

Outline of Lecture 10

- $\mathrm{M}|\mathrm{G}| 1$ Queues with vacations
- Application of $\mathrm{M}|\mathrm{G}| 1$ Results to Reservations \& Polling
- Application to Token Ring Networks
- Extension to Non-product form Networks with M|G|1 Nodes
- $\mathrm{M}|\mathrm{G}| 1$ Queues with Priorities
- Extensions to Queuing Networks with Priorities
- G|G|1 Queues

Queues with Vacations

- Suppose that at the end of a busy period, the server goes on "vacation" for some random interval of time. Thus, a new arrival to an idle system, rather than going into service immediately, waits for the end of a vacation period.

Usual $M / G / 1$: Alternate busy-idle-busy cycles $M / G / l$ with vacations: busy - $\underbrace{\text { vacation --- }}_{\text {can be multiple vacation cycles }}$ busy

- Variations:
- The server may continue taking vacations until, on return from a vacation, it finds at least one customer ... multiple vacations model
- The server takes exactly one vacation. Single vacation model
> Busy-vacation-idle-busy-vacation-busy- ...cycles

Cyclic server queues:

- These arise naturally as models of schedules in computer systems and communication networks, e.g., task processing in computer systems, scheduling virtual circuits or ports in a communication system.
- The basic model here has m classes of customers, each with its own queue
- These m queues are served by a single server cyclically.

Question: When does the server move from one queue to the next?

- Exhaustive Service: The server leaves a queue when it is empty
\Rightarrow Multiple vacation model
- Gated Service: The server upon arrival to a queue, closes a gate behind the waiting customers in that queue, and leaves that queue when the customers present before the gate is closed are served.
- Limited Service: There is a limit R_{i} placed on the number of customers served on each visit to queue i. The server leaves queue i when that queue is empty or when R_{i} customers have been served during the current visit.
- We will consider $M / G / 1$ queue with vacations and applications of cyclic server queues to communication networks.
- Poisson arrival process
- $V_{1}, V_{2}, V_{3}, \ldots$ are i.i.d random variables.
- Service times are i.i.d random variables.
- M/G/l multiple vacation case:
- What does a new arrival do?
- Wait in the queue for the completion of current service and then the service of all customers waiting before it.
- Wait for vacation
$\Rightarrow \quad W=\frac{X_{R}}{1-\rho}$
$X_{R}=$ mean residual time of completion of service or vacation in process
when the $\mathrm{i}^{\text {th }}$ customer arrives.

Time averages = Ensemble Averages

$$
\frac{1}{t} \int_{0}^{t} r(\tau) d \tau=\frac{1}{t}\left[\frac{1}{2} \sum_{i=1}^{m(i)} X_{i}^{2}+\frac{1}{2} \sum_{i=1}^{L(i)} V_{i}^{2}\right]
$$

$M(t)=$ number of service completions in $(0, t)$
$L(t)=$ number of vacations in $(0, t)$
As $t \rightarrow \infty$,

$$
\begin{aligned}
\overline{X_{R}} & =\lim _{t \rightarrow \infty}-\frac{1}{t} \int_{0}^{t} r(\tau) d \tau \\
& =\frac{1}{2}\left[\lim _{t \rightarrow \infty} \frac{M(t)}{t} \cdot \frac{1}{M(t)} \sum_{i=1}^{M(t)} X_{i}^{2}+\frac{1}{2} \lim _{t \rightarrow \infty} \frac{L(t)}{t} \cdot \frac{1}{L(t)} \sum_{i=1}^{L(t)} V_{i}^{2}\right]
\end{aligned}
$$

As $t \rightarrow \infty$, fraction of time occuoied with vacations is $(1-\rho)$
Total vacation time $=(1-\rho) \mathrm{t}$
Average vacation time $\bar{V}=\frac{(1-\rho) t}{L(t)}$
or $\quad \frac{L(t)}{t}=\frac{1-\rho}{\overline{\mathrm{V}}}$
Also, $\quad \lambda=\frac{M(t)}{t}$
So, $\quad \overline{X_{R}}=\frac{1}{2} \lambda \overline{X^{2}}+\frac{1}{2}(1-\rho) \frac{\overline{V^{2}}}{\bar{V}}$

$$
\begin{aligned}
W_{M / G / I V}^{M}
\end{aligned}=\frac{1}{2} \frac{\lambda \overline{X^{2}}}{(1-\rho)}+\frac{1}{2} \frac{\overline{V^{2}}}{\overline{\bar{V}}} .
$$

Indeed, This decomposition is valid in a wider generality.
See B.T. Doshi, Journal of Applied Probability, Vol. 22, pp.419-428, 1985

M|G|1 Queue with a Single Vacation - 1

M/G/1 queue with a single vacation: HW problem. See Doshi (1985) and Fuhurmann, Operations Research, 1984, pp.1368-1373

$$
\begin{aligned}
& \text { Result : } \\
& \qquad \mathrm{W}=\frac{\lambda \overline{X^{2}}}{2(1-\rho)}+\frac{\lambda \overline{\mathrm{V}}}{B_{V}(\lambda)+\lambda \bar{V}} \cdot \frac{\overline{\mathrm{~V}^{2}}}{2 \bar{V}} \\
& \text { where } \mathrm{B}_{\mathrm{v}}(\lambda)=\int_{0}^{\infty} e^{-\lambda V} f_{v}(V) d V
\end{aligned}
$$

$$
\begin{aligned}
& \text { Hint: } \begin{aligned}
& (1-\rho) t=L(t)(\bar{V}+\bar{I}) \\
& I=\left\{\begin{array}{c}
0 \text { if } \tau_{a}<V \\
\tau_{a}-V \text { if } \tau_{a}>V
\end{array}\right. \\
\tau_{a}= & \text { inter }- \text { arrival time }
\end{aligned}
\end{aligned}
$$

- Application to Communication Networks: Cyclic queues
- A communication channel is accessed by several spatially separated users.
- Only one user can transmit successfully on the channel at one time => a multi-access channel
- Communication resource of the channel can be divided into two portions:

Packet transmissions data intervals

Reservation (or Polling) messages that schedule future packet Transmissions ... reservation intervals

Cyclic Queues - 1

Reservation interval where future transmissions of user 1 are scheduled

- m users
- Assume that each data interval contains packets of a single user
- Reservations for these packets are made in the immediately preceding reservation interval
- All users are taken up in cyclic order ($1,2,3, \ldots, \mathrm{~m}, 1,2,3, \ldots$)
- Three versions depending on how packets are transmitted during the data interval of each user

Exhaustive system: A packet of a user that occurs during the user's reservation or data interval is transmitted in the same data interval \Rightarrow channel goes to the next user only after completing the transmission of all the packets of the current user ... Token ring

Cyclic Queues - 2

Partially gated system: Only packets that arrived until the end of the reservation interval are transmitted during the current data interval.

