.9             | 150                    | 0.6            |
| 7   | 480                       | 7.2               | 1               | 200                    | 0.6            |
| 8   | 480                       | 7.2               | 0.9             | 150                    | 0.5            |

#### Outer Array

| Noise Parameter    | Replicate  |            |            |            |  |  |  |
|--------------------|------------|------------|------------|------------|--|--|--|
| 1 tonse 1 drumeter | 1          | 2          | 3          | 4          |  |  |  |
| Product Noise      | Assembly#1 | Assembly#1 | Assembly#2 | Assembly#2 |  |  |  |
| ConveyorTolerance  | -0.2       | 0.2        | -0.2       | 0.2        |  |  |  |
| SolderTolerance    | -5         | 5          | 5          | -5         |  |  |  |



| Outer array(L4)               |        |          |              |          |      |     |      |     |     |           |        |
|-------------------------------|--------|----------|--------------|----------|------|-----|------|-----|-----|-----------|--------|
|                               |        |          | Parame       | ter      | 1    | 2   | 3    | 4   |     |           |        |
|                               |        |          | ProductNoise |          |      | #1  | #2   | #2  |     |           |        |
|                               |        | (        | Conveyor To  | olerance | -0.2 | 0.2 | -0.2 | 0.2 |     |           |        |
|                               |        |          | Solder Tole  | erance   | -5   | +5  | +5   | -5  |     |           |        |
| Inner Array (L <sub>8</sub> ) |        |          |              |          |      |     |      |     |     | Responses |        |
| Run                           | Solder | Conveyor | Flux         | Preheat  | Wave | 1   | 2    | 3   | 4   | Mean      | SNs    |
| 1                             | 510    | 10       | 1            | 150      | 0.5  | 194 | 197  | 193 | 275 | 215       | -46.75 |
| 2                             | 510    | 10       | 0.9          | 200      | 0.6  | 136 | 136  | 132 | 136 | 135       | -42.61 |
| 3                             | 510    | 7.2      | 1            | 150      | 0.6  | 185 | 261  | 264 | 264 | 244       | -47.81 |
| 4                             | 510    | 7.2      | 0.9          | 200      | 0.5  | 47  | 125  | 127 | 42  | 85        | -39.51 |
| 5                             | 480    | 10       | 1            | 200      | 0.5  | 295 | 216  | 204 | 293 | 252       | -48.15 |
| 6                             | 480    | 10       | 0.9          | 150      | 0.6  | 234 | 159  | 231 | 157 | 195       | -45.97 |
| 7                             | 480    | 7.2      | 1            | 200      | 0.6  | 328 | 326  | 247 | 322 | 305       | -49.76 |
| 8                             | 480    | 7.2      | 0.9          | 150      | 0.5  | 186 | 187  | 105 | 104 | 145       | -43.59 |

- Inner array measures all five main effects (S,C,F,P,W) and interaction S-C
- SNR=-10log<sub>10</sub>(mean square defect count)

# **Wave Solder Process: Analysis of Means**

| Parameter              | Level  | Mean | SNR    |
|------------------------|--------|------|--------|
| Solder Pot temperature | 480ºF  | 225  | -46.87 |
| (S)                    | 510°F  | 170  | -44.17 |
| Conveyor speed         | 7.2    | 195  | -45.17 |
| (C)                    | 10     | 200  | -45.87 |
| Flux density           | 0:9    | 140  | -42.91 |
| (F)                    | 1:0    | 255  | -48.11 |
| Preheat temperature    | 150ºF  | 200  | -46.03 |
| (P)                    | 200°F  | 194  | -45.01 |
| Wave height            | 0.5in. | 174  | -44.5  |
| (W)                    | 0.6in. | 220  | -46.54 |





# Wave Solder Process: ANOVA Table for SNR

| Parameter            | d.f. | Sum of squares | Mean SS | F-Value |
|----------------------|------|----------------|---------|---------|
| S                    | 1    | 14.58          | 14.58   | 18.3    |
| С                    | 1    | 0.98 *         |         |         |
| F                    | 1    | 54.08          | 54.08   | 67.89   |
| Р                    | 1    | 2.08           | *       |         |
| W                    | 1    | 8.32           | 8.32    | 10.44   |
| Residual             | 2    | 0.13           |         |         |
| Total                | 7    | 80.17          |         |         |
| Model (S+F+W)        | 3    | 76.98          | 25.66   | 32.22   |
| Error (Residual+C+P) | 4    | 3.19           | 0.7965  |         |

$$F_{3,4}(0.05) = 6.59; F_{1,4}(0.05) = 7.71;$$

Prediction model: SNR = -45.52 + 1.35S - 2.60F - 1.02W  $R^2 = 76.98 / 80.1671 = 0.9602$ 

Final Design: S = 510; F = 0.9; W = 0.5;Predicted SNR = -40.55.

