
Copyright ©2013 by K.R. Pattipati 

ECE 6161

Modern Manufacturing System Engineering 

Design for Quality 

Prof. Krishna R. Pattipati

Dept. of Electrical and Computer Engineering

University of Connecticut  
Contact: krishna@engr.uconn.edu (860) 486-2890

mailto:krishna@engr.uconn.edu


Copyright ©2013 by K.R. Pattipati 

Attributes of Quality

Measures of Quality Loss

Robust Parameter Design (Taguchi)

Response Surface Methods

Multi-objective optimization

On-line quality control (Next Lecture)

Statistical Process Control

On-line improvement
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Outline

This Lecture



Copyright ©2013 by K.R. Pattipati 3

Quality Definitions:

Transcendent: innate excellence or 
“I know it when I see it” view.

Feature-based: function of product attributes or 
“more is better” view.

User-based: customer satisfaction or 
“beauty is in the eye of the beholder” view.

Manufacturing-based: conformance to specifications, 
related to “do it right the first time” view.

Value-based: price/performance or 
“affordable excellence” view.

Attributes of Quality
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Customer Orientation:

Customer satisfaction depends on external quality

External quality depends on internal quality

Quality must address product, process, system

Promoting Internal Quality:

Error prevention

Inspection improvement

Environment enhancement

Attributes of Quality (Cont’d)
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Goal: obtain design parameter settings so that the least

inherent variability is achieved

Outline of topics

1. Quality measures

2. Design of experiments

3. Taguchi's robust design

4. Response surface methods

5. Multiple quality characteristics (time permitting)

6. Illustrations and case studies

6

Design for Quality
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Fraction defective = (# of rejects)/ (total # of parts)

leads to the use of a step loss function in the tolerance interval

Quadratic loss function

results in smaller overall (expected) loss to society:
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1. Measures of Quality Loss 
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Smaller-the-better type quality characteristic

Larger-the-better type quality characteristic
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Example: Number of defects in a

composite material part

Example: strength of a part

Other Loss Functions
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Asymmetric loss function
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Other Loss Functions 
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An off-line design technique: using experiments, find the settings

of the product process parameters (design parameters) which

minimize sensitivity of the quality characteristic to external

uncontrollable variations (achieve robustness) ─ a.k.a. Taguchi's

method

1. Identify a measure of variability (performance measure) that is a function of

the design parameters, e.g., an average loss function, or a signal-to-noise

ratio

2. Identify factors (variables) associated with the uncontrollable variation →

noise factors ─ distinct from the design factors

3. Conduct experiment: systematically vary the design parameters as well as the

noise factors to get estimates of the variability measure for chosen set of

design parameter settings

4. Conduct data analysis to obtain process model and to identify the best design

parameter settings (those that minimize the variability measure)

5. Run verification experiment to ensure that the ‘best’ design yields the

expected improvement

11

2. Robust Design 
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Ideal measure for nominal-the-best type characteristic: the expected

quadratic loss function (average quality loss per product)

12

    

  

  

       
2

2

2

22

0

MSE

              = 

              = ( ) ( )

              = ( ( )) 2 ( ( )) ( ) ( )

            

Variance
Bias

x E L y x

kE y x m

kE y x x x m

k E y x x k E y x x x m k E x m

 

   



   

 
 

   
 

            

    
22 k x k x m   

Objective: Minimize MSE(x) with respect to design parameters x

Measure of Variability/Robustness 

Typical Bias-variance tradeoff in most modeling and learning problems
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Taguchi: instead of minimizing MSE(x), maximize a

signal-to-noise ratio, e.g.,

1. Fix levels for each factor xi, run an experiment at different

combinations of factor-levels, x, measure y(x) and SNT (x)

2. Separate out signal factors from the other design factors

(control factors)

➢ Signal factors: affect the mean µ(x) of the response y(x),

but not SNT (x)

3. Maximize SNT (x) with respect to control factors ֜ minimize

σ(x)

4. Adjust signal factors to bring mean µ(x) close to target, m

13
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Surrogate Measure used by Taguchi
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Model a process: understand effects of inputs on outputs

18

Role of Experimental Design 

IPO Model
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Injection molding process

19

Examples of Processes - 1 

IPO Model
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Aircraft design

20

Examples of Processes - 2 

IPO Model
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Semiconductor mfg: testing for optimal plasma etch conditions

21

Examples of Processes - 3 

IPO Model
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Minimize the number of solder defects per million joints in a printed

circuit board assembly plant

22

Controllable Factor
Levels

Low High

S=Solder Pot Temperature 480oF 510oF

C=Conveyor Speed 7.2ft/m 10ft/m

F=Flux density 0.9o 1.0o

P=Preheat Temperature 150oF 200oF

W=Wave Height 0.5 in. 0.6 in.

