Testability & Reliability

Prof. Krishna R. Pattipati Dept. of Electrical and Computer Engineering University of Connecticut Contact: <u>krishna@engr.uconn.edu</u> (860) 486-2890

ECE 6161 Modern Manufacturing System Engineering

- What is Testability?
 - Importance of Testing
 - Onboard and off-board diagnosis
 - Multiple Fault Diagnosis Methods
 - Sequential Fault Diagnosis
- What is Reliability?
 - Importance of Reliability
 - Reliability Definitions
 - Device Reliability
 - System Reliability Modeling

What is Testability?

- Management Definition
 - Testability is the ability to generate, evaluate, and apply tests to improve quality, reduce life-cycle costs, and minimize timeto-profit
- **Engineering Definition**
 - Testability is the extent to which a design (or fielded system) can be tested for the detection and isolation of (manufacturing) defects or (field) failures

Failures and Defects

- Failure
 - renders a system unable to perform its normal function according to specification
 - caused by external environment or by some internal defect (e.g., design, manufacturing)
- Defect or Fault
 - an imperfection in either the design or the structure of a product
 - a defect may or may not lead to failure (but is a nonconformance to specifications)

Examples of Failures

- Incorrect and Marginal Designs
 - identify design problems early to improve and verify designs
 - typical problems: incorrect schematics, timing issues, changing specs,...
 - one solution: specification-based testing
- Production Defects
 - flaws during manufacturing and assembly processes
 - both permanent and transient defects
- Operational and Maintenance failures
 - packaging and transportation (shock and vibration resulting from dropped boxes)
 - product abuse (dropping a product, operate in overheated conditions, improper storage, environment (temperature, radiation,...)
 - wear and aging
 - static electricity
 - power surges

- Quality Assurance
- Evaluating a Manufacturing Process
- Identifying Faulty Components for Repair
- Cost of fixing problems in the field increases exponentially!

LEVEL OF ASSEMBLY	COST PER FAILURE (\$)
COMPONENT LEVEL	1
CIRCUIT BOARD LEVEL	10
BOX LEVEL	100
SYSTEM LEVEL	1000
FIELD OPERATION LEVEL	2000-20,000

Latest Example: Boeing 787 grounded for Li-ion Battery Problems

Classification of Tests

Based on Purpose

- detection tests
- diagnostic tests

When Performed

- design verification simulation
- manufacturing tests behavioral, parametric
- field tests maintenance, diagnosis (on-board, off-board (remote/automatic/manual)
- Level
 - system
 - subsystem
 - chip
 - circuit
- Test Application
 - external testing
 - self-test

Copyright ©2013 by K.R. Pattipati

Diagnostic Inference: A Tri-partite Graph Model

- True states of the component states and tests are hidden
- $P = \{Pd, Pf\}$ represents the detection and false alarm probability pair
- NP-hard combinatorial optimization problem (even in the static case!)

Fault Diagnosis Problems and Terms

Fault Assumptions

- Single fault: If only a single component is faulty
- Multiple faults: If more than one component is faulty
 - □ If multiple faults result in similar test signature (same rows in D-matrix) \Rightarrow Ambiguous faults
 - □ If union of multiple fault signatures is similar to one or more fault signatures ⇒ Hidden or masking faults (caused by insufficient observability due to inadequate sensors/test design)
 - \Box If multiple faults are dependent on each other \Rightarrow *Coupled faults*
- Fault Dynamics:
 - $\ \ \, \square \quad Component once failed, remains in that state \Rightarrow Permanent faults \\$
 - \Box Malfunction of the component occurs only at intervals with/without specific patterns \Rightarrow Intermittent faults
 - \Box If faults take time to propagate or tests are observed with delays \Rightarrow **Delay faults**

Test reliabilities

- Reliable/perfect tests: No Missed detections or False alarms
- Unreliable/imperfect tests (more practical): Missed detections and/or False alarms

Illustration of Different Fault Types

13

MFD Problems and Algorithms

Single Frame (Static) MFD Algorithms

- Perfect Test Case: Set covering Algorithms (2003)
- Imperfect Test Case:
 - Lagrangian Relaxation Algorithm (LRA, 1998; IEEE T-SMCC)
 - Approximate Belief Revision Algorithm (ABR, 2008; IEEE T-SMCA)
 - Deterministic Simulated Annealing (DSA, 2009; IEEE T-SMCA)
 - L-ranked Solutions via Murty's Decomposition (1998; IEEE T-SMCC)
- Multi-frame (Dynamic) MFD Algorithms Infer multiple, coupled and intermittent faults with fault propagation and observation delays
 - Perfect Test Case: Dynamic set covering and Delay Dynamic Set Covering (Kodali, 2013; IEEE T-SMCA)
 - Imperfect Test Case
 - Deterministic Simulated Annealing + Markov-chain based smoothing (2009; SMC-A)
 - LRA + (Soft Decision, Hard Decision) Viterbi Algorithms (2009; IEEE T-SMCA)
 - Gauss-Seidel or Jacobi-based Coordinate Ascent Algorithm (Kodali, 2013; SMC-A)
 - Block Coordinate Ascent and Viterbi (BCV) or Annealed MAP (Zhang, 2013; SMC-A)