Gated system: Only packets that arrived prior to the reservation interval can be transmitted.

- Analysis:
- Arrival processes of all users are Poisson with rate λ / m
- $1^{\text {st }}$ and $2^{\text {nd }}$ moments of packet transmission times $\bar{X}=\frac{1}{\mu}$ and $\overline{X^{2}}$ (i.i.d. random variables)
- Inter-arrival times and packet transmission times are independent
- Reservation intervals of different users can have different distributions, but we assume it to be the same for simplicity.

Cyclic Queues - 4

Consider a gated system

$$
\begin{aligned}
X_{R} & =\frac{\lambda \overline{X^{2}}}{2}+\frac{(1-\rho) \overline{V^{2}}}{2 \bar{V}} \\
W & =\frac{\lambda \overline{X^{2}}}{2}+\frac{(1-\rho) \overline{V^{2}}}{2 \bar{V}}+\rho W+\bar{V}
\end{aligned}
$$

Similar to $M / G / l$ with vacations \Rightarrow a vacation starts when all previous arrivals are served.

Suppose $\quad \bar{V}=A$ (deterministic), then

$$
\begin{aligned}
W & =\frac{\lambda \overline{X^{2}}}{2(1-\rho)}+\frac{A}{2}+\frac{A}{1-\rho} \\
& =W_{M / G / 1}+\frac{A}{2}\left[\frac{3-\rho}{1-\rho}\right]
\end{aligned}
$$

Exhaustive system: $\Rightarrow M / G / 1$ with vacations

$$
W=\frac{\lambda \overline{X^{2}}}{2(1-\rho)}+\frac{\overline{V^{2}}}{2 \bar{V}} \quad \bar{V}=A \Rightarrow W=W_{M / G / 1}+\frac{A}{2}
$$

Cyclic Queues - 5

Partially gated:

$$
\begin{aligned}
& W=X_{R}+\rho W+\rho \bar{V} \\
& \text { (or) } W=\frac{\lambda \overline{X^{2}}}{2(1-\rho)}+\frac{\overline{V^{2}}}{2 \bar{V}}+\frac{\rho \bar{V}}{1-\rho}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{V}=A \text { deterministic } \Rightarrow W=W_{M / G / 1}+\frac{A}{2}\left(\frac{1+\rho}{1-\rho}\right) \\
& \text { i-user system: }
\end{aligned}
$$

- Multi-user system:

Cyclic Queues - 6

- user data rates λ / m for users $0,1,2, \ldots, m-1$
- $l^{\text {th }}$ reservation interval is used to make reservations for user $l \bmod (m)=l-\left\lfloor\frac{l}{m}\right\rfloor \cdot m$ and the subsequent $l^{\text {th }}$ data interval is used to send packets corresponding to those reservations
- Consider packet i

$$
E\left\{W_{i}\right\}=E\left\{X_{R i}\right\}+E\left\{Q_{\omega i}\right\} \bar{X}+E\left\{Y_{i}\right\}
$$

as $i \rightarrow \infty$

$$
\begin{aligned}
& W=\overline{X_{R}}+\rho W+Y \\
\Rightarrow & W=\frac{\overline{X_{R}}+Y}{1-\rho}
\end{aligned}
$$

Know $\quad \overline{X_{R}}=\frac{\lambda}{2} \overline{X^{2}}+\frac{(1-\rho) \sum_{k=0}^{m-1} \overline{V_{k}^{2}}}{2 \sum_{k=0}^{m-1} \overline{V_{k}}}=\frac{\lambda}{2} \overline{X^{2}}+\frac{(1-\rho) \overline{V^{2}}}{2 \bar{V}}$
$\underline{\text { Need to compute } Y}: m=1 \Rightarrow Y=\left\{\begin{array}{l}0 \text { exhaustive } \\ \rho \bar{V} \text { partially gated } \\ \bar{V} \text { gated }\end{array}\right.$

Cyclic Queues - 7

What happens when $m>1$? Consider Exhaustive case
Let
$\alpha_{i j}=E\left\{\begin{array}{l}Y_{i} \mid \text { packet } i \text { arrives in user l's reservation or data interval } \\ \text { and belongs to user }(l+j) \bmod m\end{array}\right\}$
$\Rightarrow \alpha_{i j}=\left\{\begin{array}{c}0 ; j=0 \\ \bar{V}_{(l+1) \bmod m}+\ldots+\bar{V}_{(l+j) \bmod m}\end{array} ; j=1,2, . ., m-1\right.$
since packet i belongs to any user with probability $\frac{1}{m}$, we have
$E\left\{Y_{i} \mid\right.$ packet i arrives in user l's reservation or data interval $\}$

$$
=\sum_{j=1}^{m-1} \frac{m-j}{m} \bar{V}_{(l+j) \bmod m}
$$

Finally, a packet will arrive during l's data interval with probability $\frac{\rho}{m}$
a packet will arrive during l's reservation interval with probability $\frac{(1-\rho) \bar{V}_{l}}{\sum_{k=0}^{m-1} \bar{V}_{k}}$

Cyclic Queues - 8

$$
\begin{aligned}
& \text { Let } i \rightarrow \infty \\
& \Rightarrow Y=\sum_{l=0}^{m-1}\left(\frac{\rho}{m}+\frac{(1-\rho) \bar{V}_{l}}{\sum_{k=0}^{m-1} \bar{V}_{k}} \sum_{j=1}^{m-1} \frac{m-j}{m} \bar{V}_{(l+j) \bmod m}=\frac{\rho(m-1) \bar{V}}{2}+\frac{(1-\rho) m \bar{V}}{2}-\frac{(1-\rho) \sum_{k=0}^{m-1} \bar{V}_{k}^{2}}{2 m \bar{V}}\right. \\
& \Rightarrow W_{e x h}=\frac{\lambda \overline{X^{2}}}{2(1-\rho)}+\frac{\sigma_{v}^{2}}{2 \bar{V}}+\frac{m-\rho}{2} \frac{\bar{V}}{(1-\rho)} ; \sigma_{v}^{2}=\frac{\sum_{k=0}^{m-1}\left(\bar{V}_{k}^{2}-\bar{V}_{k}^{2}\right)}{m} ; \bar{V}=\frac{\sum_{k=0}^{m-1} \bar{V}_{k}}{m}
\end{aligned}
$$

See Bertsekas \& Gallagher, pp. 200 for details
Partially gated system: Same as exhaustive, except that if a packet arrives during user's own data interval, it is delayed by an additional $m \bar{V}$.