Uncontrollable Factor Levels

Product Noise Assembly 1 Assembly 2

Conveyor Speed Tolerance -0.2ft/m +0.2ft/m

Solder Pot Tolerance -0.5oF +0.5oF

Robust Design Example: Wave Solder Process 
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Inner Array

Outer Array

23

Run Solder Pot 

Temperature

Conveyor 

Speed

Flux 

Density

Preheat

Temperature

Wave 

Height

1 510 10 1 150 0.5

2 510 10 0.9 200 0.6

3 510 7.2 1 150 0.6

4 510 7.2 0.9 200 0.5

5 480 10 1 200 0.5

6 480 10 0.9 150 0.6

7 480 7.2 1 200 0.6

8 480 7.2 0.9 150 0.5

Noise Parameter
Replicate

1 2 3 4

Product Noise
Assembly#1 Assembly#1 Assembly#2 Assembly#2 

ConveyorTolerance -0.2 0.2 -0.2 0.2

SolderTolerance -5 5 5 -5

Wave Solder Process: Inner and Outer Arrays 
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Inner array measures all five main effects (S,C,F,P,W) and interaction S- C

SNR=-10log10(mean square defect count)

24

Outer array(L4)

Parameter 1 2 3 4

ProductNoise #1 #1 #2 #2 

Conveyor Tolerance -0.2 0.2 -0.2 0.2

Solder Tolerance -5 +5 +5 -5

Inner Array (L8) Responses

Run Solder Conveyor Flux Preheat Wave 1 2 3 4 Mean SNS

1 510 10 1 150 0.5 194 197 193 275 215 -46.75

2 510 10 0.9 200 0.6 136 136 132 136 135 -42.61

3 510 7.2 1 150 0.6 185 261 264 264 244 -47.81

4 510 7.2 0.9 200 0.5 47 125 127 42 85 -39.51

5 480 10 1 200 0.5 295 216 204 293 252 -48.15

6 480 10 0.9 150 0.6 234 159 231 157 195 -45.97

7 480 7.2 1 200 0.6 328 326 247 322 305 -49.76

8 480 7.2 0.9 150 0.5 186 187 105 104 145 -43.59

Wave Solder Process: Experimental Data
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Interaction between solder pot

temperature and conveyor speed

insignificant

Parameter Level Mean SNR

Solder Pot temperature 480oF 225 -46.87

(S) 510oF 170 -44.17

Conveyor speed 7.2 195 -45.17

(C) 10 200 -45.87

Flux density 0:9 140 -42.91

(F) 1:0 255 -48.11

Preheat temperature 150oF 200 -46.03

(P) 200oF 194 -45.01

Wave height 0.5in. 174 -44.5

(W) 0.6in. 220 -46.54

Wave Solder Process: Analysis of Means 
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Only flux density and solder pot temperature significant for mean

Wave height has moderate effect

26

Wave Solder Process: Analysis of Means 



Copyright ©2013 by K.R. Pattipati 27

Parameter d.f.
Sum of 

squares
Mean SS F-Value

S 1 14.58 14.58 18.3

C 1 0.98 * 

F 1 54.08 54.08 67.89

P 1 2.08 * 

W 1 8.32 8.32 10.44

Residual 2 0.13

Total 7 80.17

Model (S+F+W)
3 76.98 25.66 32.22

Error (Residual+C+P)
4 3.19 0.7965

Final Design:

510;  0.9;  0.5;

Predicted 40.55.