# **Components of Matrix Experiment**

Inner array: also known as design array

- each row a unique combination of factor-levels
- choice of design based on the theory of design of experiments or made from Taguchi's collection of orthogonal arrays
- Outer array: unique to Taguchi methods
  - each row a combination of noise-factor-levels
  - combinations span the range of possible variations of the noise factors that may occur in the (uncontrollable) field usage
  - each combination results in one measurement (replicate) of the response for every row of the inner-array
  - outer array design choice may again be one from Taguchi's collection of orthogonal arrays







#### Objective: Choose inner array design so that

- an adequate functional relationship between the variability measure (response) and the design factors is obtained
- the number of runs is as small as possible
- Functional relationship (model): a sum of effects
  - Main effect of a factor: change in the response due to a change in level of that factor alone
  - Interaction effect of two or more factors: change in response due to the combined change in levels of those factors (after accounting for main effects)
- Model can be used to predict response at level-combinations not tested in the experiment

### Factors affecting choice of inner array design

- Number of levels each design factor is to take: decided by order of functional relationship
  - ✤ if factor effect linear: 2 levels
  - ✤ if factor effect quadratic: 3 levels
  - ✤ if factor is an attribute: # of levels = # of categories tested
  - Assumptions on whether the interaction effects are negligible or significant



# **Inner Array Design Types**

#### Full-factorial designs: run all factor-level combinations

- all main effects and their interactions can be measured
- design size increases exponentially with number of factors and levels
- Fractional-factorial designs: obtained from full-factorial designs by assuming certain higher-order effect(s) are negligible → some interaction effects *aliased* with other effects
- Taguchi's orthogonal arrays: each column independently measures a main effect or an interaction; essentially a collection of
  - 2-level fractional-factorial designs
  - 2-level Plackett-Burman designs: for linear models with no interactions, or for screening experiments
  - 3-level fractional-factorial: for quadratic models with no (or few) interactions, or for qualitative factors with no (or few) interactions

# **Inner Array Selection (continued)**

#### Example: 3 factors

- Factor A: 2 levels; Factor B: 2 levels; Factor C: 2 levels
- Full-factorial design (all possible combinations) would require 2 x 2 x 2 = 8 runs  $\rightarrow$  e.g., orthogonal array L<sub>8</sub>

| Expt.       |            | Factor       |    |    | Interaction | on effects | 5   | $\uparrow$ C           |
|-------------|------------|--------------|----|----|-------------|------------|-----|------------------------|
| No.         | Α          | В            | С  | AB | BC          | AC         | ABC | (-1, -1, 1)            |
| 1           | -1         | -1           | -1 | 1  | 1           | 1          | -1  | (1,-1,1) $(-1,1,1)$    |
| 2           | -1         | -1           | 1  | 1  | -1          | -1         | 1   |                        |
| 3           | -1         | 1            | -1 | -1 | -1          | 1          | 1   | (-1, -1, -1) (1, 1, 1) |
| 4           | -1         | 1            | 1  | -1 | 1           | -1         | -1  | (-1, 1, -1)            |
| 5           | 1          | -1           | -1 | -1 | 1           | -1         | 1   |                        |
| 6           | 1          | -1           | 1  | -1 | -1          | 1          | -1  |                        |
| 7           | 1          | 1            | -1 | 1  | -1          | -1         | -1  | (1, 1, -1)             |
| 8           | 1          | 1            | 1  | 1  | 1           | 1          | 1   |                        |
|             |            |              |    |    |             |            |     |                        |
| oyright ©20 | 013 by K.F | R. Pattipati |    |    |             |            |     |                        |

# **Inner Array Design (continued)**

#### Example (continued)

- If no interactions among the three factor effects, can use a half-factorial design (only 4 runs)  $\rightarrow$  orthogonal array  $L_4$
- Geometric interpretation: design points placed at only four appropriate vertices of cube instead of all eight

 $L_4(2^{3-1})$ Factor Expt. no. В С Α -1 -1 1 1 -1 -1 2 1 3 -1 -1 1 4 1 1 1

Defining relationship: I=ABC Aliases: A=BC B=AC C=AB



# **Resolution of Fractional Factorial Designs**

Aliasing of effects: when two or more effects cannot be estimated separately of one another

- In the  $L_4$  array, the column for A actually estimates effect  $A+BC \rightarrow A$  is aliased with interaction effect BC: A = BC
- Defining relationship: effect(s) aliased with overall mean (Why?)
  - Relationship  $I = ABC \Rightarrow$  all runs correspond to ABC at level 1
- A design is of resolution *R* if no *p*-factor interaction effect (or main effect if p = 1) is aliased with another effect involving less than (*R*-*p*) factors, e.g.,
  - Resolution III: no main effect aliased with any other main effect, but a main effect can be aliased with a two-factor interaction

y 🕩

Resolution IV: no main effect aliased with any other main effect or with any two-factor interaction, but two-factor interactions may be aliased with each other



- Box-Behnken: 3-level designs used for quantitative factors with three levels  $\rightarrow$  useful for fitting models with
  - main (linear) effects: ±1 levels
    - quadratic effects: center points (0 level)
  - Inear two-way interactions: two factors varied at a time; others held at zero

|    | No. of |    |        |  |  |  |
|----|--------|----|--------|--|--|--|
| А  | В      | С  | points |  |  |  |
| ±1 | ±1     | 0  | 4      |  |  |  |
| ±1 | 0      | ±1 | 4      |  |  |  |
| 0  | ±1     | ±1 | 4      |  |  |  |
| 0  | 0      | 0  | 3      |  |  |  |