This occurs with probability $\frac{\rho}{m}$

$$
\Rightarrow Y_{\rho G}=Y_{e x h}+\rho \bar{V}
$$

$$
W_{\rho G}=W_{e x h}+\frac{\rho \bar{V}}{1-\rho}
$$

Cyclic Queues -9

Gated System : If a packet arrives during a user's own reservation or data interval, it is delayed by an additional $m \bar{V}$ time units. This occurs with probability $\frac{1}{m}$
$Y_{G}=Y_{\text {exh }}+\bar{V} \Rightarrow W_{G}=W_{\text {eth }}+\frac{\bar{V}}{1-\rho}$
suppose $\bar{V}=\frac{A}{m}$, then
$W_{\text {eth }}=\frac{\lambda \overline{X^{2}}}{2(1-\rho)}+\frac{A}{2} \frac{(1-\rho / m)}{(1-\rho)}=W_{M / G / 1}+\frac{A}{2} \frac{(1-\rho / m)}{(1-\rho)}=W_{M / G / / V_{m}}+\frac{A}{2} \cdot \frac{m-1}{m} \cdot \frac{\rho}{(1-\rho)}$
$W_{\rho G}=\frac{\lambda \overline{X^{2}}}{2(1-\rho)}+\frac{A}{2} \frac{(1+\rho / m)}{(1-\rho)}$
$W_{G}=\frac{\lambda \overline{\mathrm{X}^{2}}}{2(1-\rho)}+\frac{A}{2} \frac{(1+(2-\rho) / m)}{(1-\rho)}$
As $m \rightarrow \infty$

$$
W_{e x h}=W_{\rho c}=W_{G}=\frac{\lambda \overline{X^{2}}}{2(1-\rho)}+\underbrace{\frac{A}{2(1-\rho)}}_{1 / 2 \text { cyle ereggh }}
$$

Cyclic Queues - 10

Limited service Systems: $k_{i}=1$ case

- In each user's data interval, only the first packet of the user waiting in queue(if any) is transmitted rather than all waiting packets.
- Consider only gated and partially gated systems (exhaustive case doesn't make sense here) As before

$$
W=\bar{X}_{R}+\rho W+Y_{L}
$$

What is Y_{L} ?
Consider partially gated system
A packet arriving during user l's data or reservation interval will belong to any one of the users with probability $\frac{1}{m}$. In steady state, the average number of packets waiting in the individual queue of the user that owns the arriving packet $=\frac{\lambda W}{m}$

Cyclic Queues - 11

Each of these packets cause an extra cycle of resrvations of length $m \bar{V}$. So,

$$
\begin{aligned}
& Y_{L, \rho G}=Y_{\rho G}+\frac{\lambda W}{m} \cdot m \bar{V} \\
& \Rightarrow W_{L, \rho G}= \\
& =\frac{X_{R}+Y_{\rho G}}{(1-\rho-\lambda \bar{V})} \\
& \quad=W_{\rho G} \cdot \frac{(1-\rho)}{(1-\rho-\lambda \bar{V})}
\end{aligned}
$$

Gated System :

$Y_{L, G_{i}}=Y_{L, \rho G_{i}}+m \bar{V} \operatorname{Prob}\left\{\begin{array}{l}\text { packet } \mathrm{i} \text { arrives during the reservation interval of its owner } \\ \text { and the subsequent data interval is empty }\end{array}\right\}$
$\operatorname{Prob}\{$ packet i arrives during the resrvation interval $\}=1-\rho$
Let $\operatorname{Prob}\{$ reservation interval followed by an empty data interval $\}=p$
$\operatorname{Prob}\{$ reservation interval followed by a nonempty data interval $\}=1-p$

Cyclic Queues - 12

$$
\begin{aligned}
& \therefore(1-p) \frac{\bar{X}}{\bar{V}}=\frac{\rho}{1-\rho} \Rightarrow \rho \bar{V}=(1-p) \bar{X}-(1-p) \rho \bar{X} \\
& \Rightarrow 1-p=\frac{\lambda \bar{V}}{1-\rho} \Rightarrow p=\frac{(1-\rho-\lambda \bar{V})}{(1-\rho)}=1-\frac{\lambda \bar{V}}{1-\rho}
\end{aligned}
$$

So,

$$
\begin{aligned}
Y_{L, G_{i}} & =Y_{L \rho G_{i}}+\frac{m \bar{V}(1-\rho-\lambda \bar{V})}{(1-\rho)} \frac{(1-\rho)}{m} \\
W_{L, G} & =\left[\overline{X_{R}}+Y_{L, \rho G}+\bar{V}(1-\rho-\lambda \bar{V})\right] /(1-\rho-\lambda \bar{V}) \\
& =W_{L, \rho G}\left(\frac{1-\rho}{1-\rho-\lambda \bar{V}}\right)+\bar{V}
\end{aligned}
$$

- Note that we need $\lambda(\bar{X}+\bar{V})<1$ for stability

Application to Token Ring Networks

Application to Token ring networks:

- m poisson streams with rate $\frac{\lambda}{m}$
- \bar{V} propagation delay + relaying delay per step $\Rightarrow \bar{V}=\frac{A}{m}$
- $\bar{X}=1 \Rightarrow \rho=\lambda$

Exhaustive System:

$$
\begin{aligned}
W & =\frac{\lambda \overline{X^{2}}}{2(1-\lambda)}+\frac{A}{2} \frac{m-\rho}{m(1-\rho)}=W_{M / G / 1}+\frac{\bar{V}(m-\lambda)}{2(1-\lambda)} \\
\bar{V} & =\frac{\dot{A}}{m}
\end{aligned}
$$

Partially gated, limited service system:

$$
\begin{aligned}
& W=\frac{\lambda \overline{X^{2}}+(m+\lambda) \bar{V}}{2(1-\lambda-\lambda \bar{V})} \\
& \Rightarrow \text { stable if } \lambda<\frac{1}{1+\bar{V}}
\end{aligned}
$$

- Slotted time-division and frequency-division multiplexing:

FDM: • m poisson streams with rate $\frac{\lambda}{m}$

- transmission time of each packet $=m$ time units.

