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Introduction

 Course Overview

 Queuing Models

 Little’s Theorem

 Applications
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Course Mission or Goal

 Provide systems analysts with central concepts of widely used 

performance and reliability models of complex computer 

systems and communication networks

 State of the art algorithms and theoretical results in queuing

networks and Markov chain models of reliability

 Numerous applications in complex computer systems and 

communication networks

Background Requirements:

Stochastic processes and probability theory (ECE 313)
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Three Recurrent Themes

ECE 336

Stochastic Models

in

Computer Systems

and Communication

Networks

Physical

Systems

Stochastic

Processes

Algorithms

*Computer Systems

*Communication Networks

*Discrete state

continuous time

stochastic processes

*Hybrid state processes

 Salient features of
systems

 Models based on
queuing networks and
Markov processes

 Algorithms for solving
the models to obtain
performance and
reliability measures of
interest
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What do we mean by complexity?

Complexity is in the eye of the beholder. For us, it means that the

system has four basic attributes.

 A collection of interconnected components or resources (i.e., a 

network of resources). Resources are also termed nodes or vertices

 Provide service to a community of users (users can be humans or non-

humans)

 Users compete for the network (system) resources (i.e., contention or 

queuing for limited resources). Need to model queuing Delays

 Redundancy for fault-tolerance. Need to model reliability
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Hierarchical Network of Resources -1

Terminals

Computer

 System

Hierarchy of Time Scale: 10-100 sec
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Hierarchical Network of Resources - 2

Hierarchy of Time Scale: 0.1-1 sec

D
1

D
M

D
2

Processors/

Main Memory

Disks
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Hierarchical Network of Resources - 3

Processors/

Cache
Memory Modules

M
N

M
2

M
1

P
N

P
2

P
1

Hierarchy of Time Scale: 1-100 sec

Interconnection network
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Examples of Networks

Computing Systems

Computer-Comm. 

Networks

Manufacturing

Resources or Nodes

Hardware and software resources, such

as CPU, cache, main memory, disks, OS

Communication links or channels,

buffers, buses, computers,

transmission control units

Tools, storage areas, NC machines,

computers, personnel, material handling 

systems

Primary focus of this course

Physical Systems
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 Queuing models, Little’s theorem and applications

 Review of discrete-time and continuous-time Markov chains, 

Geometric and exponential distributions, the Poisson process, 

Uniformization

 Birth-Death Processes, M/M/1, M/M/1/N, M/M/m, M/M/, M/M/m/m 

queues and applications

 Control of M/M/1 queues: controlled service rate, controlled arrival 

rate, priority assignment and the c rule

 Open (Jackson) networks and applications to capacity assignment in 

communication networks

 Closed (Gordon-Newell) networks, computational algorithms and 

applications to computer systems and flow-controlled virtual circuits

 Multi-class (closed, open, and mixed) networks, computational 

algorithms and applications

Course Topics - 1
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 Approximation techniques for non-product form networks

 M/G/1 queue, M/G/1 queue with vacations and applications to 

reservations and polling

 Priority queues, batch arrivals, G/G/1 queue, approximations to 

networks

 Random access communications (Aloha, Slotted Aloha, CSMA/CD)

 Reliability models of computer systems and communication networks

 Performability (combined performance and reliability) models of 

fault-tolerant computer systems

Course Topics - 2
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1. How to characterize a resource or node or a simple queue ?

2. What are the measures of system performance ?

3. Fundamental Accounting identity……………Little’s Theorem

Basic Structure of a Node

Focus of Lecture1

Customers: Jobs (transactions, requests, tasks, processes, algorithms) in 

a computer system, messages or packets in a communication network,

Parts in manufacturing

“customers” Service Center

DepartingArriving

Server
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Need to specify four items:

1. Arrival pattern: customer description

Population size (finite for closed systems)

Statistical pattern of arrivals (e.g., Poisson)

Classes of customers

2. Service mechanism: service demand (work), processing capacity or 

service rate (work/unit time) 

Specification of a Node

3. Queuing discipline: order in which customers are served

4. Storage capacity of the server ~ buffer or holding area

Service Time =
Service Demand

Service Rate
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Arrival Pattern -1

We will treat both cases: finite => Number in the system affects the 

number remaining in the input source

2. Statistical pattern of arrivals: specified by the density of inter-arrival

times (e.g., exponential inter-arrival times  Poisson arrivals)