#### Box-Behnken for 3 factors

### **Box-Wilson Design**

Central-composite (Box-Wilson) designs: factors take 5 levels

for measuring main (linear) effects, quadratic effects, and linear interactions

| Expt. |    | Factor |    |               |
|-------|----|--------|----|---------------|
| No.   | А  | В      | С  |               |
| 1     | -1 | -1     | 1  |               |
| 2     | -1 | 1      | -1 | Factorial     |
| 3     | 1  | -1     | -1 | portion       |
| 4     | 1  | 1      | 1  |               |
| 5     | 0  | 0      | 0  |               |
| 6     | 0  | 0      | 0  | Denter points |
| 7     | 0  | 0      | 0  | penne         |
| 8     | α  | 0      | 0  |               |
| 9     | -α | 0      | 0  |               |
| 10    | 0  | α      | 0  | Axial         |
| 11    | 0  | -α     | 0  | points        |
| 12    | 0  | 0      | α  |               |
| 13    | 0  | 0      | -α |               |



Advantage over Box-Behnken designs: can have fewer runs if some quadratic effects and/or some interactions do not exist

# **Central-composite designs (continued)**

- three portions: 2-level factorial portion; center-point portion; and axial-point portion
  - 2-level factorial portion: full or fractional
    - **center-point portion**: number of center points of CCD
      - For 3 factors,  $n_F = 8$  runs in factorial portion,
        - >  $n_{\rm C} = 6 \rightarrow$  uniform precision (prediction error variance at center is equal to that at unit distance from center)
        - >  $n_{\rm C} = 3 \rightarrow$  orthogonal design ( $n_{\rm C} = 4\sqrt{n_{\rm F} + 1} 2k$ , where k is the number of factors)
    - **axial-point portion**: 2k points. α chosen to ensure rotatability of design
      - Rotatability: prediction error variance depends only on distance from design center
      - For rotatability,  $\alpha = (n_F)^{1/4}$



- D-optimal designs: non-orthogonal, but very efficient
  - *X*: the design matrix
  - D-optimal design maximizes determinant of  $X^T X$  (the information matrix)
  - Software packages available to assist in design generation
    - RS Discover (BBN Software Products)
    - SAS (SAS Institute Inc., Cary, NC)
    - E-Chip
    - Catalyst
- D-optimal designs are non-orthogonal; Box-Behnken and CCD designs are slightly non-orthogonal
  - $\Rightarrow$  analysis must be done via least-squares regression

# **Data Analysis for Orthogonal Arrays**

#### Analysis of Means: Computation of sample averages

- Nm response measurements: N runs (rows), m replicates per run (columns)
- Overall mean

$$\overline{y} = \frac{1}{Nm} \sum_{n=1}^{N} \sum_{k=1}^{m} y_{nk}$$

Average response in n<sup>th</sup> trial

$$\overline{y}_n = \frac{1}{m} \sum_{k=1}^m y_{nk}$$

- **2-level arrays**: each column associated with one main effect or one interaction effect; p columns  $\Rightarrow p$  (main or interaction) effects
  - 3-level arrays: each column associated with two effects...

**Analysis of Means (cont'd)** 

Average response due to column *i* taking level *I* 

$$\overline{y}_{i,l} = \frac{1}{q_i m} \sum_{\{n:l_i=l\}} \sum_{k=1}^m y_{nk},$$
  
 $i = 1, 2, \dots, p; \ l = 1, 2, \dots, L_i;$ 

For 2-level experiments  $L_i = 2$ 

{ $n : I_i = I$ }: set of indices denoting trial numbers in which column *i* takes level *I*.

 $q_i$  number of runs in which column *i* takes a given level *I*;  $q_iL_i = N$ .

Effect measured by a 2-level column *i* = difference between the average responses due to the two levels of column *i* 

$$\eta_i = \overline{y}_{i,2} - \overline{y}_{i,1}$$



**ANOVA for Orthogonal Arrays** 

Sums of squares (corrected for means)

Total sum of squares (SS) – measures overall variation in data

$$S = \sum_{n=1}^{N} \sum_{k=1}^{m} \left( y_{nk} - \overline{y} \right)^2$$

Sum of squares assignable to effect(s) measured by column *i*  $S_{i} = mq_{i} \sum_{l=1}^{L_{i}} (\overline{y}_{i,l} - \overline{y})^{2}, \quad i = 1, 2, ..., p$ 

Sum of squares not explained by model (residual SS)

Sum of squares due to pure-error within-run variations or replication  $S_{PE} = \sum_{n=1}^{N} \sum_{k=1}^{m} (y_{nk} - \overline{y}_n)^2,$ 