DMFD: Real World Applications

Automotive

Anti-lock/Regenerative Braking

Regenerative Braking

- CRAMAS[®] Engine Data
- Li-ion Batteries
- Fuel pumps, ETCS, EPGS

ΤΟΥΟΤΑ

CRAMAS[®] Platform

Power/Buildings

Power Quality MonitoringHVAC Chillers

Cause Effect Power Quality Problems Transient Voltage Imbalance

Copyright ©2013 by K.R. Pattipati

Aerospace

- PW2500
- Black Hawk and Sea Hawk T-700 Engines
- Non-toxic Orbital Maneuvering System and Reaction Control System (NT-OMS/RCS)
- International Space Station
- Ares-1x Rocket

Guided Troubleshooting

17

- Military Vehicles, Fork lift trucks
- Optical Scanning Machines, Semiconductor Fabrication Facilities
- Medical Equipment

Static Test Sequencing Problem and Algorithms

My first foray into diagnostics)

Motivation

- Design of optimal test sequencing procedures
- Application for off-equipment (off-board) diagnosis

Simplest Test Sequencing Problem

- A set of m failure sources with prior probabilities, $p = \{p(s_1), p(s_2), ..., p(s_n)\}$
- A corresponding set of n test costs, $C = \{c_1, c_2, ..., c_n\}$
- An optimal test sequence which attains the minimum expected cost

$$\min_{\{P_i\}^{m_{i=0}}} J = \sum_{i=0}^{m} \left\{ \sum_{j=1}^{|P_i|} C_{p_i[j]} \right\} \right\} p(s_i)$$

Dynamic Test Sequencing: Active probing during DMFD is an open research problem in the context of diagnosis. Done in dynamic sensor management.

- P_i denotes the sequence of tests applied to isolate the system state s_i
- Optimization is done over all admissible test sequences

Optimal algorithms

Dynamic Programming: High Storage and computational requirement $O(3^n) \Longrightarrow n < 13$

AND/OR Graph Search and information theory \Rightarrow 50-100 components

Suboptimal algorithms

- Information heuristic algorithm (can be arbitrarily off from optimal)
- Rollout strategies with information gain heuristics (near-optimal and practical)
- Extensions to realistic systems: setup operations, precedence constraints, multi-outcome tests, unreliable tests, multi-mode test sequencing, blocks of tests, modular diagnosis, rectification,...

D-matrix based Measures

D-matrix (Diagnostic Dictionary, Fault Dictionary)

- Assume perfect test case for simplicity
- $d_{ij} = 1$ if failure source s_i is detectable by test t_j

Undetectable faults

- set of faults in the system that cannot be detected using the available tests
- correspond to null rows in the D-matrix

Redundant Tests

- set of tests that have the same detection signature, i.e., detect the same set of faults, is termed redundant
- correspond to identical columns in D-matrix

Ambiguity Groups

- set of faults that have the same observability signature, i.e., detected by the same set of tests, is termed "ambiguity set"
- correspond to identical rows in D-matrix

Hidden Failures

- set of failures that are detected only by a subset of tests that detect a given fault
- correspond to the set of rows which are subsets of a given row of D-matrix

Masking False Failures

- an irreducible set of faults, which when occur simultaneously produce the same symptoms as some other fault, is termed a "masking set"
- corresponds to an irreducible set of rows of D-matrix which when logically added (OR-ed) would produce some other row of D-matrix

Copyright ©2013 by K.R. Pattipati

Structure of the Test Algorithm

Solution exists if and only if **no** two rows of the D-matrix are identical

- need number of tests, $n \ge \log_2 (m+1)$; m = number of failure modes
- since the problem is finite, existence of solution implies the existence of an optimal solution
- Solution is a deterministic and sequential algorithm
 - decides which test to perform next depending upon the outcomes of previously applied tests ⇒ state-dependent/closed-loop/adaptive