1. Customers are drawn from a population or input source

Customers

Come from a very large population (“infinite

source”) also known as OPEN SYSTEM

Come from a finite population (e.g., Interactive

terminals). Also known as CLOSED SYSTEM

τ1 τ2 τ3
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Deterministic (or regular) arrivals

τi = τ constant  impulse at τ

Exponential inter-arrival time 

density (Poisson process)

Inter-arrival 

Time Density General independent arrivals 

(regenerative or renewal) processes

General distribution (correlated 

arrival)

3. Different types of customers (e.g., batch and interactive, priority)

Arrival Pattern - 2
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1. Service demand: amount of service required by a customer at a service 

center  work to be performed, S (e.g., . computer : # of instructions to 

be executed; communication network: # of bits to be transmitted from 

node i to node j = [# of packets][# of bits/packet]

•Different customer classes can have different service demands

•Service demands of a given class are i.i.d.

2. Service rate or processing capacity: How fast the service center (node) 

processes the work

•CPU: # of instructions/ sec

•Comm. Link: transmission rate =  # of bits/sec

•Memory: transfer rate = # of words/sec (or) # of bits/sec

We will consider four forms of service rate functions 

 four types of nodes

Server Mechanism
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Single server node: service rate is a constant μ , i.e., independent of the 

number of customers present.  Also known as fixed rate service center.

Single Server Node

μ

# of customers at the node, n

n= # waiting and in 

service

(μ,1)

μ(n) =  μ
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Infinite Server Node

1

1

μ(n) = nμ

μ(n)

n
1

2

n

.

.

.

.

 No waiting
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Multiple Server Node







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,
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








μ

μ

μ

1

2

m

μ(n)

# of customers at the node, n
m

(μ, m)
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State-Dependent Node

μ(n)

# of customers at the node, n
m

 mm);(),....,2(),1( 

Very useful in Hierarchical Queuing Network modeling 

using flow equivalent node (FEN) concept
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Queuing (or Scheduling) Discipline

• An algorithm that determines the order in which customers are 

served

Key assumption: if there are customers waiting to be served, the 

server is never idle ( the so called work-conserving queuing 

discipline)

FCFS: customers are served in the order of their arrival (LIST)

LCFS: Last come, first served (STACK)

SPT:   Shortest processing time rule (minimizes the average 

completion time)

Priority Scheduling: Procedure that differentiates among 

customer types. Select the next customer to be served as one 

having the highest priority among all the customers waiting to 

be served.
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Two Types 

of priority

Static (i.e., fixed a priori)

Dynamic

State-dependent  f ( # of 

customers of each type waiting at 

the node)

Time-dependent  f (elapsed 

time since each customer enters 

the system)

For both types of priority, there exist two further distinctions depending

what we do with the customer being served while a higher priority 

customer enters the system (preemptive versus non-preemptive)

Priority Scheduling -1
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Types of Preemption

Type of 

preemption

Non-preemptive (service once begun for a 

low priority customer is never interrupted)

preemptive (high priority customer always 

interrupts low priority customers)

preemptive

Resume (resumes service at the point where 

service was interrupted)

Repeat (start from scratch)
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Round Robin

Service 

Complete?

No

Yes

It is FCFS, but server gives service for a “time slice” only and at the end 

customer has to join the end of the queue. Widely used in computer systems, 

since it provides fast service to customers with small service demand at the 

expense of customers with large service demands. Can be thought of as 

“shortest-in first-out” policy.

Round Robin: A customer is given continuous service for an amount of time 

called a “quantum” or “time slice”.
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Processor sharing:

 Analytic approximation of round robin. Make quantum         0        if n

customers (including those in service) are at the node, then service rate

μ is divided equally among n customers (each gets μ/n)

 In PS, all customers receive service from a single server simultaneously

with equal service rate.



Processor Sharing
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Storage: Buffer Capacity 

 number of customers that can wait at the node

 Determines the blocking probability

 Limits throughput

Buffer Capacity
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Level 1: System Designers (vendors)

Level 2: Installation Managers

Level 3: Users 

(Analysts)

system 

oriented 

measures

global or 

aggregate 

measures

user  

oriented 

measures

Individual 

measures

Performance  Measures
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1. Response time: 

E [time of departure of a customer - time of arrival of a customer]

= Average time a customer spends at each node 

= Average waiting time + Average service time

User-oriented Measures

waiting 

time

service 

time
time of 

arrival
time of 

departure

time of 

entry into

service



s
WtWR 

(Assuming a single server node)

Can also talk about system response time 

=         Response time at node i
i

Response time

2. Queue length

Average number of customers at each node (including the customer 

in service) = Average number waiting + Average number in service

Q = QW + Average number in service



Copyright ©2004 by K. Pattipati 

29

1. Throughput

Average number of jobs processed per unit time  a measure of 

productivity of the system

X = =

You can also talk of nodal and system throughputs.