Each channel is an M/D/1 queue $\Rightarrow W_{F D M}=\frac{\lambda m}{2(1-\lambda)}$
Slotted FDM: Packet transmissions can start only at times $0, m, 2 m, \ldots$. M/D/1 queue with vacations where $\bar{V}=m, \overline{V^{2}}=m^{2}$
$W_{S F D M}=W_{F D M}+\frac{m}{2}=\frac{m}{2(1-\lambda)}$
TDM: $\quad W_{T D M}=W_{S F D M}=W_{F D M}+\frac{m}{2}=\frac{m}{2(1-\lambda)}$
$\underline{\text { Response Times : }}$

$$
\begin{aligned}
& R_{F D M}=m+\frac{\lambda m}{2(1-\lambda)} \\
& R_{S F D M}=R_{F D M}+\frac{m}{2} \\
& R_{\text {TDM }}=1+\frac{m}{2(1-\lambda)}=R_{F D M}-\left(\frac{m}{2}-1\right) \\
& \text { Copyright @2004 by K. Pattipati Lecture } 10
\end{aligned}
$$

$R_{T D M}<R_{F D M}<R_{S F D M}$ for $m>1$

Networks with General Service Times

No product form \Rightarrow Approximation
MVA is ideally suited for these approximations
For product-form networks, have

$$
R_{i j}(\underline{n})=\frac{S_{i j}}{\mu_{i}}\left[1+Q_{i}\left(\underline{n}-\underline{e}_{j}\right)\right]
$$

At FCFS nodes, need $S_{i j}=S_{i} \quad \forall j$

1) Suppose $S_{i j}$ is different for different classes j \& exponential
$\Rightarrow \quad R_{i j}(\underline{n}) \cong \frac{S_{i j}}{\mu_{i}}+\left[\sum_{k=1}^{J} Q_{i k}\left(\underline{n}-\underline{e}_{j}\right) S_{i k}\right] \cdot \frac{1}{\mu_{i}}$
2) General service demand requirement:

$$
\begin{gathered}
\Rightarrow \quad R_{i j}(\underline{n}) \cong \frac{S_{i j}}{\mu_{i}}+\sum_{k=1}^{J}\left[Q_{i k}\left(\underline{n}-\underline{e}_{j}\right)-u_{i k}\left(\underline{n}-\underline{e}_{j}\right)\right] \frac{S_{i k}}{\mu_{i}}+\sum_{k=1}^{J} u_{i k}\left(\underline{n}-\underline{e}_{j}\right) \frac{\tilde{S}_{i k}}{\mu_{i}} \\
\tilde{S}_{i k}=\text { residual service demand }=\frac{S_{i k}^{2}+\sigma_{i k}^{2}}{2 S_{i k}}
\end{gathered}
$$

$\mathrm{M}|\mathrm{G}| 1$ Queues with Priorities -1

- References:

1. Kleinrock, Vol.II, Chapter 3
2. N.K.Jaiswal, "Priority Queues", Academic Press, 1968

- Customers are divided into J different priority classes

Class 1: higher priority Class J: least priority
Static priorities predetermined (not dependent on waiting time, \# in the system, etc.)

- Arrival processes are independent, Poisson $\&$ independent of the service times

$$
\lambda_{k}, \quad \overline{X_{k}}=\frac{1}{\mu_{k}}, \overline{X_{k}^{2}}
$$

M|G|1 Queues with Priorities - 2

- Nonpreemptive priority: a customer is allowed to complete service without interruption even if a customer of higher priority arrives in the mean time
- A separate queue for each priority class
- When the server becomes free, the first customer of the highest nonempty priority queue enters service => Head-Of- the-Line (HOL) priority.
- Need to compute waiting time of each priority class. We appeal to conceptual reasoning rather than analytic derivation
$Q_{W k}$: Average number waiting in queue k
W_{k} : Average waiting time for priority k customers
$\rho_{k}=\frac{\lambda_{k}}{\mu_{k}} \quad$ System Utilization for priority k customers
$\overline{X_{R}}:$ Mean residual time
Assume

$$
\begin{aligned}
& \rho_{1}+\rho_{2}+\ldots+\rho_{J}<1 \\
& \text { If not } \exists a k^{*} \ni \quad W_{k^{\prime}+i}=\infty \quad i=0,1,2, \ldots, J-k^{*} \\
& W_{1}=\overline{X_{R}}+Q_{W 1} \overline{X_{1}} \Rightarrow W_{1}=\frac{\overline{X_{R}}}{1-\rho_{1}}
\end{aligned}
$$

M|G|1 Queues with Priorities - 3

$$
\begin{aligned}
W_{2} & =\overline{X_{R}}+Q_{W 1} \overline{X_{1}}+Q_{W 2} \overline{X_{2}}+\stackrel{\text { Fuutre earivials }}{\lambda_{1} W_{2} \stackrel{X_{1}}{1}} \\
& =\overline{X_{R}}+\rho_{1} W_{1}+\rho_{2} W_{2}+\rho_{1} W_{2} \Rightarrow W_{2}=\frac{\overline{X_{R}}+\rho_{1} W_{1}}{1-\rho_{2}-\rho_{1}}=\frac{\overline{X_{R}}}{\left(1-\rho_{1}\right)\left(1-\rho_{1}-\rho_{2}\right)}
\end{aligned}
$$

In general,
$W_{k}=\overline{X_{R}}+\rho_{1} W_{1}+\rho_{2} W_{2}+\ldots .+\rho_{k} W_{k}+\left(\sum_{i=1}^{k-1} \rho_{i}\right) W_{k}$
$\Rightarrow W_{k}=\frac{\overline{X_{R}}}{\left[1-\sum_{i=1}^{k-1} \rho_{i}\right]\left[1-\sum_{i=1}^{k} \rho_{i}\right]}$

$$
R_{k}=W_{k}+\overline{X_{k}}
$$

Need \bar{X}_{R} :
$\overline{X_{R}}=\frac{1}{2}\left(\sum_{i=1}^{J} \lambda_{i}\right) \overline{X^{2}}$
$\overline{X^{2}}=\frac{\lambda_{1}}{\sum_{i=1}^{J} \lambda_{i}} \overline{X_{1}^{2}}+\frac{\lambda_{2}}{\sum_{i=1}^{J} \lambda_{i}} \overline{X_{2}^{2}}+\ldots .+\frac{\lambda_{J}}{\sum_{i=1}^{J} \lambda_{i}} \overline{X_{J}^{2}}$

$$
\Rightarrow \overline{X_{R}}=\frac{1}{2} \sum_{i=1}^{j} \lambda_{i} \overline{X_{i}^{2}}
$$