Algorithm has AND/OR decision tree structure

- OR nodes labeled by ambiguity status (~ states)
- AND nodes denote tests at OR nodes (~ decisions)
- initial OR node = state of complete ambiguity
- terminal nodes (goal nodes, leaves) = s_i (or) residual ambiguity
- each test is performed at most once on a path (for perfect tests)
- weighted length of the tree = expected test cost
- identifies redundant tests (i.e., identical columns of D-matrix and tests not used in the test algorithm)

Dynamic Programming Approach

up Algorithm

Application of a test t_j at an OR node x partitions x into two disjoint subsets, x_{ip} and x_{if}

Optimal cost-to-go at OR node x

$$h^{*}(x) = \min_{j} \{c_{j} + p(x_{jp})h^{*}(x_{jp}) + p(x_{jf})h^{*}(x_{jf})\}$$
Bottom
$$\sum_{i,j \in X} (1 - d_{ij})p(s_{i})$$

$$p(x_{jp}) = \frac{\sum_{s_{i} \in X} (1 - d_{ij})p(s_{i})}{p(x)}; p(x_{jf}) = 1 - p(x_{jp}); p(x) = \sum_{s_{i} \in X} p(s_{i})$$

Alternate version of DP (unconditional version)

Let
$$v^{*}(x) = p(x)h^{*}(x)$$

Then, $v^{*}(x) = \min_{i} \{ p(x)c_{i} + v^{*}(x_{jp}) + v^{*}(x_{jf}) \}$

• Computational complexity grows exponentially with $n \Rightarrow O(3^n)$

Analogy between Testing and Coding

- Sequence of test results generates a binary prefix-free coding of the failure sources $\{s_0, s_1, ..., s_m\}$
 - pass outcome (G) = 0 and fail outcome (NG) = 1
- Noiseless coding problem
 - (*m*+1) binary messages S= {s₀, s₁,..., s_m } with pmf {*p*(s_i): *i*=0,1,2,..,*m*} must be sent over a noiseless communication channel
 - Develop an efficient coding scheme to minimize the expected word length

$$w(S) = \sum_{i=0}^{m} w(s_i) p(s_i); w(s_i) = \text{length of code word for } s_i$$

Solution: Huffman code

Analogy

failure sources \leftrightarrow messagestest results \leftrightarrow codewordtest algorithm \leftrightarrow coding schemeconstrained by---- unconstrainedavailable tests

When test costs are equal

$$w(S) \le h^*(S)$$
$$w(x) \le h^*(x) \ \forall x$$

What about when test costs are unequal?

Lower Bound on Cost-to-go Function

Illustration of Huffman Code

Useful properties of Huffman code

- conditional Huffman code length from any node x, $w(x) \le$ conditional average no. of tests, l(x) for any test algorithm \Rightarrow test point efficiency = w(S)/l(S)
- lower bound on the optimal cost-to-go

$$HEF = h(x) = \frac{1}{p(x)} \sum_{s_i \in x} p(s_i) \sum_{j=1}^{w(s_i)} c_{[j]} \le h^*(x); c_{[1]} \le c_{[2]} \le \dots \le c_{[n]}$$

Simplified lower bound

$$HEF_{1} = h(x) = \sum_{j=1}^{\lfloor w(S) \rfloor} c_{[j]} + \left(w(S) - \lfloor w(S) \rfloor\right) c_{\lfloor w(S) \rfloor + 1} \le h^{*}(x)$$

Copyright ©2013 by K.R. Pattipati

Test Sequencing as AND/OR Graph Search

AND/OR graph expresses the structure of test sequencing problem in the form of partial ordering among sub-problems (a la DP)

- initial node of complete ambiguity, S = test sequencing problem to be solved
- intermediate nodes = test sequencing sub-problems (OR, AND nodes)
- goal (terminal) nodes = nodes of zero ambiguity, s_i (i.e., primitive sub-problems with known solution)
- if an OR node x is in the solution tree, only one successor AND node (x, t_j) is in the solution tree. test t_j is the optimal test at OR node, x
- if an AND node (x, t_j) is in the solution tree, then the immediate successor OR nodes x_{jp} and x_{jf} , are also in the solution tree (problem decomposition)
- Equivalent to splitting DP recursion into two parts
 - OR node : $h^*(x) = \min_j \{ c_j + h^*(x, t_j) \}$
 - AND node : $h^*(x, t_j) = p(x_{jp}) \cdot h^*(x_{jp}) + p(x_{jf}f) \cdot h^*(x_{jf})$
- Key Idea: Replace $h^*(x)$ by HEF h(x), an easily computable estimate of optimal cost-to-go \Rightarrow Top-down algorithm