S F W

SNR

  

 

Prediction model:

45.52 1.35 2.60 1.02S WSNR F    

    2

3,4 1,40.05 6.59;  0.05 7.71;                             76.98 / 80.1671 0.9602F F R   

Wave Solder Process: ANOVA Table for SNR 
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Inner array: also known as design array

each row a unique combination of factor-levels

choice of design based on the theory of design of experiments or

made from Taguchi's collection of orthogonal arrays

Outer array: unique to Taguchi methods

each row a combination of noise-factor-levels

combinations span the range of possible variations of the noise

factors that may occur in the (uncontrollable) field usage

each combination results in one measurement (replicate) of the

response for every row of the inner-array

outer array design choice may again be one from Taguchi’s collection

of orthogonal arrays

33

Components of Matrix Experiment 
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Step 1: Design Matrix Experiment 
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Suppose N rows in design array ֜ N run combinations,

m rows in outer array ֜ m replications

Raw Data: m columns of measurements ─ one corresponding to

each row of noise array

Data Summary: averages of raw data for each row (run)

Let yi1, yi2, : : :, yim, be the raw measurements for ith run

Average response:

(Estimate of) Standard deviation of the response:

(Estimate) of SNR (for nominal-the-best and larger-the-best type):

35
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Data Tabulation in Matrix Experiment 
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Objective: Choose inner array design so that

an adequate functional relationship between the variability measure

(response) and the design factors is obtained

the number of runs is as small as possible

Functional relationship (model): a sum of effects

Main effect of a factor: change in the response due to a change in

level of that factor alone

Interaction effect of two or more factors: change in response due to

the combined change in levels of those factors (after accounting for

main effects)

Model can be used to predict response at level-combinations not

tested in the experiment

36

Inner Array Selection 
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Factors affecting choice of inner array design

Number of levels each design factor is to take: decided by

order of functional relationship

❖ if factor effect linear: 2 levels

❖ if factor effect quadratic: 3 levels

❖ if factor is an attribute: # of levels = # of categories tested

Assumptions on whether the interaction effects are negligible

or significant

37

Inner Array Selection 
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Full-factorial designs: run all factor-level combinations

all main effects and their interactions can be measured

design size increases exponentially with number of factors and levels

Fractional-factorial designs: obtained from full-factorial designs

by assuming certain higher-order effect(s) are negligible → some

interaction effects aliased with other effects

Taguchi's orthogonal arrays: each column independently

measures a main effect or an interaction; essentially a collection of

2-level fractional-factorial designs

2-level Plackett-Burman designs: for linear models with no

interactions, or for screening experiments

3-level fractional-factorial: for quadratic models with no (or few)

interactions, or for qualitative factors with no (or few) interactions

38

Inner Array Design Types 
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Example: 3 factors

Factor A: 2 levels; Factor B: 2 levels; Factor C: 2 levels

Full-factorial design (all possible combinations) would require 2 x 2 x 2 

= 8 runs → e.g., orthogonal array L8

L8

39

Expt. 

No.

Factor Interaction effects

A B C AB BC AC ABC

1 -1 -1 -1 1 1 1 -1

2 -1 -1 1 1 -1 -1 1

3 -1 1 -1 -1 -1 1 1

4 -1 1 1 -1 1 -1 -1

5 1 -1 -1 -1 1 -1 1

6 1 -1 1 -1 -1 1 -1

7 1 1 -1 1 -1 -1 -1

8 1 1 1 1 1 1 1

Inner Array Selection (continued) 
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Example (continued)

If no interactions among the three factor effects, can use a half-

factorial design (only 4 runs) → orthogonal array L4

Geometric interpretation: design points placed at only four appropriate

vertices of cube instead of all eight

40

Expt.

no.

Factor 

A B C 

1 -1 -1 1

2 -1 1 -1

3 1 -1 -1

4 1 1 1

L4(2
3-1)

Defining relationship: I=ABC

Aliases: A=BC

B=AC

C=AB

Inner Array Design (continued) 
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Aliasing of effects: when two or more effects cannot be estimated

separately of one another

In the L4 array, the column for A actually estimates effect A+BC → A is

aliased with interaction effect BC: A = BC

Defining relationship: effect(s) aliased with overall mean (Why?)