Waiting time of a high priority class (e.g., W_{l}) depends on the arrival rates of lower priority classes

M|G|1 Queues with Priorities - 4

Note:

$$
\begin{aligned}
& \text { 1) } W_{k}=\overline{X_{R}}+\sum_{l=1}^{k} \rho_{l} W_{l}+\left[\sum_{l=1}^{k-1} \rho_{l}\right] W_{k} \\
& \sum_{k=1}^{J} \rho_{k} W_{k}=\rho \overline{X_{R}}+\sum_{k=1}^{J} \sum_{l=1}^{k} \rho_{l} \rho_{k} W_{l}+\sum_{k=1}^{J} \sum_{l=1}^{k-1} \rho_{l} \rho_{k} W_{k} \\
& \sum_{k=1}^{J} \rho_{k} W_{k}=\rho \overline{X_{R}}+\sum_{l=1}^{J}\left(\sum_{k=l}^{J} \rho_{k}\right) \rho_{l} W_{l}+\sum_{k=1}^{J} \sum_{l=1}^{k-1} \rho_{l} \rho_{k} W_{k} \\
& =\rho \overline{X_{R}}+\sum_{k=1}^{J}\left(\sum_{l=1}^{J} \rho_{l}\right) \rho_{k} W_{k} \\
& \Rightarrow \sum_{k=1}^{J} \rho_{k} W_{k}=\frac{\rho \overline{X_{R}}}{1-\rho \quad \text { independent of priorities }} \\
& \text { M/G/l Conservation law }
\end{aligned}
$$

Some customer classes do better than FCFS, Others do worse.

For multi-server queues, see Buzen, Operations Research, 1983
2) Suppose it costs $\$ C_{k}$ per unit of wait in the queue by a class k customer

Want to minimize

$$
\begin{aligned}
& \sum_{k=1}^{J} C_{k} Q_{w k}=\sum_{k=1}^{J} \frac{C_{k}}{X_{k}}\left(\rho_{k} W_{k}\right) \\
& \Rightarrow \quad \min \sum_{k=1}^{J}\left(\frac{C_{k}}{\overline{X_{k}}}\right) \rho_{k} W_{k}
\end{aligned}
$$

The μ C Rule

Suppose classes are ordered according to [1] [2] ... [k][k+1][k+2]...[J]... Optimal \Rightarrow Cost $=\sum_{k=1}^{J} \frac{C_{[k]}}{\overline{X_{[k]}}} \rho_{[k]} W_{[k]}$ Suppose we interchange [k] and [k+1]
Does not affect waiting times of [1] [2] ... [k-1] \& [k+2] [k+3]...[J]

$$
\begin{aligned}
& \Rightarrow \frac{C_{[k]}}{\overline{X_{[k]}}} \rho_{[k]} W_{[k]}^{*}+\frac{C_{[k+1]}}{X_{[k+1]}} W_{[k+1]}^{*} \rho_{[k+1]} \leq \frac{C_{[k+1]}}{X_{[k+1]}} W_{[k+1]} \rho_{[k+1]}+\frac{C_{[k]}}{X_{[k]}} W_{[k]} \rho_{[k]} \\
& \\
& \frac{C_{[k+1]}}{X_{[k+1]}} \rho_{[k+1]} \Delta W_{[k+1]} \leq-\frac{C_{[k]}}{X_{[k]}} \rho_{[k]} \Delta W_{[k]} ; \Delta W_{[k]}=W_{[k]}^{*}-W_{[k]}<0 ; \Delta W_{[k+1]}=W_{[k+1]}^{*}-W_{[k+1]}>0 \\
& \Rightarrow\left[\frac{C_{[k+1]}}{X_{[k+1]}}-\frac{C_{[k]}}{X_{[k]}}\right] \rho_{[k+1]} \Delta W_{[k+1]} \leq 0 \text { since } \sum_{k=1}^{J} \rho_{[k]} \Delta W_{[k]}=0 \\
& \Rightarrow \frac{C_{[k+1]}}{X_{[k+1]}} \leq \frac{C_{[k]}}{X_{[k]}} \text { since } \Delta W_{[k+1]}>0 \Rightarrow C_{[k+1]} \mu_{[k+1]} \leq C_{[k]} \mu_{[k]} \\
& \quad \text { or } \quad C_{[k+1]} X_{[k]} \leq C_{[k]} X_{[k+1]} \\
& \quad \text { or } \frac{X_{[k]}}{C_{[k]}} \leq \frac{X_{[k+1]}}{C_{[k+1]}}
\end{aligned}
$$

arrange priorities according to $\mu \mathrm{C}$ rule or weighted shortest-processing time rule (WSPT)

$$
\mu_{1} C_{1} \geq \mu_{2} C_{2} \geq \ldots \geq \mu_{J} C_{J}
$$

$-\mu C$ rule minimizes expected waiting cost

M/G/1 with Preempt-resume Priority - 1

KEY: The waiting time of a high priority customer class is independent of the arrival rates of lower priority classes (unlike non-preemptive priority)

* service of a lower priority customer is interrupted when a high priority customer arrives, and is resumed from the point of interruption once all customers of higher priority have been served
Here, we find it convenient to calculate the response time rather than the waiting time. Consider class $j . R_{j}$ consists of :

$$
R_{j}=\operatorname{Term}_{a}+\operatorname{Term}_{b}+\operatorname{Term}_{c}
$$

Term a : Average service time $\bar{x}_{j}=1 / \mu_{j}$ (since preempt-resume)
Term b: Average time required, upon arrival of a priority j customer, to service customers of priorities 1 to j, that are already in the system \Rightarrow average unfinished work corresponding to priorities 1 through j.