Top-down Search Algorithm

- Ordered best-first search algorithm AO*
 - expand only that node with most promise
 - node selection based on HEF
- Three basic operations performed repeatedly
 - top-down graph traversing
 - follow the best current (marked) partial solution graph
 - accumulate unexpanded terminal nodes
 - node selection and expansion
 - select unexpanded node with highest HEF, h(x)
 - expand x with each feasible test tj to get xjp, xj
 - **i**f any successors = s_i , label them solved
 - add successors to graph (if not already present)
 - bottom-up cost revision (minor variation of DP)
 - update cost-to-go of expanded node
 - propagate change backward to the initial node

$$e = \min_{i} \{ c_{j} + p(x_{jp}) f(x_{jp}) + p(x_{jf}) f(x_{jf}) \}$$

with initial $f(x_{jp}) = HEF_1(x_{jp}) = h(x_{jp}); f(x_{jf}) = HEF_1(x_{jf}) = h(x_{jf})$

• Leads to optimal solution because $f(S) \le h^*(S) \le f(S) \Rightarrow f(S) = h^*(S)$

Optimal Test (Sensor) Selection

Problem: Optimal test selection while minimizing the total costs of tests subject to lower bound constraints on fault detection and fault isolation

Imperfect multi-outcome tests, and delays due to fault propagation, reporting and transmission

Model

- A set of failure sources, $S = \{s_1, s_2, ..., s_m, s_{m+1}\}$ and s_{m+1} is fault-free state
- Probability of failure states, $P = \{p_1, p_2, ..., p_m, p_{m+1}\}$
- A set of tests, $T = \{t_1, t_2, ..., t_n\}$ and test costs $C = \{c_1, c_2, ..., c_n\}$
- A diagnostic dictionary matrix $D = [d_{ij}]_{(m+1) \times n} d_{ij} = \text{Prob}\{\text{test } t_j \text{ fails} | \text{failure } s_i \text{ has occurred} \}$

Problem Formulation

$$\begin{split} \min \sum_{j=1}^{n} c_{j} x_{j} \\ s.t. \ P_{D}(X) \geq \underline{P}_{D}, \\ P_{I}(X) \geq \underline{P}_{I}, \\ x_{j} \in \{0,1\}, \ j = 1, 2, ..., n \end{split} P_{D}(X) = \frac{1}{1 - p_{m+1}} \sum_{i=1}^{m} p_{i} \left[1 - \prod_{j=1}^{n} \left(1 - d_{ij} \right)^{x_{j}} \right] \end{split} \text{Detection probability of fault } S_{i} \\ P_{I}(X) = \frac{1}{1 - p_{m+1}} \sum_{i=1}^{m} p_{i} \left\{ \prod_{k=1 \ k \neq i}^{m+1} \left[1 - \prod_{j=1}^{n} \left(1 - d_{ij} - d_{kj} + 2d_{ij} d_{kj} \right)^{x_{j}} \right] \right\} \end{split}$$

Approach: Genetic algorithm (GA) and Lagrangian relaxation algorithm (LRA)

Genetic algorithm (GA) – for imperfect test selection with delayed and multiple test outcomes

- Lagrangian relaxation algorithm (LRA) for perfect test selection with multiple test outcomes
 - Key advantage: Provides an approximate duality gap (an upper bound on sub-optimality)

Optimal Test Selection: Simulation Results

GA and LRA for perfect test selection problem

- LC: Total cost of tests selected by LRA
- LD: Deviation of LRA result from the best known result
- LT: Average computation time of LRA
- DG: Approximate duality gap of LRA
- GC: Total cost of tests selected by GA

- GD: Deviation of GA solution from the best known result
- GT: Average computation time of GA
- ENUM: Optimal cost of test set obtained by exhaustive search
- ET: Average computation time for exhaustive search

Perfect *multi-outcome* Test Selection Problem

	m=10, n=10	m=10, n=15	m=15, n=15	m=30, n=40	m=50, n=60
LC	1.74	2.01	2.32	2.50	2.36
LD (%)	0	0	0.21	4.15	5.07
LT (s)	49.06	43.11	61.42	96.86	277.45
DG (%)	5.51	9.13	14.38	33.27	42.29
GC	1.74	2.01	2.32	2.40	2.25
GD (%)	0	0	0	0	0
GT (s)	0.96	1.42	1.50	4.44	12.68
ENUM	1.74	2.01	2.32	-	-
ET(s)	0.57	22.66	46.43	-	-

