
Copyright ©2004 by K. Pattipati         Lecture 10

ECE 336

Prof. Krishna R. Pattipati

Dept. of Electrical and Computer Engineering

University of Connecticut  
Contact: krishna@engr.uconn.edu (860) 486-2890

Lecture 10

mailto:krishna@engr.uconn.edu


Copyright ©2004 by K. Pattipati         Lecture 10

Outline of Lecture 10

M|G|1 Queues with vacations

Application of M|G|1 Results to Reservations & Polling

Application to Token Ring Networks

Extension to Non-product form Networks with M|G|1 Nodes

M|G|1 Queues with Priorities

Extensions to Queuing Networks with Priorities

G|G|1 Queues



Copyright ©2004 by K. Pattipati         Lecture 10

Suppose that at the end of a busy period, the server goes on “vacation” for some random 

interval of  time. Thus, a new arrival to an idle system, rather  than going into service 

immediately, waits for the end of a vacation period.

X1 V1 V2 X5 X6 V3 X7 V4 V5X2 X3 X4 X8

Busy Period Vacation Busy
Vacation Busy

Vacation Busy

Usual M/G/1: Alternate busy-idle-busy cycles

M/G/1 with vacations: busy  - - -vacation  -busy 
cycles vacation multiple becan 



Variations: 
• The server may continue taking vacations until, on return from a vacation, 

it  finds at least one customer … multiple vacations model

• The server takes exactly one vacation. Single vacation model

➢ Busy-vacation-idle-busy-vacation-busy- …cycles

Queues with Vacations
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Applications:

1. Machine breakdown:
Serving Customers (Primary customers)

Maintaining the system when machine fails 

(secondary customers)

Can also be viewed as a priority model:

• Two priorities

• Breakdowns have preemptive priority over the primary customers. 

2. Maintenance in production systems:

• During idle periods, we do preventive maintenance on the system. 

The system is assumed to never breakdown during production (i.e., busy period)

• This is a single vacation model. 

Application of Queues with Vacations -1 
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3. Maintenance in computer and communication systems:

• Processor in computer and communication systems perform considerable testing and 

maintenance to improve reliability. There exist several ways in which the maintenance 

functions are scheduled in these situations:

• Maintenance is divided into short segments. Whenever the primary jobs are absent, 

the processor does a segment of the maintenance work. If upon completion  of the 

segment, there are no primary jobs, the system continues  with the next segment of 

maintenance. This corresponds to “multiple vacation models” case 

• There exist variations on this model. Some examples include: 

➢ Always make sure that a certain amount of time δ is spent on maintenance

➢ For every m primary jobs, do one maintenance job. This is a limited service 

vacation model, in which the server takes vacation on becoming idle 

or after serving m consecutive primary jobs.

➢ For every T seconds on primary jobs, spend on one segment on the maintenance job.

➢ Periodic maintenance => secondary jobs with preemptive or non preemptive 

priority over primary jobs

Application of Queues with Vacations -2 
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4. Cyclic server queues:

• These arise naturally as models of schedules in computer systems and communication

networks, e.g., task processing in computer systems, scheduling virtual circuits or ports 

in a communication system. 

• The basic model here has m classes of customers, each with its own queue

• These m queues are served by a single server cyclically.

Question: When does the server move from one queue to the next?

Server

• Exhaustive Service: The server leaves a queue when it is empty 

 Multiple vacation model

• Gated Service: The server upon arrival to a queue, closes a gate behind the waiting 

customers in that queue, and leaves that queue when the customers present before the

gate is closed are served.       

Application of Queues with Vacations - 3 
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• Limited Service: There is a limit Ri  placed on the number of customers served on each

visit to queue i. The server leaves queue i when that queue is empty or when Ri customers

have been served during the current visit. 

We will consider M/G/1 queue with vacations and applications of cyclic server queues to 

communication networks.

• Poisson arrival process

• V1,V2,V3,… are i.i.d random variables.

• Service times are i.i.d random variables.

M/G/1 multiple vacation case:

• What does a new arrival do?

• Wait in the queue for the completion of current service and then the service of 

all customers waiting before it. 

• Wait for vacation
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Application of Queues with Vacations - 4 
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M|G|1 Queue with Multiple Vacations - 1 
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See B.T. Doshi, Journal of Applied Probability, Vol. 22, pp.419-428, 1985

M|G|1 Queue with Multiple Vacations - 2 
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M/G/1 queue with a single vacation: HW problem. See Doshi (1985) and 

Fuhurmann, Operations Research, 1984, pp.1368-1373
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Application to Communication Networks: Cyclic queues

• A communication channel is accessed by several spatially separated users.