Sum of squares due to lack of fit (if p < N - 1, i.e., all columns not used)

$$S_{LOF} = S - \sum_{i=1}^{p} S_i - S_{PE}$$



Components of the sum of squares (SS)

$$S = \sum_{n=1}^{N} \sum_{k=1}^{m} (y_{nk} - \overline{y})^{2}$$
  
=  $\sum_{n=1}^{N} \sum_{k=1}^{m} (y_{nk} - \hat{y}_{n} + \hat{y}_{n} - \overline{y})^{2}$   
=  $\sum_{n=1}^{N} \sum_{k=1}^{m} (y_{nk} - \hat{y}_{n} + \overline{y} + \sum_{i=1}^{p} (\overline{y}_{i,l_{i(n)}} - \overline{y}) - \overline{y})^{2}$ 

$$=\sum_{n=1}^{N}\sum_{k=1}^{m}\sum_{i=1}^{p}\left(\overline{y}_{i,l_{i(n)}}-\overline{y}\right)^{2}+\sum_{n=1}^{N}\sum_{k=1}^{m}\left(y_{nk}-\hat{y}_{n}\right)^{2}$$

$$\sum_{k=1}^{p}\sum_{i=1}^{L_{i}}\left(-\sum_{k=1}^{N}\sum_{i=1}^{N}\sum_{k=1}^{m}\left(y_{nk}-\hat{y}_{n}\right)^{2}\right)^{2}$$

$$= \sum_{i=1}^{p} mq_i \sum_{l=1}^{p} \left(\overline{y}_{i,l} - \overline{y}\right)^2 + \sum_{n=1}^{p} \sum_{k=1}^{p} \left(y_{nk} - \hat{y}_n\right)$$
$$= \sum_{i=1}^{p} S_i + S_{RES}$$

$$=$$
 (SS due to model) + (residual SS)

50 Copyright ©2013 by K.R. Pattipati

### ANOVA (cont'd)

Residual SS = Sum of squares due to pure error + Sum of squares due to lack of fit

$$S = \sum_{n=1}^{N} \sum_{k=1}^{m} (y_{nk} - \hat{y}_n)^2$$
  
=  $\sum_{n=1}^{N} \sum_{k=1}^{m} (y_{nk} - \overline{y}_n + \overline{y}_n - \hat{y})^2$   
=  $\sum_{n=1}^{N} \sum_{k=1}^{m} (y_{nk} - \overline{y}_n)^2 + \sum_{n=1}^{N} \sum_{k=1}^{m} (\hat{y}_n - \overline{y}_n)^2$   
=  $SS_{PE} + S_{LOF}$ 

- Degrees of freedom (d.f)
  - Total d.f.= Nm
  - d.f. associated with the model: *p* (1 d.f. for each effect)
  - d.f. associated with residual = Nm p 1
    - d.f due to lack of fit = Nm p 1 (if p < N 1 else 0)
    - D.f due to pure error = Nm N

|          | J                |                          |                                |                          |
|----------|------------------|--------------------------|--------------------------------|--------------------------|
| Source   | d.f.             | Sum of squares           | Mean SS                        | F-value                  |
|          |                  | (SS)                     | = SS/df                        |                          |
| Effect i |                  | $S_i$                    | $MS_i = \frac{S_i}{d_i}$       | $F_i = \frac{MS_i}{MSE}$ |
| Model    | $p = \sum_i d_i$ | $S_M = \sum_{i=1}^p S_i$ | $MS_M = \frac{MS_M}{p}$        | $F_M = \frac{MS_M}{MSE}$ |
| Residual | Nm - p - 1       | $S_{RES}$                | $MSE = \frac{S_{RES}}{Nm-p-1}$ |                          |
| Total    | Nm-1             | S                        |                                |                          |

R<sup>2</sup> - statistic — fraction of variation about the overall mean explained by the fitted model  $R^2 = \frac{S_M}{S}$ 

### **Inference from ANOVA**

Significance of model

 $F_M \sim F_{p,Nm-p-1}$  : *F* – distribution with *p* and Nm - p - 1 d.f.

Model significant if  $F_M > F_{p,Nm-p-1}(\alpha)$ 

 $F_{p,Nm-p-1}(\alpha)$ : value of *F*-distribution with degrees of freedom *p* and  $F_{p,Nm-p-1}$  for tail probability  $\alpha$ 

- Effect *i* significant at level  $\alpha$  if  $F_i > F_{d_i, Nm p 1}(\alpha)$
- Sums of squares of insignificant factors are pooled with S<sub>RES</sub> (error residual sum of squares) and the *F*-values are recomputed
- Only significant effects included in the prediction model
- Model with p significant effects:

$$\hat{y}_{l_1, l_2, \dots, l_p} = \overline{y} + \sum_{i=1}^p \left(\overline{y}_{i, l_i} - \overline{y}\right)$$



- Assumptions in Robust Design
  - Factor effects are additive: interactions can either be eliminated or ignored by appropriate choice of factors and design matrix ⇒ best factor levels can be selected independently of each other
  - Separability of signal factors and control factors is achievable
  - Use of outer array can give reliable estimates of dispersion
- Problems
  - SNR measures do not always relate to the quadratic loss function
  - Separability of design factors not always achievable
  - Effort to ignore interactions results in crude models
  - Pooling of effects in error may make other unpooled, but insignificant, effects significant → biased, misleading model
  - Use of outer arrays to measure dispersion suspect

### **Improvements/Alternatives**

- Use data transformations to achieve additivity and/or separability
- Use response surface methods to prevent ignoring of interactions
- Use dual objective approach (of achieving mean on target and minimizing variability) instead of maximizing SNR
- ANOVA: Use normal probability plots instead of pooling to identify significant effects
- Use outer array designs other than orthogonal arrays