Performance of GA for the imperfect *multioutcome* test selection problem

⊧10, ⊧10	m=10,	m=15,	m=30,	m=50.
10	n 1E			,
-	n=15	n=15	n=40	n=60
83	2.63	3.516	1.88	1.91
0	0	0	-	-
84	0.99	1.014	3.76	9.18
83	2.63	3.5165	-	-
42	49.69	101.55	-	-
	83 0 84 83 42	83 2.63 0 0 84 0.99 83 2.63 42 49.69	83 2.63 3.516 0 0 0 84 0.99 1.014 83 2.63 3.5165 42 49.69 101.55	83 2.63 3.516 1.88 0 0 0 - 84 0.99 1.014 3.76 83 2.63 3.5165 - 42 49.69 101.55 -

Both GA and LRA generate very good test sets for the multi-outcome test selection problem

Performance of GA is generally better than LRA

Also applied to analog circuit test selection problems with excellent results

47

Origins & Importance of Reliability

Formalized design techniques in early 19th century

- standardizing commonly used parts (e.g., fasteners, bearings)
- units of a given type tend to break or wear out in the same way
- correlation between application loading and useful operating life (e.g., operating life of a bearing inversely proportional to rotational speed of inner ring and cube of radial load)
- "reliability of a product is no better than the reliability of its least reliable component"

Reliability becomes an engineering science

- probability of successfully completing a prescribed mission
- multiple engines versus single engine air planes (between WW I and WW II)
- quantitative analysis techniques due to Robert Lusser and Erich Pieruschka (German VI missile during WW II) "a reliability chain is weaker than its weakest link"
- requirements for reliability became part of military procurements during late 1950's

Historically important in critical applications

- military, aerospace, industrial, communications, patient monitors, power systems,...

Recent trends

- harsher environments, novice users, increasing repair costs, larger systems,...

Reliability Definitions - 1

- Reliability (British Standards Institution, Quality Vocabulary, Part I, 1987)
 - ability of an item to perform a <u>required</u> function under <u>stated conditions</u> for a <u>stated period of time</u>
 - required function => specification of satisfactory and unsatisfactory operation
 - stated conditions => total physical environment (mechanical, thermal and electrical)
 - stated period of time => time during which satisfactory operation is desired ("service life")
- Quantitative Definition of Reliability, R(t)
 - conditional probability that the system has survived the interval [0,t] given that it was operational at time t =0

 $R(t) = P \{ system operates during [0,t] | system is operational at time t = 0 \}$

- repair cannot take place at all or cannot take place during a mission
- also called **non-maintained** systems

Alternate Definition

 maximum number of failures anywhere in the system that the system can tolerate and still function correctly

Reliability Definitions - 2

Reliability in terms of lifetime distribution

- $X \sim$ lifetime or time to failure of a system and $F_X(x)$ is the distribution function of X
- reliability $R(t) = P\{X > t\} = 1 F(t)$
- if $f_X(t)$ is the probability density function of X,

$$R(t) = \int_{-\infty}^{\infty} f_X(x) dx$$

- hazard rate (age-dependent failure rate, instantaneous failure rate), h(t)

$$h(t) = \frac{f_X(t)}{R(t)}$$

Reliability Definitions - 3

Availability, A(t)

- measure of the degree to which an item is in an operable state when called upon to perform
- probability that the system is operational at time t A(t)

A(t) = P { system is operational at time t}

- repair is allowed \Rightarrow maintained systems
- if repair is not allowed, A(t) = R(t)
- if $\lim_{t\to\infty} A(t)$ exists, have steady state availability, A_{ss}

 A_{ss} = expected fraction of time the system is available

UPTIME

- UPTIME + DOWNTIME
- this equation is not valid for <u>redundant</u> systems with multiple UP states

Maintainability

 it is the degree to which an item is to be able to be restored to a specified operating condition

Failure Time Distributions - 1

Exponential distribution

- widely used in reliability analysis of equipment beyond the infant mortality period
- constant failure rate (steady-state hazard rate)

Failure Time Distributions - 2

Lognormal distribution

- used to describe failure time data obtained from accelerated testing of semiconductor devices
- In(failure time) is distributed normally

$$pdf: f(t) = \frac{1}{\sigma t \sqrt{2\pi}} \exp(-\frac{1}{2} \left[\frac{\ln(t) - \mu}{\sigma}\right]^2$$

Copyright ©2013 by K.R. Pattipati

Failure Time Distributions - 3

Weibull distribution

- the most widely used life distribution, especially in modeling infant mortality failures
- hazard rate varies with device age