M/G/1 with Preempt-resume Priority - 2

The average waiting time of an $M / G / l$ queue with arrivals due to classes $1,2, \ldots, j$ (priorities $j+1, j+2, \ldots, J$ are neglected)

$$
\operatorname{Term}_{b}=\frac{\sum_{i=1}^{j} \lambda_{i} \overline{x_{i}^{2}}}{2\left(1-\sum_{i=1}^{j} \rho_{i}\right)}=\frac{\bar{x}_{R j}}{\left(1-\sum_{i=1}^{j} \rho_{i}\right)}
$$

Term c: Average waiting time for customers of priorities 1 through $(j-1)$ who arrive while the customer of class j is in the system

$$
\begin{array}{r}
\text { Term }=\sum_{i=1}^{j-1} \frac{1}{\mu_{i}} \lambda_{i} R_{j}=\left(\sum_{i=1}^{j-1} \rho_{i}\right) R_{j} \\
\therefore R_{j}=\frac{1}{\mu_{j}}+\frac{\bar{x}_{R j}}{\left(1-\sum_{i=1}^{j} \rho_{i}\right)}+\left(\sum_{i=1}^{j-1} \rho_{i}\right) R_{j} \Rightarrow R_{j}=\frac{\frac{1}{\mu_{j}}\left(1-\sum_{i=1}^{j} \rho_{i}\right)+\bar{x}_{R j}}{\left(1-\sum_{i=1}^{j} \rho_{i}\right)\left(1-\sum_{i=1}^{j-1} \rho_{i}\right)}
\end{array}
$$

M/G/1 with Preempt-resume Priority - 3

- Can recursively evaluate R_{j} :

$$
\begin{aligned}
& \begin{array}{l}
\overline{\mathrm{RHOSUM}=0} \overline{x_{R}}=0 \\
\text { Do } j=1, \ldots, J \\
\text { TEMP }=\text { RHOSUM } \\
\text { RHOSUM }=\text { RHOSUM }+\rho_{j} \\
\overline{x_{R}}=\overline{x_{R}}+\frac{\lambda_{j} x_{j}^{2}}{2} \\
\qquad R_{j}=\frac{\left[\frac{1}{\mu_{j}}(1-R H O S U M)+\overline{x_{R}}\right]}{(1-R H O S U M)(1-\text { TEMP })} \\
\text { End do }
\end{array}
\end{aligned}
$$

- Extension to multiple servers: Buzen, Operations Research, 1983

Agrawal Metamodeling, MIT Press 1985

Extension to Multi-class Queuing Networks - 1

- Two approximations:
- Shadow approximation, due to Sevcik, valid for only preempt-resume discipline
- Bryant, Lakshmi, Chandy and Krzenski approximation (also termed MVA approximation) The Best

Assume only single server nodes. Infinite server nodes are easy; multi-server \& state-dependent nodes are research issues.

- M nodes $\{1,2, \ldots, M\}$
- J Classes $\{1,2, \ldots, J\}$, class 1 has highest priority,..., class J has lowest
- visits, $v_{i j}$;
- Mean service time per visit : $s_{i j}=1 / \mu_{i j}$
- $R_{i j}=$ Response time over all visits;
- $Q_{i j}=$ Queue length at node i for class j;
- $\boldsymbol{X}_{\bar{j}}$ Throughput of class j customers

Extension to Multi-class Queuing Networks - 2

- Shadow approximation:
K. Sevcik, "Priority scheduling disciplines in QN models of computing systems", Proc. IFIP congress, North Holland, 1977, pp. 565-574
- Preempt resume service discipline. Assume a single PR center
- Key idea:

1. Replace each priority center by J shadow centers, where J is the number of priority classes
2. Each shadow service center is visited by one class only
3. Service time per visit of class j customers at the shadow service center is

$$
s_{s j}=\frac{s_{p j}}{1-\sum_{k=1}^{j-1} \rho_{p k}} ; \rho_{p k}=x_{k} s_{p k}
$$

Solve ($M+J-1$) node product-form network

- Can easily extend to multiple preempt-resume service centers

Extension to Multi-class Queuing Networks - 4

- Algorithm:

Initialize $\rho_{p k}$ at all $p \in P_{R}$
While $\rho_{p k}, p \in P_{k}$ not converged Do

$$
S_{s j}=\frac{S_{p j}}{1-\sum_{k=1}^{j-1} \rho_{p k}}
$$

Solve $\left(\left|P_{R}\right| J+M-\left|P_{R}\right|\right)$ node
product form network
Compute $\rho_{p k}$
End

- Errors can be as high as 40% !!

Extension to Multi-class Queuing Networks - 5

- MVA approximation:

Bryant, M.S.Lakshmi, K.M.Chandy and A.E.Krzenski "MVA Priority Approximation", ACM Trans. on Comp. Systems, Feb. 1983

- Recall product-form MVA equations

$$
\begin{array}{ll}
\text { Repeat } & \forall \underline{n} \in \underline{0} \leq \underline{n} \leq \underline{N} \\
& R_{i j}(\underline{n})=v_{i j} s_{i j}\left[1+Q_{i}\left(\underline{n}-\underline{e}_{j}\right)\right] \\
& \left.x_{j}(\underline{n})=n_{j} / \sum_{i=1}^{M} R_{i j} \underline{n}\right) \\
& Q_{i j}(\underline{n})=x_{j}(\underline{n}) R_{i j}(\underline{n})
\end{array}
$$

End Loop

- Restrictions:

$Q D$	\sim	$P S$ or $\mathrm{LCFS} P R$
$Q D$	\sim	FCFS $\Rightarrow s_{i j}=s_{i}$ indpendent of j

How do we extend these results to queuing networks with priority nodes?

Extension to Multi-class Queuing Networks - 6

- Suppose we have an isolated open node with arrival rates $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{J}$ with visits $v_{j}=1$. Then,
- Preempt-resume

$$
\begin{aligned}
& \boldsymbol{R}_{j}=s_{j}+\sum_{k=1}^{j}\left(Q_{k}-\rho_{k}\right) s_{k}+\sum_{k=1}^{j-1} R_{j} \lambda_{k} s_{k}+\bar{s}_{R j} ; \\
& \bar{s}_{R j}=\frac{\sum_{k=1}^{j} \lambda_{k} \overline{s_{k}^{2}}}{2}=\sum_{k=1}^{j} \frac{\rho_{k} s_{k}\left[1+C_{s_{k}}^{2}\right]}{2} ; C_{s_{k}}=\frac{\sigma_{s_{k}}}{s_{k}} \\
& \Rightarrow \quad R_{j}=\frac{\left[s_{j}+\sum_{k=1}^{j}\left\{\left(Q_{k}-\rho_{k}\right) s_{k}+\frac{\lambda_{k} \overline{s_{k}^{2}}}{2}\right\}\right]}{1-\sum_{k=1}^{j-1} \rho_{k}} \\
& =\frac{\left[s_{j}+\sum_{k=1}^{j}\left\{Q_{k} s_{k}+\frac{\rho_{k} s_{k}\left(C^{2}-1\right)}{2}\right\}\right]}{1-\sum_{k=1}^{j-1} \rho_{k}} \\
& \text { For exponential case: } \quad R_{j}=\frac{\left[s_{j}+\sum_{k=1}^{j} Q_{k} s_{k}\right]}{1-\sum_{k=1}^{j-1} \rho_{k}}
\end{aligned}
$$