Relationship I = ABC ֜ all runs correspond to ABC at level 1

A design is of resolution R if no p-factor interaction effect (or main

effect if p = 1) is aliased with another effect involving less than (R-p)

factors, e.g.,

Resolution III: no main effect aliased with any other main effect, but a

main effect can be aliased with a two-factor interaction

Resolution IV: no main effect aliased with any other main effect or

with any two-factor interaction, but two-factor interactions may be

aliased with each other

41

Resolution of Fractional Factorial Designs 
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Box-Behnken: 3-level designs ─ used for quantitative factors with

three levels → useful for fitting models with

main (linear) effects: ±1 levels

quadratic effects: center points (0 level)

linear two-way interactions: two factors varied at a time; others held at

zero

42

Factor No. of 

pointsA B C

±1 ±1 0 4

±1 0 ±1 4

0 ±1 ±1 4

0 0 0 3

Box-Behnken for 3 factors

Box-Behnken Design  
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Central-composite (Box-Wilson) designs: factors take 5 levels

for measuring main (linear) effects, quadratic effects, and linear interactions

Advantage over Box-Behnken designs: can have fewer runs if some quadratic effects

and/or some interactions do not exist

43

Expt. 

No.

Factor

A B C

1 -1 -1 1

2 -1 1 -1

3 1 -1 -1

4 1 1 1

5 0 0 0

6 0 0 0

7 0 0 0

8 α 0 0

9 -α 0 0

10 0 α 0

11 0 -α 0

12 0 0 α

13 0 0 -α

Factorial 

portion

Center 

points

Axial 

points

Box-Wilson Design 
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three portions: 2-level factorial portion; center-point portion; and

axial-point portion

2-level factorial portion: full or fractional

center-point portion: number of center points of CCD

For 3 factors, nF = 8 runs in factorial portion,

➢ nC = 6 → uniform precision (prediction error variance at center is 

equal to that at unit distance from center) 

➢ nC = 3 → orthogonal design (                                where k is the 

number of factors)

axial-point portion: 2k points. α chosen to ensure rotatability of

design

Rotatability: prediction error variance depends only on distance from

design center

For rotatability, α= (nF)1/4

44

4 1 2 ,C Fn n k  

Central-composite designs (continued) 
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D-optimal designs: non-orthogonal, but very efficient

X: the design matrix

D-optimal design maximizes determinant of XTX (the information

matrix)

Software packages available to assist in design generation

RS Discover (BBN Software Products)

SAS (SAS Institute Inc., Cary, NC)

E-Chip

Catalyst

D-optimal designs are non-orthogonal; Box-Behnken and CCD

designs are slightly non-orthogonal

֜ analysis must be done via least-squares regression

45

Other Design Types ... 



Copyright ©2013 by K.R. Pattipati 

Analysis of Means: Computation of sample averages

Nm response measurements: N runs (rows), m replicates per run

(columns)

Overall mean

Average response in nth trial

2-level arrays: each column associated with one main effect or

one interaction effect; p columns ֜ p (main or interaction) effects

3-level arrays: each column associated with two effects…

46
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Data Analysis for Orthogonal Arrays 
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Average response due to column i taking level l

For 2-level experiments Li = 2

{n : li = l}: set of indices denoting trial numbers in which column i

takes level l.

qi number of runs in which column i takes a given level l; qiLi = N.

Effect measured by a 2-level column i = difference between the

average responses due to the two levels of column i
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Analysis of Means (cont'd)
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Predicted response for n-th run

For 2-level experiments, also use half-effects

Predicted response for n-th run in this case can also be written as
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Analysis of Means (cont'd) 
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Sums of squares (corrected for means)

Total sum of squares (SS) ─ measures overall variation in data

Sum of squares assignable to effect(s) measured by column i

Sum of squares not explained by model (residual SS)

Sum of squares due to pure-error within-run variations or replication

Sum of squares due to lack of fit (if p < N ─ 1, i.e., all columns not used)
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ANOVA for Orthogonal Arrays 
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Components of the sum of squares (SS)
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odel) (residual SS)

ANOVA (cont'd) 
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Residual SS = Sum of squares due to pure error + Sum of squares due to

lack of fit

Degrees of freedom (d.f)

Total d.f.= Nm

d.f. associated with the model: p (1 d.f. for each effect)

d.f. associated with residual = Nm ─ p ─ 1

d.f due to lack of fit = Nm ─ p ─ 1 (if p < N─ 1 else 0)