2. Utilization of a node

Fraction of the time (or the probability that) the node is busy

Number of jobs completed during (to , tf)

Observation interval (tf  - to)

C

T

System-oriented Measures
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Little’s Theorem - 1

Server

A(τ)
D(τ)

Arrival 

time of jth

customer

Departure 

time of jth

customer

a

jt d

jt

Little’s Theorem (formula) is simply an accounting identity.

Let us look at the sample paths of A(t),D(t) and Q(t)

Q(t)  A(t)-D(t)
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τ

Q(τ)

R1

R2

R3

Q(τ)

A(τ) sample path

D(τ) sample path

A(τ)

D(τ)

t τ

R1: Customer 1

R2: Customer 2

R3: Customer 3

Busy Period

at1

at 2

dt1
at3

dt 2

at 4
dt3

at 5
dt 4

dt5

Little’s Theorem - 2
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Note that no assumption is made on the arrival or departure distributions.

Also, no assumption is necessary on the scheduling discipline. Figure

assumes FCFS, but is valid for any queuing system that reaches statistical

equilibrium      busy periods must be finite or Q(τ) is “ergodic.”

Little’s theorem relates:

• The average number of customers in the system (i.e., the “typical” # of

customers either waiting in the queue or undergoing service), Q system

Length

• The average response time per customer (i.e., the “typical” time a 

customer spends waiting in the queue plus the service time), R in sec.

• Customer throughput in customers/sec.  For open systems, we use the 

notation λ.  For closed systems, we use the notation X.



systemsopen for   RQ Little’s Law:

systems  closedfor  RXQ 

Little’s Theorem - 3
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Q (τ) is ergodic Time averages  =  Ensemble Averages

Time averaging interpretation

and steady-state average

Probabilistic interpretation ….. ensemble average

Let pk(t) =  Probability {k customers in the queue at time t (waiting or in 

service)}

= Average number of customers in the system at time t

In steady state 

Proof of Little’s Law - 1



t

dQ
t

tQ
0

)(
1

)( tt




t

t
dQ

t
tQ

0

)(
1

lim)( tt

)(
1

tkp
k

k






kk
t

ptp 


)(lim








0

)(lim
k

k
t

kpQtQ

)(tQ
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Similarly, for response time, let       denote the average delay of  kth

customer.  In the steady state:

Probabilistic interpretation: 

From sample paths

Also,

Time average interpretation

Ri =  Delay (Response time) of ith customer

Also    

λ = Average customer arrival rate

=

kR

k
k

RR


 lim

k
k

k

i

i
k

RR
k

R





  lim
1

lim
1

t
lim

Expected  number of arrivals in [0, t]

t

Ensemble 

interpretation

Proof of Little’s Law - 2
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Time average interpretation

Need to prove           Q = λ R

We will show for FCFS only (LCFS and arbitrary service HW problem # 2). 

In fact, it is valid for any scheduling discipline.   Proof involves computing 

the area under the sample path curve in two ways:

One way:

Second way:

Define

= Time average of number of customers in the system in the interval [0,t]

t

tA

t

)(
lim





t

dQ
0

)( tt

)(
)(

1)(

)(

1





tA

tDi

a

i

tD

i
i

ttR

tt dQ
t

tQ

t


0

)(
1

)(

Proof of Little’s Law - 3
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t

tA
t

)(
)(  = Time average of customer arrival rate in the interval [0,t]







 
 

)(

)(

)(

)(

1

)(

1)(
)(

tA

ttR

tR

tD

i

tA

tDi

a

ii

tD Time average of response time

)()()( )( tRttQ tD

Q = λ RTaking 
t

lim

t

tD

t

tA

tt

)(
lim

)(
lim




Arrivals = Departures as t

Proof of Little’s Law - 4
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Applications of Little’s Theorem -1

Example 1: Single server node

D(t)

λ Packets/sec

D’(t)

W

R

Transmission Line
WQW 

tU 

Utilization law is a special 

case of Little’s formula.