Extension to Multi-class Queuing Networks - 7

- Non-preemptive:

$$
\begin{aligned}
& W_{j}= \underbrace{\sum_{k=1}^{j}\left(Q_{k}-\rho_{k}\right) s_{k}}_{\begin{array}{c}
\text { waiting time due } \\
\text { to custoner ahead of } \\
\text { our tagged customer }
\end{array}}+\underbrace{\overline{s_{R}}}_{\begin{array}{c}
\text { remaining } \\
\text { service } \\
\text { time }
\end{array}}+\underbrace{\sum_{k=1}^{j-1} W_{j} \lambda_{k} s_{k}}_{\begin{array}{c}
\text { waiting time due to } \\
\text { arrial affer our tagged } \\
\text { customer came in }
\end{array}} \\
&= \sum_{k=1}^{j}\left(Q_{k}-\rho_{k}\right) s_{k}+\sum_{k=1}^{j} \frac{\rho_{k} s_{k}\left[1+C_{s k}^{2}\right]}{2}+W_{j} \sum_{k=1}^{j-1} \rho_{k} \\
& \Rightarrow R_{j}=W_{j}+s_{j}=s_{j}+\frac{\sum_{k=1}^{j}\left(Q_{k}-\rho_{k}\right) s_{k}+\sum_{k=1}^{J} \frac{\rho_{k} s_{k}\left[1+C_{s k}^{2}\right]}{2}}{1-\sum_{k=1}^{j-1} \rho_{k}} * * \\
& \text { For Exponential case }: R_{j}=s_{j}+\frac{\sum_{k=1}^{j} Q_{k} s_{k}+\sum_{k=j+1}^{J} \rho_{k} s_{k}}{1-\sum_{k=1}^{j-1} \rho_{k}}
\end{aligned}
$$

Equation $(*)$ and $(* *)$ form the basis of MVA equations for priority networks

Extension to Multi-class Queuing Networks - 8

Consider preempt-resume priority case first

- Assumption 1: Poisson arrival s at the nodes ------ not true in networks

$$
R_{i j}(\underline{n})=\frac{v_{i j}\left[s_{i j}+\sum_{k=1}^{j} Q_{i k}^{(j)}(\underline{N}) s_{i k}+\sum_{k=1}^{j} \frac{\rho_{i k}^{(j)} s_{i k}\left[c_{s k}^{2}-1\right]}{2}\right.}{\left[1-\sum_{k=1}^{j-1} \rho_{i k}^{(j)}(\underline{N})\right]}
$$

- $Q_{i k}^{(i)}(\underline{N})=$ average number of class k customers at node i as seen by an arrival of a customer of class $j \ldots Q_{k}\left(\underline{N}-e_{j}\right)$ for product-form networks
- Assumption 2: we assume that the arrival theorem is valid

$$
\begin{gathered}
\Rightarrow Q_{i k}^{(j)}=Q_{i k}\left(\underline{N}-\underline{e}_{j}\right) \\
R_{i j}(\underline{n})=\frac{v_{i j}\left[s_{i j}+\sum_{k=1}^{j} Q_{i k}\left(\underline{N}-\underline{e}_{j}\right) s_{i k}+\sum_{k=1}^{j} \frac{\rho_{i k}^{(j)} s_{i k}\left[c_{s k}^{2}-1\right]}{2}\right.}{\left[1-\sum_{k=1}^{j-1} \rho_{i k}^{(j)}(\underline{N})\right]}
\end{gathered}
$$

- Need means of computing $\rho_{i k}$

Extension to Multi-class Queuing Networks - 9

- Assumption 3: Know
$\rho_{i k}^{(j)}(\underline{N})=x_{k}^{(j)}(\underline{N}) s_{i k}(\underline{N}) v_{i k}$
$\rho_{i k}^{(j)}(\underline{N})=\rho_{i k}\left(\underline{N}-\underline{e}_{j}\right) \quad$ Not Good $!!$
$\rho_{i k}^{(j)}(\underline{N})=\rho_{i k}(\underline{N})$
Not good when utilization of server >0.7
(Bryant-Krzenski approximation)
$\rho_{i k}^{(j)}(\underline{N})=\rho_{i k}\left(\underline{N}-Q_{i k} \underline{e}_{k}\right) \quad$ Best approximation !
(Chandy-Lakshmi approximation)
When there are $Q_{i k}$ customers at node i, the arrival rate of class k at node i is determined by the $\left(N_{k}-Q_{i k}\right.$)customers in the network

$$
\Rightarrow \rho_{i k}\left(\underline{N}-Q_{i k} e_{k}\right)=x_{i k}\left(\underline{N}-Q_{i k} \underline{e}_{k}\right) s_{i k} v_{i k}
$$

- Errors generally less than 10%. Extension to non-preemptive is easy (${ }^{*}$)
- Open problems:

Method validated for exponential service times. General service times open.
Extension to multi-server \& state-dependent server modes
B-S and C-N approximations for priority MVA

M/G/l Busy periods

$$
P_{0}=\text { Prob idle }=\lim _{n \rightarrow \infty} \frac{I_{1}+I_{2}+\cdots I_{n}}{\left(I_{1}+I_{2}+\cdots I_{n}\right)+\left(B_{1}+B_{2}+\cdots B_{n}\right)}=\frac{E(I)}{E(I)+E(B)}
$$

- For M/G/1

$$
\begin{aligned}
& E(I)=\frac{1}{\lambda} \\
& \text { Also, know } 1-P_{0}=\lambda E(x)=\lambda \bar{x}=\rho \\
& \Rightarrow 1-\lambda \bar{x}=\frac{1 / \lambda}{1 / \lambda+\bar{B}} \quad \Rightarrow \quad \bar{B}=\frac{\bar{x}}{1-\lambda \bar{x}} \\
& \text { Average \# of customs served per busy period }=\frac{1}{1-\rho}
\end{aligned}
$$