- Weibull enables modeling of a variety of hazard (failure) rates
 - $\alpha < 1 \Rightarrow$ decreasing failure rate with time \Rightarrow infant mortality period
 - $\alpha = 1 \Rightarrow$ constant failure rate with time \Rightarrow exponential distribution \Rightarrow steady-state
 - $\alpha > 1 \Rightarrow$ increasing failure rate with time \Rightarrow wear out period

Examples

Example 1

- the hazard rate of a piece of equipment is constant and estimated at 325,000
 FITs (1 FIT= 10⁻⁹ failures per hour).
- What is the probability that this device will first fail in the interval : (i) 0 to 6 months of operation? (ii) 6 to 12 months of operation? (iii) 6 to 12 months if it has survived the first 6 months?
- if 100 of these systems are installed in the field but are not repaired when they fail, how many will still be expected to be working after 12 months?
- what is the equipment MTTF? assuming an average repair time of 4 hours, what would the steady state availability be? how would this change if the average repair time were 50 hours?

Example 2

- assume the following for an integrated circuit: the steady-state hazard rate = 10 FITs, α =0.2 and the time to reach steady-state hazard rate is 10,000 hours. for a population of such devices, what percentage would be expected to fail: (i) in the first month of operation? (ii) in the first 6 months of operation? (iii) in the first 10 years of operation?

Accelerated Life (Stress) Testing

Accelerated life (stress) testing

 in an accelerated life test, environmental conditions, such as temperature, voltage, and humidity are altered to place a greater degree of stress on the device than there would be in actual usage. This increased level of stress is applied to *accelerate* whatever reaction is believed to lead to failure, hence the term accelerated stress testing.

Accelerated life model

- linear relationship between failure times at different sets of conditions

$$t_{use} = A t_{stress}$$

t_{use} = failure time of device at use conditions

 t_{stress} = failure time of that same device under stress conditions

implications

$$CDF: F_u(t) = F_s(t / A); pdf: f_u(t) = \frac{1}{A} f_s(t / A)$$

 $reliability: R_u(t) = R_s(t / A); hazard rate: h_u(t) = \frac{1}{A} h_s(t / A)$

For Weibull:

$$h_s(t) = Ah_u(At)$$

 $= A\alpha(At)^{\alpha-1} / \beta^{\alpha}$
 $= A^{\alpha}h_u(t)$

Modeling Acceleration Constant - 1

Types of stress: temperature, temperature cycling, operating voltage, electrical stress,....

Acceleration constant for temperature effect, A_T :

$$A_T = e^{\frac{E_a}{k_B}[\frac{1}{T_1} - \frac{1}{T_2}]} \Longrightarrow \ln A_T = \frac{E_a}{k_B}[\frac{1}{T_1} - \frac{1}{T_2}]$$

- E_a = activation energy for temperature (0.4 ev); k_B = Boltzmann constant (1.38 x10⁻²³ J/K = 8.6x x10⁻⁵ev/K); T₁ and T₂ are temperatures (⁰ K)
- acceleration constant for temperature cycling (general form unknown): temperature cycling of devices results in decreasing hazard rates as the number of cycles increases
- Acceleration constant for operating voltage, A_V

$$A_V = e^{\frac{C}{t_{ox}}[V_1 - V_2]} \Longrightarrow \ln A_V = \frac{C}{t_{ox}}[V_1 - V_2]$$

C = voltage acceleration constant in angstrom/volt (300-600); t_{ox} = oxide thickness in angstroms (250); V₁ = stress voltage in volts; V₂ = operating voltage in volts

Modeling Acceleration Constant - 2

Acceleration constant for electrical stresses (power, voltage, current) on passive components, A_E

$$A_E = e^{m[p_1 - p_0]} \Longrightarrow \ln A_E = m[p_1 - p_0]$$

- m = parameter to be determined from MIL-HDBK-217F(0.006-0.150)
- p_1 = percent of maximum rated electrical stress
- p_0 = reference percent of rated electrical stress (25%)
 - $p \Rightarrow$ power for resistors; voltage for capacitors; current for relays and switches

Environmental application factors, E

permanent structures:	1.0
ground shelters or not temperature controlled:	1.1
manholes, poles:	1.5
vehicular-mounted:	8.0

Packaging

- hermetic: ICs (1.0 3.0); Diodes & Transistors (1.0-3.0); all passive components: (1.0-3.0)
- plastic: ICs (1.2 3.6); Diodes & Transistors (1.0-3.6); all passive components: (1.0-3.0)