# **Summary of Taguchi Methods**

- An effective tool for quality improvement
  - simple philosophy minimize variability
  - obvious approach use experiments
- Reports of success even with crude and sometimes faulty statistical methods
  - highlights the absence of quality improvement effort in current industry
  - justifies ongoing research to further improve upon the methods
- More widespread acceptability possible if sounder experimental design principles are incorporated, e.g., use classical approach of sequential experimentation combined with the objective of variability reduction

# **3. Response Surface Methods (RSM)**

- For quantitative factors; qualitative factors taken into account via blocking
- Used more often for process optimization than for product design
  - Additivity and separability of factor effects not required unlike Taguchi's methods
  - Quadratic loss function M(x) can be directly minimized by RSM instead of using Taguchi's two-step approach

**Steps in RSM** 

Design and conduct of experiment

#### Data analysis

- ANOVA: identify significant main- and interaction-effects
  - Regression modeling: estimate model parameters → response surface
- Search response surface for optimum design point
- Approach and assumptions
  - Variance of response does not vary with design point (homoscedasticity)
  - Noise variables treated as nuisance factors: taken into account via blocking: separate response surfaces obtained for each block
  - A Mainly for modeling and optimizing mean of the response



#### Highlights

Model the mean of the response as a polynomial in design factors

**Regression Modeling** 

- Select significant terms in polynomial model via ANOVA
- Estimate model parameters (polynomial coefficients) using the leastsquares method
- Notation
  - mean response denoted by  $\eta$
  - k factors: levels denoted by the vector  $\mathbf{x} = [x_1, ..., x_k]$
  - Functional relationship  $\eta$  (**x**) determined from measurements

$$y(x) = \eta(x) + \varepsilon$$



- Notation (continued)
  - mean response denoted by  $\eta$
  - k factors: levels denoted by the vector  $\mathbf{x} = [x_1, \dots, x_k]^T$
  - Functional relationship  $\eta$  (**x**) determined from measurements

 $y(x) = \eta(x) + \varepsilon$ 

True function form

 $\eta(x) = \theta^T z(x)$  $z(x) = [1 x_1 \cdots x_k x_1^2, \cdots x_k^2 x_1 x_2 \cdots]^T$ 

 $\theta$ :  $p \times 1$  vector of polynomial coefficients to be estimated

measurements at N distinct points  $x_1, \ldots, x_N$ 

 $y = X\theta + e$ 

**X**:  $N \times p$  design matrix; *i*<sup>th</sup> row of X:  $z^{T}(x_{i})$ 





- Obtain process variable settings to minimize variability in part shrinkage
- Process variables (design factors):
  - Mold temperature  $(x_1)$
  - Screw speed  $(x_2)$
  - Holding time  $(x_3)$
  - Response: Log of standard deviation of parts shrinkage (y)
    - Fit second-order model:

 $\hat{y} = b_0 + b_1 x_1 + b_2 x_2 + b_3 x_3 + b_{11} x_1^2 + b_{22} x_2^2 + b_{33} x_3^2 + b_{12} x_1 x_2 + b_{13} x_1 x_3 + b_{23} x_2 x_3$ 

Use central composite design

# **Example (cont'd): Central Composite Design**

|           | Mold Temperature<br>X <sub>1</sub> | Screw Speed<br>x <sub>2</sub> | Holding Time<br>]x <sub>3</sub> | Log Standard<br>Deviation of Parts<br>Shrinkage |
|-----------|------------------------------------|-------------------------------|---------------------------------|-------------------------------------------------|
|           | -1                                 | -1                            | -1                              | 0.02                                            |
|           | 1                                  | -1                            | -1                              | 0.14                                            |
| Factorial | -1                                 | 1                             | -1                              | 0.22                                            |
| design    | 1                                  | 1                             | -1                              | 0.31                                            |
| portion   | -1                                 | -1                            | 1                               | 0.5                                             |
|           | 1                                  | -1                            | 1                               | 0.66                                            |
|           | -1                                 | 1                             | 1                               | 0.55                                            |
|           | 1                                  | 1                             | 1                               | 0.65                                            |
|           | -1.682                             | 0                             | 0                               | 0.57                                            |
|           | 1.682                              | 0                             | 0                               | 0.58                                            |
| Axial     | 0                                  | -1.682                        | 0                               | 0.13                                            |
| points    | 0                                  | 1.682                         | 0                               | 0.62                                            |
|           | 0                                  | 0                             | -1.682                          | 0.54                                            |
|           | 0                                  | 0                             | 1.682                           | 0.74                                            |
|           | 0                                  | 0                             | 0                               | 0.08                                            |
|           | 0                                  | 0                             | 0                               | 0.04                                            |
| Center    | 0                                  | 0                             | 0                               | 0.11                                            |
| points    | 0                                  | 0                             | 0                               | 0.14                                            |
|           | 0                                  | 0                             | 0                               | 0.09                                            |
|           | 0                                  | 0                             | 0                               | 0.13                                            |