D.f due to pure error = Nm ─ N
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ANOVA (cont'd)
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R2 - statistic ─ fraction of variation about the overall mean

explained by the fitted model

52
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ANOVA Table 
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Significance of model

Model significant

Effect i significant at level α if Fi > Fdi, Nm – p - 1 (α )

Sums of squares of insignificant factors are pooled with SRES (error

residual sum of squares) and the F -values are recomputed

Only significant effects included in the prediction model

Model with p significant effects:

53
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Inference from ANOVA 
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Assumptions in Robust Design

Factor effects are additive: interactions can either be eliminated or

ignored by appropriate choice of factors and design matrix ֜ best

factor levels can be selected independently of each other

Separability of signal factors and control factors is achievable

Use of outer array can give reliable estimates of dispersion

Problems

SNR measures do not always relate to the quadratic loss function

Separability of design factors not always achievable

Effort to ignore interactions results in crude models

Pooling of effects in error may make other unpooled, but insignificant,

effects significant → biased, misleading model

Use of outer arrays to measure dispersion suspect

58

Comments/Critique 
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Use data transformations to achieve additivity and/or

separability

Use response surface methods to prevent ignoring of

interactions

Use dual objective approach (of achieving mean on target

and minimizing variability) instead of maximizing SNR

ANOVA: Use normal probability plots instead of pooling to

identify significant effects

Use outer array designs other than orthogonal arrays

59

Improvements/Alternatives 
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An effective tool for quality improvement

simple philosophy ─ minimize variability

obvious approach ─ use experiments

Reports of success even with crude and sometimes faulty statistical

methods

highlights the absence of quality improvement effort in current industry

justifies ongoing research to further improve upon the methods

More widespread acceptability possible if sounder experimental

design principles are incorporated, e.g., use classical approach of

sequential experimentation combined with the objective of

variability reduction

60

Summary of Taguchi Methods 
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For quantitative factors; qualitative factors taken into account via

blocking

Used more often for process optimization than for product design

Additivity and separability of factor effects not required unlike

Taguchi's methods

Quadratic loss function M(x) can be directly minimized by RSM

instead of using Taguchi's two-step approach

61

3. Response Surface Methods (RSM)
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Design and conduct of experiment

Data analysis

ANOVA: identify significant main- and interaction-effects

Regression modeling: estimate model parameters → response

surface

Search response surface for optimum design point

Approach and assumptions

Variance of response does not vary with design point

(homoscedasticity)

Noise variables treated as nuisance factors: taken into account via

blocking: separate response surfaces obtained for each block

Mainly for modeling and optimizing mean of the response

62

Steps in RSM 
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Highlights

Model the mean of the response as a polynomial in design factors

Select significant terms in polynomial model via ANOVA

Estimate model parameters (polynomial coefficients) using the least-

squares method

Notation

mean response denoted by η

k factors: levels denoted by the vector x = [x1 ,…,xk ]’

Functional relationship η (x) determined from measurements

63
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Regression Modeling 
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Notation (continued)

mean response denoted by η

k factors: levels denoted by the vector x = [x1 ,…,xk ]T

Functional relationship η (x) determined from measurements

True function form

measurements at N distinct points x1,…,xN

X: N x p design matrix; ith row of X: zT(xi)

64
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Regression Modeling: Notation 
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Estimate 𝜃 by መ𝜃 that minimizes the total squared prediction error

Least-squares estimate given by

Prediction model: mean response at any x

65
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Regression Modeling: Least-squares Estimation 
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Obtain process variable settings to minimize variability in part

shrinkage

Process variables (design factors):

Mold temperature (x1)

Screw speed (x2)

Holding time (x3)

Response: Log of standard deviation of parts shrinkage (y)

Fit second-order model:

Use central composite design
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Example: Plastic-Injection-Molding Process Optimization 
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Mold Temperature