Copyright ©2013 by K.R. Pattipati

Burn-in for Screening out Defects

Burn-in is an effective means to screen out defective components

- typically combines electrical stresses and temperature over a period of time in order to induce temperature- and voltage-dependent failure mechanisms in a relatively short time
- static burn-in: apply dc bias at an elevated temperature to reverse bias as many junctions as possible in the device
- dynamic burn-in: operate the device by simulating actual system operation (very effective)
- for Weibull, hazard rate after burn-in:

Burn-in Time = t_{bi} ; Effective operation time due to burn-in = $t_{eff} = A_T A_V t_{bi}$

$$h(t) = \frac{\alpha}{\beta^{\alpha}} (t_{eff} + t)^{\alpha - 1}$$

Example

- if a device has an early-life hazard rate of 20,000 FITs, $\alpha = 0.2$ and no burn-in is performed, what % of devices will fail during the first month (730 hours) of operation? (0.04%)
- what percentage of devices will fail during the first month if they have been burned in for 10 hours at 150°C? (0.0015%)
- hazard rate drops from 548 FITs with no burn-in to 21 FITs with burn-in

Reliability Block Diagrams - 2

- *k*-out-of-*n* system \Rightarrow at least *k* out of *n* components must function
- assuming identical components

Re liability:
$$R(t) = \sum_{i=k}^{n} {n \choose i} R(t)^{i} (1 - R(t))^{n-i}$$

CDF of FailureTime:
$$F(t) = \sum_{i=n-k+1}^{n} {n \choose i} F(t)^{i} (1-F(t))^{n-i}$$

- for non-identical components

Re liability:
$$R(t) = \sum_{|I| \ge k} (\prod_{i \in I} R_i(t))(\prod_{i \notin I} (1 - R_i(t)))$$

CDF of FailureTime: $F(t) = \sum_{|I| \ge n - k + 1} (\prod_{i \in I} F_i(t))(\prod_{i \notin I} (1 - F_i(t)))$

I is the subset that has at least k (or n-k+1) components

Reliability Block Diagrams - 3

- *k*-out-of-*n* system \Rightarrow at least *k* out of *n* components must function
 - CDF *F*(*t*) in terms of symmetric polynomials

 $|I|=i j \in I$

CDF of FailureTime:
$$F(t) = \sum_{i=n-k+1}^{n} (-1)^{i+k-n-1} {i-1 \choose n-k} S_i(\mathbf{F})$$

 $S_i(\mathbf{F}) = \sum \prod F_j$

O(n²) algorithm for evaluating CDF F(t) for non-identical component case

 $S_{i}(j) = symmetric polynomial of degree i chosen out of \mathbf{F} with j elements$ $S_{1}(1) = F_{1}$ $S_{1}(j) = S_{1}(j-1) + F_{j} \text{ for } j > 1$ $S_{j}(j) = S_{j-1}(j-1) + F_{j} \text{ for } j > 1$ $MTTF = \int_{0}^{\infty} R(t)dt = \int_{0}^{\infty} (1-F(t))dt$ $S_{i}(j) = S_{i}(j-1) + F_{j} * S_{i} - 1(j-1) \text{ for } 1 < i < j$

- example:
$$k = 2$$
, $n=3 \implies F(t) = S_2(\mathbf{F}) - 2S_3(\mathbf{F})$
= $F_1(t) F_2(t) + F_1(t) F_3(t) + F_2(t) F_3(t) - 2 F_1(t) F_2(t) F_3(t)$

Application to a PBX Example

PBX example

- an operator console, system processor and memory, 20 trunks and 200 lines and station sets
- at least 18 out of 20 trunks must be working for the system to work

Reliability of Complex Structures - 1

- Decomposition and Factoring method
 - what if structure can not be decomposed into series, parallel, or k-outof-n subsystems?

Minimal Path Set Method

Minimal path sets

- a path set is a continuous line drawn from the input to the output of the block diagram
- a minimal path set is a minimal set of components whose functioning ensures the functioning of the system
- key: a system will function if and only if all the components of at least one minimal path set are functioning
- system reliability = P{ at least one minimal path is functioning}
- example: minimal path sets are : {A,D}, {B,D}, {B,E}, {C,E}
 Let a, b, c, d, e denote states of components (a = 1 ⇒ working; a = 0 ⇒ failed)

 $R_{sys} = P\{\max(ad, bd, be, ce) = 1\}$

 $= P\{1 - (1 - ad)(1 - bd)(1 - be)(1 - ce) = 1\}$

 $= P\{b(d + e - de) + (1 - b)(ad + ce - adce) = 1\}$

number of minimal paths can be exponential

$$= R_B(t)(R_D(t) + R_E(t) - R_D(t)R_E(t))$$

+ $(1 - R_B(t))(R_A(t)R_D(t) + R_C(t)R_E(t) - R_A(t)R_D(t)R_C(t)R_E(t))$

- use the fact that $a^2 = a$, etc.