67 Copyright ©2013 by K.R. Pattipati

### **Example (cont'd): Data for Regression Analysis**

#### Design matrix and measurement vector

| $\mathbf{X} = \begin{bmatrix} 1 & -1 & -1 & -1 & 1 & 1 & 1 & 1 & 1 & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1          | 1 | 1      | 1       | 1       | 1     | 1      | 1     | 1  | 1  | 1  |                | 0:02 |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|---|--------|---------|---------|-------|--------|-------|----|----|----|----------------|------|---|
| $\mathbf{X} = \begin{bmatrix} 1 & 1 & -1 & -1 & 1 & 1 & 1 & 1 & -1 & 1 & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 1 | -1     | -1<br>1 | -1<br>1 | 1     | 1      | 1     | 1  | 1  | 1  |                | 0:14 |   |
| $\mathbf{X} = \begin{bmatrix} 1 & -1 & 1 & -1 & 1 & 1 & 1 & 1 & -1 & 1 & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 1 | 1      | -1      | -1      | 1     | 1      | 1     | -1 | -1 | 1  |                | 0:22 |   |
| $\mathbf{X} = \begin{bmatrix} 1 & 1 & 1 & -1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 \\ 1 & -1 & -$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | 1 | -1     | 1       | -1      | 1     | 1      | 1     | -1 | 1  | -1 |                | 0:31 |   |
| $\mathbf{X} = \begin{bmatrix} 1 & -1 & -1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & -1 \\ 1 & 1 & -1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & 1 \\ 1 & -1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | 1 | 1      | 1       | -1      | 1     | 1      | 1     | 1  | -1 | -1 |                | 0.20 |   |
| $\mathbf{X} = \begin{bmatrix} 1 & 1 & -1 & 1 & 1 & 1 & 1 & 1 & -1 & 1 & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | 1 | -1     | -1      | 1       | 1     | 1      | 1     | 1  | -1 | -1 |                | 0.05 |   |
| $\mathbf{X} = \begin{bmatrix} 1 & -1 & 1 & 1 & 1 & 1 & 1 & 1 & -1 & -1 & 1 & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 1 | 1      | -1      | 1       | 1     | 1      | 1     | -1 | 1  | -1 |                | 0.05 |   |
| $\mathbf{X} = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 1 | -1     | 1       | 1       | 1     | 1      | 1     | -1 | -1 | 1  |                | 0.55 |   |
| $\mathbf{X} = \begin{bmatrix} 1 & -1.682 & 0 & 0 & 2.828 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1.682 & 0 & 0 & 2.828 & 0 & 0 & 0 & 0 & 0 \\ 1 & -1.682 & 0 & 0 & 2.828 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1.682 & 0 & 0 & 2.828 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1.682 & 0 & 0 & 2.828 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1.682 & 0 & 0 & 2.828 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} $ |            | 1 | 1      | 1       | 1       | 1     | 1      | 1     | 1  | 1  | 1  |                | 0.05 |   |
| $\mathbf{X} = \begin{bmatrix} 1 & 1.682 & 0 & 0 & 2.828 & 0 & 0 & 0 & 0 & 0 \\ 1 & -1.682 & 0 & 0 & 2.828 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1.682 & 0 & 0 & 2.828 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1.682 & 0 & 0 & 2.828 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1.682 & 0 & 0 & 2.828 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} $                                                       |            | 1 | -1.682 | 0       | 0       | 2.828 | 0      | 0     | 0  | 0  | 0  |                | 0:57 |   |
| $\mathbf{X} = \begin{bmatrix} 1 & -1.682 & 0 & 0 & 2.828 & 0 & 0 & 0 & 0 \\ 1 & 0 & 1.682 & 0 & 0 & 2.828 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & -1.682 & 0 & 0 & 2.828 & 0 & 0 & 0 \\ 1 & 0 & 0 & 1.682 & 0 & 0 & 2.828 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$                           | <b>T</b> Z | 1 | 1.682  | 0       | 0       | 2.828 | 0      | 0     | 0  | 0  | 0  | $\mathbf{v} =$ | 0:58 |   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | X =        | 1 |        | -1.682  | 0       | 0     | 2.828  | 0     | 0  | 0  | 0  | 5              | 0:13 |   |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | 1 | 0      | 1.682   | 0       | 0     | 2.828  | 0     | 0  | 0  | 0  |                | 0.04 |   |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | 1 | 0      | 0       | -1.682  | 0     | 0      | 2.828 | 0  | 0  | 0  |                | 0:54 |   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 1 | 0      | 0       | 1 682   | 0     | 0      | 2.828 | 0  | 0  | 0  |                | 0.05 |   |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |            | 1 | 0      | Û<br>Û  | 0       | 0     | ů<br>0 | 0     | 0  | 0  | 0  |                | 0:08 |   |
| $ \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | 1 | 0      | 0       | 0       | 0     | 0      | 0     | 0  | 0  | 0  |                | 0:04 |   |
| $ \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 1 | 0      | 0       | 0       | 0     | 0      | 0     | 0  | 0  | 0  |                | 0:11 |   |
| $ \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 1 | 0      | 0       | 0       | 0     | 0      | 0     | 0  | 0  | 0  |                | 0:14 |   |
| $ \left \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | 1 | 0      | 0       | 0       | 0     | 0      | 0     | 0  | 0  | 0  |                | 0:09 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | 1 | 0      | 0       | 0       | 0     | 0      | 0     | 0  | 0  | 0  |                | 0:13 |   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | 1 | 0      | 0       | 0       | 0     | 0      | 0     | 0  | 0  | 0  | '              |      | I |

### Example (cont'd): Least-squares Regression Analysis

Estimate of coefficient vector:



#### Response surface model:

 $y = 0.1040 + 0.0356x_1 + 0.0904x_2 + 0.1469x_3 + 0.1316x_1^2 + 0.0609x_2^2 + 0.1546x_3^2 - 0.0113x_1x_2 + 0.0063x_1x_3 - 0.0413x_2x_3$ 

Coefficients involving  $x_2$  small  $\rightarrow$  its effect ignored and  $x_2$  fixed at -1

## **Example (cont'd): Response Surface**

- Contour plot of response surface  $\hat{y}$  versus mold temperature and holding time when screw speed  $x_2 = -1$
- Lowering mold temperature and using shorter holding time can reduce y from a current value of ~ 0.1 to as low as ~ 0.01  $\rightarrow$  tenfold reduction





Response estimate is *unbiased*: prediction is correct on the average  $E(\hat{\eta}(x)) = \eta(x)$ 

Prediction-error covariance matrix is a function of x (the uncertainty in prediction depends on the point x at which the prediction is made)

$$Cov(\hat{\eta}(x)) = z^{T}(x)(X^{T}X)^{-1}z(x)\sigma^{2}$$

 $\sigma$  is the standard deviation of the additive noise

- Model optimum versus true optimum
  - In general  $E\left[\arg\max_{x}\hat{\eta}(x)\right] \neq \arg\max_{x}\hat{\eta}(x)$
  - Confidence regions may be obtained via simulations for the optimum design point x\*



- Multiobjective Optimization/Vector Optimization: a mulitobjective optimum is any solution in a set called the <u>non-dominated</u> (or Pareto optimal) set
  - Nondominated solution ⇒ no other solution is better with respect to all objectives
  - Choice of any particular nondominated solution based on user's preferences
- Illustration: Case of maximizing two

#### objectives

- **a**, b,  $p_1$ ,  $p_2$  nondominated
- a dominates c and e
- b dominates d and e



### **Approaches to Multiobjective Optimization**

Two groups of approaches for incorporating a decision-maker's preferences to choose the non-dominated solution

- Indirect methods: based on utility functions
- **Direct methods**: greater interaction possible

#### Direct methods:

- Goal programming methods
  - Establish a goal level of achievement for each objective, and find a feasible solution in the parameter space that achieves the goals
  - If goal is not reachable, get as close as possible.

#### **Reference-point method**

- Decision-maker's preferences expressed as a reference-point in the objectives space (similar to goal vector)
- Solution obtained by maximizing a scalarizing function guarantees a non-dominated solution whether or not the reference-point is achievable

### **Goal Programming**

Generic formulation

$$goal_j(\eta_j(x) = t_j); j = 1, \dots, M$$
  
s.t.  $x \in \Xi$ 

Archimedian GP

 $\min_{x\in\Xi} \left\| W\left(\eta\left(x\right) - t\right) \right\|_{p}, \qquad W = diag\left[w_{1}, w_{2}, \cdots, w_{M}\right], w_{j} > 0$ 

Essentially a (non) linear programming problem

Nonlinear objectives: use  $L_2$  metric; linear objectives: use  $L_1$  metric

$$\min \sum_{j=1}^{M} w_j \left( d_j^- + d_j^+ \right)$$
  
s.t.  $\eta_j \left( x \right) + d_j^- - d_j^+ = t_j; \quad j = 1, \cdots, M$   
 $x \in \Xi$   
 $d_j^- \ge 0; \quad d_j^+ \ge 0; \quad j = 1, \cdots, M$ 

 $d_j^-$ : negative deviation (under-achievement) of j - th objective goal  $t_j$ :

 $d_i^+$ : positive deviation (over-achievement).





### **Example: Passive Filter Design**

 $\begin{array}{ll} \textbf{GP problem:} & \text{goal} \left( \overline{f}_{C} = 6.84 Hz. \right) \\ & \text{goal} \left( \overline{D} = 3.0 \text{in.} \right) \\ & s.t. \ \overline{f}_{C} = \frac{\left( \overline{R}_{2} + \overline{R}_{g} \right) \left( \overline{R}_{s} + \overline{R}_{1} \right) + \overline{R}_{1} \overline{R}_{s}}{2\pi \left( \overline{R}_{2} + \overline{R}_{g} \right) \overline{R}_{1} \overline{R}_{s} \overline{C}} \\ & \overline{D} = \frac{\left| \overline{V}_{s} \right| \overline{R}_{g} \overline{R}_{1}}{\overline{G}_{sen} \left[ \left( \overline{R}_{2} + \overline{R}_{g} \right) \left( \overline{R}_{s} + \overline{R}_{1} \right) + \overline{R}_{1} \overline{R}_{s} \right]} \\ & \overline{R}_{2} > 0, \ \overline{C} > 0, \end{array}$ 

- Ignored bias in first-stage GP
- $\blacksquare$   $R_1$  taken as 'independent' factor;  $R_2$  and C computed from

$$R_{2} = \left(\frac{|V_{s}|R_{g} - DG_{sen}R_{s}}{DG_{sen}}\right) \frac{R_{1}}{R_{s} + R_{1}} - R_{g},$$
$$C = \frac{|V_{s}|R_{g}}{2\pi f_{c}R_{s}\left(|V_{s}|R_{g} - DG_{sen}R_{s}\right)} \left(\frac{R_{s} + R_{1}}{R_{1}}\right)$$