X1

Screw Speed

x2

Holding Time

]x3

Log Standard 

Deviation of Parts 

Shrinkage

-1 -1 -1 0.02

1 -1 -1 0.14

Factorial -1 1 -1 0.22

design 1 1 -1 0.31

portion -1 -1 1 0.5

1 -1 1 0.66

-1 1 1 0.55

1 1 1 0.65

-1.682 0 0 0.57

1.682 0 0 0.58

Axial 0 -1.682 0 0.13

points 0 1.682 0 0.62

0 0 -1.682 0.54

0 0 1.682 0.74

0 0 0 0.08

0 0 0 0.04

Center 0 0 0 0.11

points 0 0 0 0.14

0 0 0 0.09

0 0 0 0.13
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Example (cont'd): Central Composite Design 
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Design matrix and measurement vector

68

X =

1 -1 -1 -1 1 1 1 1 1 1

1 1 -1 -1 1 1 1 -1 -1 1

1 -1 1 -1 1 1 1 -1 1 -1

1 1 1 -1 1 1 1 1 -1 -1

1 -1 -1 1 1 1 1 1 -1 -1

1 1 -1 1 1 1 1 -1 1 -1

1 -1 1 1 1 1 1 -1 -1 1

1 1 1 1 1 1 1 1 1 1

1 -1.682 0 0 2.828 0 0 0 0 0

1 1.682 0 0 2.828 0 0 0 0 0

1 -1.682 0 0 2.828 0 0 0 0

1 0 1.682 0 0 2.828 0 0 0 0

1 0 0 -1.682 0 0 2.828 0 0 0

1 0 0 1.682 0 0 2.828 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 0

y =

0:02

0:14

0:22

0:31

0:50

0.05

0:55

0.05

0:57

0:58

0:13

0.04

0:54

0.05

0:08

0:04

0:11

0:14

0:09

0:13

Example (cont'd): Data for Regression Analysis 
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Estimate of coefficient vector:

Response surface model:

Coefficients involving x2 small → its effect ignored and x2 fixed at -1
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1

0.1040

0.0356

0.0904

0.1469

0.1316

0.0609

0.1546

-0.0113

0.0063

-0.0413

T Tb X X X y


 
 
 
 
 
 
 

   
 
 
 
 
 
 
  

2 2

1 2 3 1 2

2

3 1 2 1 3 2 3

y = 0.1040 + 0.0356  + 0.0904  + 0.1469  + 0.1316 + 0.0609

+0.1546  0.0113  + 0.0063 0.0413

x x x x x

x x x x x x x 

Example (cont'd): Least-squares Regression Analysis 
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Contour plot of response surface ො𝑦 versus mold temperature and

holding time when screw speed x2 = -1

Lowering mold temperature and using shorter holding time can

reduce y from a current value of ~ 0.1 to as low as ~ 0.01 → ten-

fold reduction
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Example (cont'd): Response Surface
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Response estimate is unbiased: prediction is correct on the

average

Prediction-error covariance matrix is a function of x (the

uncertainty in prediction depends on the point x at which the

prediction is made)

Model optimum versus true optimum

In general

Confidence regions may be obtained via simulations for the optimum

design point x*
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    ˆE x x 

       
1

2ˆ

is the standard deviation of the additive noise

T TCov x z x X X z x 







   ˆ ˆarg max arg max
x x

E x x   
 

Statistical Properties of the Least-squares Model 
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Multiobjective Optimization/Vector Optimization: a mulitobjective

optimum is any solution in a set called the non-dominated (or

Pareto optimal) set

Nondominated solution ֜ no other solution is better with respect to all

objectives

Choice of any particular nondominated solution based on user’s

preferences

Illustration: Case of maximizing two

objectives

a, b, p1, p2 nondominated

a dominates c and e

b dominates d and e
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4. Multiobjective Design for Robustness 
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Two groups of approaches for incorporating a decision-maker's

preferences to choose the non-dominated solution

Indirect methods: based on utility functions

Direct methods: greater interaction possible

Direct methods:

Goal programming methods

Establish a goal level of achievement for each objective, and find a feasible

solution in the parameter space that achieves the goals

If goal is not reachable, get as close as possible.