Minimal Cut Set Method

Minimal cut sets

- a minimal cut set is a minimal set of components whose failure ensures the failure of the system
- key: a system will fail if and only if all the components of at least one minimal cut set are not functioning
- system reliability = P{ at least one component in each cut set is functioning}
- example: minimal cut sets are : {A,B,C},{D,E}, {B,A,E},{B,C,D}

$$\begin{split} R_{sys}(t) &= P\{\max(a, b, c) \max(d, e) \max(b, c, d) \max(a, b, e) = 1\} \\ &= P\{(1 - (1 - a)(1 - b)(1 - c))(1 - (1 - d)(1 - e)) \\ (1 - (1 - b)(1 - c)(1 - d))(1 - (1 - a)(1 - b)(1 - e)) = 1\} \end{split} \text{ number of minimal cut} \\ &= R_B(t)(R_D(t) + R_E(t) - R_D(t)R_E(t)) \\ &+ (1 - R_B(t))(R_A(t)R_D(t) + R_C(t)R_E(t) - R_A(t)R_D(t)R_C(t)R_E(t)) \end{split}$$

Bounds based on minimal cut sets and minimal path sets

- A = set of minimal paths
- C = set of minimal cut sets
- R_i = reliability of *i*th component (time is implicit)

$$\prod_{X \in C} \{1 - \prod_{i=1}^{n} (1 - R_i)^{1 - x_i}\} \le R_{sys} \le 1 - \{\prod_{X \in A} (1 - \prod_{i=1}^{n} R_i^{x_i})\}$$

Example: corresponds to substituting reliability in the structure function

$$(1 - (1 - R_A)(1 - R_B)(1 - R_C))(1 - (1 - R_D)(1 - R_E))$$

$$(1 - (1 - R_B)(1 - R_C)(1 - R_D))(1 - (1 - R_A)(1 - R_B)(1 - R_E))$$

$$\leq R_{sys} \leq 1 - (1 - R_A R_D)(1 - R_B R_D)(1 - R_B R_E)(1 - R_C R_E)$$

Key idea

$$P(\bigcup_{i=1}^{n} E_{i}) = \sum_{i=1}^{n} P(E_{i}) - \sum_{i} \sum_{j < i} P(E_{i}E_{j}) + \sum_{i} \sum_{j < i} \sum_{k < j < i} P(E_{i}E_{j}E_{k}) - \dots + (-1)^{n+1} P(E_{1}E_{2}\dots E_{n})$$

- Bounds based on minimal path sets
 - works good when individual reliabilities are small

$$\sum_{i \in A} P(\pi_i) - \sum_i \sum_{i < j} P(\pi_i \pi_j) \le R_{sys} \le \sum_{i \in A} P(\pi_i)$$
$$\pi_i = i^{th} \min imal \ path \ elements$$

 $A = \min imal \ paths$

- Bounds based on minimal cut sets
 - works good when individual reliabilities are large (close to 1)

$$\sum_{i \in C} P(F_i) - \sum_{i} \sum_{i < j} P(F_i F_j) \le 1 - R_{sys} \le \sum_{i \in C} P(F_i F_j)$$

$$F_i = i^{th} \text{ min imal cut set elements}$$

$$C = \min_{i} imal_{i} \text{ cut sets}$$

Copyright ©2013 by K.R. Pattipati

- D.J. Klinger, Y. Nakada, and M.A. Menendez, <u>AT&T Reliability</u> <u>Manual</u>, Van Nostrand Reinhold, New York, 1990.
- R.A. Shaner, K.S. Trivedi and A. Pauliafito, <u>Performance and</u> <u>Reliability Analysis of Computer Systems</u>, Kulwer Academic Publishers, Boston, 1996.
- J.I. Ansell and M.J. Phillips, <u>Practical Methods for Reliability Data</u> <u>Analysis</u>, Oxford Science Publications, Clarendon Press, Oxford, 1994.
- S. Ross, <u>Introduction to Probability Models</u>, Academic Press, New York, 1985.

Summary

Testability

- Importance of Testing
- Onboard and off-board diagnosis
- Multiple Fault Diagnosis Methods
- Sequential Fault Diagnosis
- Reliability
 - Importance of Reliability
 - Reliability Definitions
 - Device Reliability
 - System Reliability Modeling