Second-stage (Archimedian) GP

$$\min_{R_1} \left\{ w_1 \left( f_c - 0.84 \right)^2 + w_2 \left( d - 3.0 \right)^2 + w_3 \sigma_{f_c}^2 + w_4 \sigma_D^2 \right\}$$

## **Example: Passive Filter Design**

| $\bar{R}_1(\Omega)$ | $\bar{R}_2(\Omega)$ | $\bar{C}(\mu F)$ | $\bar{f}(Hz)$ | $\sigma_{fc}(Hz)$ | $\overline{D}(in)$ | $\sigma_D(in)$ | Cost   |
|---------------------|---------------------|------------------|---------------|-------------------|--------------------|----------------|--------|
| 150                 | 249.31              | 416.02           | 6.8464        | 0.1842            | 3.0002             | 0.0533         | 0.0368 |
| 200                 | 292.72              | 369.8            | 6.8459        | 0.1811            | 3.0003             | 0.053          | 0.0356 |
| 250                 | 324.4               | 342.06           | 6.8459        | 0.1791            | 3.0005             | 0.0526         | 0.0349 |
| 300                 | 348.54              | 323.57           | 6.8455        | 0.1778            | 3.0004             | 0.0525         | 0.0344 |
| 350                 | 367.54              | 310.36           | 6.8458        | 0.1768            | 3.0005             | 0.0524         | 0.034  |
| 400                 | 382.89              | 300.46           | 6.8456        | 0.1759            | 3.0005             | 0.0524         | 0.0337 |
| 450                 | 395.54              | 292.75           | 6.8457        | 0.1755            | 3.0007             | 0.0523         | 0.0336 |
| 500                 | 406.16              | 286.59           | 6.8452        | 0.175             | 3.0007             | 0.0524         | 0.0334 |
| 550                 | 415.19              | 281.55           | 6.8453        | 0.1747            | 3.0007             | 0.0522         | 0.0333 |
| 600                 | 422.96              | 277.35           | 6.8457        | 0.1745            | 3.0007             | 0.0524         | 0.0332 |
| 650                 | 429.73              | 273.79           | 6.8451        | 0.1745            | 3.0008             | 0.0524         | 0.0332 |
| 1000                | 460.18              | 258.86           | 6.8449        | 0.1737            | 3.0008             | 0.0525         | 0.033  |
| 1100                | 465.67              | 256.34           | 6.8448        | 0.1736            | 3.0007             | 0.0525         | 0.0329 |
| 1200                | 470.32              | 254.23           | 6.8454        | 0.1733            | 3.0008             | 0.0526         | 0.0328 |
| 1300                | 474.33              | 252.46           | 6.8449        | 0.1738            | 3.0007             | 0.0527         | 0.033  |
| 1400                | 477.8               | 250.93           | 6.8451        | 0.1735            | 3.0007             | 0.0527         | 0.0329 |
| 1500                | 480.85              | 249.61           | 6.845         | 0.1735            | 3.0008             | 0.0527         | 0.0329 |
| 1600                | 483.54              | 248.46           | 6.8448        | 0.1734            | 3.0008             | 0.0528         | 0.0329 |
| 1700                | 485.94              | 247.44           | 6.8449        | 0.1733            | 3.0008             | 0.0527         | 0.0328 |
| 1800                | 488.08              | 246.53           | 6.8454        | 0.1733            | 3.0007             | 0.0527         | 0.0328 |
| 1900                | 490.02              | 245.72           | 6.8448        | 0.1735            | 3.0008             | 0.0527         | 0.0329 |
| 2000                | 491.77              | 244.99           | 6.8448        | 0.1735            | 3.0008             | 0.0528         | 0.0329 |



- $R_1 > 1000$ , and  $R_2$  and C obtained from  $R_1$ , results in nearly optimal design
- For the chosen equal weights,  $\sigma_{fc}$  makes the most significant contribution to the cost function  $\Rightarrow$  justified in ignoring the biases in  $\overline{f}_c$  and  $\overline{D}$  from their targets
- Problem with GP: if all goals are achievable, solution is not nondominated ⇒ under-achievement.



1. Kaplan, G. (ed.), "Manufacturing ala Carte: Making war on defects", *IEEE Spectrum*, pp 43-50, September 1993.

2. Montgomery, D. C., *Design and Analysis of Experiments*, John Wiley & Sons, New York, 1991.

3. Montgomery, D. C., *Introduction to Statistical Quality Control*, John Wiley & Sons, New York, 1991.

4. Nair, V. N., "Taguchi's Parameter Design: A Panel Discussion", *Technometrics*, vol. 34, pp 127-161, 1992.

5. Phadke, M. D., *Quality Engineering Using Robust Design*, Prentice Hall, Englewood Cliffs, NJ, 1989.

6. Schmidt, S. R. and Launsby, R. G., *Understanding Industrial Designed Experiments*, Air Academy Press, Colorado Springs, Third edition, 1992.

7. Taguchi, G., *System of Experimental Design*, vols. 1 & 2, Kraus International Publications, White Plains, New York, 1987.



### Measures of Quality Loss

Robust Parameter Design (Taguchi)

**Summary** 

- Response Surface Methods
- Multi-objective optimization