Reference-point method

Decision-maker's preferences expressed as a reference-point in the

objectives space (similar to goal vector)

Solution obtained by maximizing a scalarizing function ─ guarantees a

non-dominated solution whether or not the reference-point is achievable
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Approaches to Multiobjective Optimization 
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Generic formulation

Archimedian GP

Essentially a (non) linear programming problem

Nonlinear objectives: use L2 metric; linear objectives: use L1 metric
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. .

j j jgoal x t j M

s t x

  



    1 2min , , , , , 0M j
px

W x t W diag w w w w


  

 

 

1

min

. . ; 1, ,

0; 0; 1, ,

: negative deviation (under-achievement) of - th objective goal :

: positive deviation (over-achievement).

M

j j j

j

j j j j

j j

j j

j

w d d

s t x d d t j M

x

d d j M

d j t

d



 



 

 







   



  



Goal Programming 
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Preemptive GP (Lexicographic GP)

Iterative procedure
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      1 1 2 2min , , M Mp p px
lex x t x t x t  


  

 

 

 

1 1

*

1. min ;

2. for 2, , ,

do

       min

. . ; 1, , 1

end do

p
x

j j p
x

k k k kp

x t

j M

x t

s t x t d k j

















     

 *d 's: optimal values of  in each step k k k p
x t k 

 0 : relaxation parameter for (set to zero or chosen by DM)k k x 

Goal Programming 



Copyright ©2013 by K.R. Pattipati 

Two responses

Cut-off frequency

Full-scale galvanometer deflection

All circuit parameters assumed normally distributed about their

nominal values
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Example: Passive Filter Design 
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GP problem:

Ignored bias in first-stage GP

R1 taken as ‘independent’ factor; R2 and C computed from

Second-stage (Archimedian) GP
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Example: Passive Filter Design 
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ሻത𝑅1(𝛺 ሻത𝑅2(𝛺 ሻҧ𝐶(𝜇𝐹 ൯ҧ𝑓(𝐻𝑧 ൯𝜎𝑓𝑐(𝐻𝑧 ሻഥ𝐷(𝑖𝑛 ሻ𝜎𝐷(𝑖𝑛 Cost

150 249.31 416.02 6.8464 0.1842 3.0002 0.0533 0.0368

200 292.72 369.8 6.8459 0.1811 3.0003 0.053 0.0356

250 324.4 342.06 6.8459 0.1791 3.0005 0.0526 0.0349

300 348.54 323.57 6.8455 0.1778 3.0004 0.0525 0.0344

350 367.54 310.36 6.8458 0.1768 3.0005 0.0524 0.034

400 382.89 300.46 6.8456 0.1759 3.0005 0.0524 0.0337

450 395.54 292.75 6.8457 0.1755 3.0007 0.0523 0.0336

500 406.16 286.59 6.8452 0.175 3.0007 0.0524 0.0334

550 415.19 281.55 6.8453 0.1747 3.0007 0.0522 0.0333

600 422.96 277.35 6.8457 0.1745 3.0007 0.0524 0.0332

650 429.73 273.79 6.8451 0.1745 3.0008 0.0524 0.0332

1000 460.18 258.86 6.8449 0.1737 3.0008 0.0525 0.033

1100 465.67 256.34 6.8448 0.1736 3.0007 0.0525 0.0329

1200 470.32 254.23 6.8454 0.1733 3.0008 0.0526 0.0328

1300 474.33 252.46 6.8449 0.1738 3.0007 0.0527 0.033

1400 477.8 250.93 6.8451 0.1735 3.0007 0.0527 0.0329

1500 480.85 249.61 6.845 0.1735 3.0008 0.0527 0.0329

1600 483.54 248.46 6.8448 0.1734 3.0008 0.0528 0.0329

1700 485.94 247.44 6.8449 0.1733 3.0008 0.0527 0.0328

1800 488.08 246.53 6.8454 0.1733 3.0007 0.0527 0.0328

1900 490.02 245.72 6.8448 0.1735 3.0008 0.0527 0.0329

2000 491.77 244.99 6.8448 0.1735 3.0008 0.0528 0.0329
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Example: Passive Filter Design 
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R1 >1000 , and R2 and C obtained from R1, results in nearly

optimal design

For the chosen equal weights, σfc makes the most significant

contribution to the cost function ֜ justified in ignoring the biases in
ഥ𝑓𝑐 𝑎𝑛𝑑 ഥ𝐷 from their targets

Problem with GP: if all goals are achievable, solution is not non-

dominated ֜ under-achievement.

81

Remarks 
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