M/G/1 with Batch Arrivals

Batch arrivals:

$$
\begin{aligned}
& \alpha_{j}=\operatorname{Prob}\{\text { batch size }=j\} \\
& \text { Expected Batch Size }=E(N)=\sum_{j=0}^{\infty} j \alpha_{j} \\
& W=\bar{X}_{R}+\lambda E(N) \bar{X} W \Rightarrow W=\frac{\bar{X}_{R}}{1-\lambda E(N) \bar{X}}
\end{aligned}
$$

$$
\begin{aligned}
& \bar{X}_{R}=\text { remaining service time of customer in service }=\frac{\lambda E\left(X^{2}\right) E(N)}{2}+E\left(W_{B}\right) \\
& \quad+\text { waiting time due to those in batch }
\end{aligned}
$$

$$
E\left(W_{B}\right)=\sum_{j} E\left(W_{B} \mid \text { batch size }=j\right) \operatorname{Prob}\{\text { batch size }=j\}
$$

$$
\operatorname{Pr} \text { ob }\{\text { batch size }=j\}=\frac{j \alpha_{j}}{\sum_{j} j \alpha_{j}}=\frac{j \alpha_{j}}{E(N)}
$$

$$
\begin{aligned}
& E\left(W_{B} \mid \text { batch size }=j\right)=\sum_{i=1}^{j}(i-1) \bar{X} \frac{1}{j}=\frac{j-1}{2} \bar{X} \Rightarrow E\left(W_{B}\right)=\sum_{j}(j-1) \alpha_{j} j \frac{\bar{X}}{2 E(N)}=\frac{\bar{X}\left[E\left(N^{2}\right)-E(N)\right]}{2 E(N)} \\
& s o, W=\frac{\left\{\frac{\lambda E\left(X^{2}\right) E(N)}{2}+\frac{\bar{X}\left[E\left(N^{2}\right)-E(N)\right]}{2 E(N)}\right\}}{1-\lambda E(N) \bar{X}}
\end{aligned}
$$

G/G/1 Waiting Time Bound - 1

Can get only bounds on waiting time

$$
W \leq \frac{\lambda\left(\sigma_{a}^{2}+\sigma_{x}^{2}\right)}{2(1-\rho)} \quad \text { equality as } \rho \rightarrow 1
$$

σ_{a}^{2} : variance of inter-arrival times
σ_{x}^{2} : variance of service times
λ : arrival rate
$\rho=\frac{\lambda}{\mu}$

Let $\quad W_{k}$: waiting time of $k^{\text {th }}$ customer
X_{k} : service time of $k^{\text {th }}$ customer
τ_{k} : inter-arrival time between $k^{\text {th }}$ and $(k+1)^{\text {th }}$ customer

G/G/1 Waiting Time Bound - 2

$$
\begin{aligned}
W_{k+1}= & \max \left(0, \quad W_{k}+X_{k}-\tau_{k}\right) \\
& =\max \left(0, \quad W_{k}+V_{k}\right)
\end{aligned}
$$

- Some identities:

$$
\begin{aligned}
& Y^{+}=\max (0, Y) \quad Y^{-}=-\min (0, Y) \\
& \Rightarrow Y=Y^{+}-Y^{-} \quad \& Y^{+} Y^{-}=0 \\
& \bar{Y}=\bar{Y}^{+}-\bar{Y}^{-} \quad \sigma_{Y}^{2}=\sigma_{Y^{+}}^{2}+\sigma_{Y^{-}}^{2}+2 \bar{Y}^{+} \bar{Y}^{-}
\end{aligned}
$$

G/G/1 Waiting Time Bound - 3

$$
\begin{aligned}
& \begin{array}{l}
W_{k+1}=\left(W_{k}+V_{k}\right)^{+} ; V_{k}=X_{k}-\tau_{k} ; I_{k}=\left(W_{k}+V_{k}\right)^{-} \\
\begin{aligned}
& \sigma_{\left(W_{k}+V_{k}\right)}^{2}= \sigma_{\left(W_{k}+V_{k}\right)^{+}}^{2}+\sigma_{\left(W_{k}+V_{k}\right)^{-}}^{2}+2 \overline{\left(W_{k}+V_{k}\right)^{+}} \overline{\left(W_{k}+V_{k}\right)^{-}} \\
& \quad=\sigma_{W_{k}}^{2}+\sigma_{V_{k}}^{2}=\sigma_{W_{k}}^{2}+\sigma_{a}^{2}+\sigma_{x}^{2} \quad\left(\text { since } W_{k} \text { and } V_{k} \text { are independant }\right)
\end{aligned} \\
\sigma_{W_{k}}^{2}+\sigma_{a}^{2}+\sigma_{x}^{2}=\sigma_{W_{k+1}}^{2}+\sigma_{I_{k}}^{2}+2 \bar{W}_{k+1} \bar{I}_{k+1} \\
\text { As } k \rightarrow \infty, \bar{W}_{k} \rightarrow \bar{W} ; \bar{I}_{k} \rightarrow \bar{I} ; \sigma_{W_{k}}^{2} \rightarrow \sigma_{W}^{2} \\
\Rightarrow \quad \bar{W}=\frac{\sigma_{a}^{2}+\sigma_{x}^{2}}{2 \bar{I}}-\frac{\sigma_{I}^{2}}{2 \bar{I}}
\end{array}
\end{aligned}
$$

Average idle time $\bar{I}=\frac{(1-\rho)}{\lambda} \Rightarrow \bar{W} \leq \frac{\left(\sigma_{a}^{2}+\sigma_{x}^{2}\right) \lambda}{2(1-\rho)}$
as $\rho \rightarrow 1, \sigma_{I}^{2} \rightarrow 0$ since $I \rightarrow 0$ with probability 1

- Special case: M/G/1

$$
\begin{aligned}
& W=\frac{\left(\sigma_{a}^{2}+\sigma_{x}^{2}-\sigma_{I}^{2}\right)}{2 \bar{I}}=\frac{\lambda\left(\sigma_{x}^{2}+\mu^{-2}\right)}{2(1-\rho)} \\
& \Rightarrow \sigma_{I}^{2}=\frac{1}{\lambda^{2}}-\frac{1}{\mu^{2}}
\end{aligned}
$$

Neglected item in the bound: $\frac{\lambda \sigma_{I}^{2}}{2(1-\rho)}=\frac{\lambda \mu\left(\mu^{2}-\lambda^{2}\right)}{2 \lambda^{2} \mu^{2}(\mu-\lambda)}=\frac{1}{2}\left(\frac{1}{\lambda}+\frac{1}{\mu}\right)<\frac{1}{\lambda}$ for $\rho<1$

Summary

- $\mathrm{M}|\mathrm{G}| 1$ Queues with vacations
- Application of $\mathrm{M}|\mathrm{G}| 1$ Results to Reservations \& Polling
- Application to Token Ring Networks
- Extension to Non-product form Networks with M|G|1 Nodes
- $\mathrm{M}|\mathrm{G}| 1$ Queues with Priorities
- Extensions to Queuing Networks with Priorities
- G|G|1 Queues