UQRQ W  

t
U

1
1  

Throughput = )
1

,min(
t



for 

stability 
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2

m

1N

N > m    system 

is always full 

t
Nm

N
NR

so

NNRNX

NmtNX

),min(
)(

,

)()(

),min()(







Example 2 : A closed system with a multi-server node

Applications of Little’s Theorem - 2
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m N

X (N)

/m

m N

R (N)
t

t

A Closed System with a Multi-server Node

1

Throughput versus N

Response time versus N

waitingno

tNRm



 )(
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Applications of Little’s Theorem - 3

Example 3: Machine Repairman Model or Machine interference model

(also models a multi-access communication channel or a time-sharing 

computer system)  

2

N

1
X (N)

A B C

Computer 

system

W

Response 

time Z

Rc (N)

Response time of computer system

R (N) System response time

Terminals

t
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Terminals Messages or 

packets
Machines

Repairman                   CPU+I/O                        communication channel

Input

W

Output
Think

time
Input

W

Rc (N)

Z

R (N)

t

t

At Terminal

Wait for service

Get Service

Machine Repairman Model
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Points  A and C              NNRNX )()(
)(

)(
NR

N
NX 

Also ZNRNR c  )()(

We will obtain bounds on Rc(N) via the so called Asymptotic Bounding

Analysis (ABA).

Let us consider two extreme cases: 

No waiting tNRc  )(

Wait for (N-1) customers tNttNNRc  )1()(

Note: if multiple servers: tmNNRc )1()( 

So, tNNRt c  )(

ZtNNRZt  )(

ZtNRZtN 




1

)(

11

Machine Repairman Model
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So,     
Zt

N
NX

ZtN

N





)(

Also, since        
t

NX
1

)(  ( note for multi-server  
t

m
NX )(













 tZt

N
NX

ZtN

N 1
,min)( ABA bounds

 ) tNZNRtZtN  )(,max

)

So     

Machine Repairman Model
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N 

Guaranteed throughput curve

Bounded by service capacity of node

Bound induced by limited no. of terminals

X (N)

)1(
t

Z
Ncr 

t

1

ttZ

Ncr 1




t

Z
N cr  1

Machine Repairman Model

Zt

N


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
t

Z
N 1 Throughput limited by number of terminals 


Service center is idle or most users in 

reflection.


t

Z
N 1 Throughput is limited by service capacity of service center  

Service center is saturated and linear increase in response time


t

Z
1

 Suggests a method of selecting # of users, terminals and machines.

is called saturation point.1+
Think Time

Service Time

Machine Repairman Model
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R (N)

Actual R (N)

lies hereZtN 

tZ 

tN

t

Z
NCr 1

tZ 

Z

1

Machine Repairman Model

N
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Applications of Little’s Theorem - 4

Suppose that we have an algorithm with the following task structure

(series-parallel graph).

serialt

parallelt

Need: 















parallelserial

parallel

serial

t

p

t
X

p

t
X

tX

,
1

min

1

1

Example 4: Amdahl’s Law and Problem Scaling

1 2 p

X = throughput
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X

Processors p

parallel

serial

t

t

serialt

1

p

t
t

tt

parallel
serial

parallelserial



Serial execution time
Speed up =                                               

Parallel execution time
=

Amdahl’s Law and Problem Scaling
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Let  
1

)1(






pf

fp
Speedup

t

t
f

parallel

serial

As f→1 Speed up →
1

2

p

p

As p→ ∞              Speed up→
f

1
1

Speed up

f

p

Amdahl’s Law and Problem Scaling

As f→ 0 Speed up → p



Copyright ©2004 by K. Pattipati 

50

In research at Scandia labs (SIAM Journal of scientific computing, 

July 1988), It was found that as the problem was scaled up,           was 

found to be relatively constant.

serialt

 time on parallel processor: parallelserial tt




time on a single processor:    parallelserial tpt


 .

Speed up = 
f

f
pp

f

fp

tt parallelserial














1
)1(

1

tp. t parallelserial

Have been able to obtain speed 

ups of more than 500 on 

a 1024 processor system.

f

p

Speed up

Amdahl’s Law and Problem Scaling
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Read:  

• Bertsekas and Gallager,  section 3.2

• Kobayashi, section 3.6 

• Kleinrock  vol.1, ch.2, section 2.1

• Gustafson, J.L., Amdahl’s law revisited,  CACM, 1988.

• Stuck and Arthurs, Chapters 2 and 3

Summary & Reading Assignment

1. How to characterize a resource or node or a simple queue ?

2. What are the measures of system performance ?

3. Fundamental Accounting identity……………Little’s Theorem

4. Applications of Little’s Theorem