• Only one user can transmit successfully on the channel at one time 

=> a multi-access channel

• Communication resource of the channel can be divided into two portions:   

Packet transmissions … data intervals

Reservation (or Polling) messages that schedule future packet

Transmissions … reservation intervals

Server

M|G|1 Queue with a Single Vacation - 1 
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• m users

• Assume that each data interval contains packets of a single user

• Reservations for these packets are made in the immediately preceding reservation interval

• All users are taken up in cyclic order (1,2,3,…,m,1,2,3,…)

• Three versions depending on how packets are transmitted during the data interval of each user

Exhaustive system: A packet of a user that occurs during the user’s reservation or data interval

is transmitted in the same data interval  channel goes to the next user only after completing

the transmission of all the packets of the current user … Token ring

1 2 3 1 2 3 1

Cycle Cycle

Reservation and data

intervals for user 3

time
Transmission

 interval for user 1

Reservation interval

where future

transmissions of user

1 are scheduled

Cyclic Queues - 1 
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Analysis:

• Arrival processes of all users are Poisson with rate λ/m

• 1st and 2nd moments of packet transmission times                            (i.i.d. random variables)

• Inter-arrival times and packet transmission times are independent

• Reservation intervals of different users can have different distributions, but we assume 

it to be the same for simplicity. 

2  and  
1

XX




Partially gated system: Only packets that arrived until the end of the reservation interval are

transmitted during the current data interval.

Gated system: Only packets that arrived prior to the reservation interval can be transmitted. 

Cyclic Queues - 2 
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Single-user system: m=1 (Gated)

Cyclic Queues - 3 
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Partially gated:
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Cyclic Queues - 5 
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What happens when m>1 ? Consider Exhaustive case
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Cyclic Queues - 7 
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Cyclic Queues - 8 

See Bertsekas & Gallagher, pp. 200 for details
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i
Limited service Systems: k 1 case

 In each user's data interval, only the first  packet of the user waiting in queue(if any)

 is transmitted rather than all waiting packets.
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  Slotted time-division and  frequency-division multiplexing:

FDM:     m poisson streams with rate 
m

              transmission  time of each packet  m time units. 

    Each channel is an M/D/1 queu
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Networks with General Service Times 
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• Customers are divided into J different priority classes

Class 1: higher priority    Class J: least priority

Static priorities    predetermined (not dependent on waiting time, # in the system, etc.)

• Arrival processes are independent, Poisson & independent of the service times 

2,
1

,
k

k

kk
XX


 

Priority

Non-preemptive

Preemptive

Resume

Repeat

Identical

Non identical
Difficult to analyze

M|G|1 Queues with Priorities -1
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Nonpreemptive priority: a customer is allowed to complete service without interruption 

even if a customer of higher priority arrives in the mean time

- A separate queue for each priority class

- When the server becomes free, the first customer of the highest nonempty 

priority queue enters service => Head-Of- the-Line (HOL) priority.

- Need to compute waiting time of each priority class.  We appeal to conceptual reasoning

rather than analytic derivation 

QWk: Average number waiting in queue k

Wk: Average waiting time for priority k customers

k

k

k




  System Utilization  for priority k customers

R
X : Mean residual time

1 2

* *

'

1 1 1 1

1

... 1

0,1,2,...,

1

J

k i

R

R W

Assume

If not   a k W i J k

X
W X Q X W

  





   

     

   


M|G|1 Queues with Priorities - 2
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R
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J

R i i
i

  X

X X

X X X X

X X



  

  





  



   
 

   
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M|G|1 Queues with Priorities - 3

Waiting time of a high priority class (e.g., W1) 

depends on the arrival rates of lower priority classes
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endent of priorities

             M/G/1  Conservation law

Suppose it costs $C  per unit of wait in the queue by a class k customer

Want to minimize

C
C Q W

X

C
     min  W

X





 





 
  

 

 



M|G|1 Queues with Priorities - 4

jw



1

FCFS
3

2

Some customer classes 

do better than FCFS,

Others do worse.

For multi-server queues, 

see Buzen, Operations Research, 1983
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X

Suppose we interchange [k] and [k+1]

Does not affect waiting times of [1] [2] ... [k-1] & 

  

 

 
   

 

 

 

 

1[ 1]* *

[ 1] [ 1] [ 1] [ 1] [ ] [ ]
[ 1]

1

k k kk

k k k k k kk k
k k

k k

[k 2] [k 3]...[J]

C C CC
  W W W W

X XX X
   



   




 

   

[ 1] [ ] * *

[ 1] [ 1] [ ] [ ] [ ] [ ] [ ] [ 1] [ 1] [ 1]

[ 1] [ ]

[ 1] [ ]

[ 1] [ 1] [ ] [ ]
1

[ 1] [ ]

[ 1] [ ]

[ 1]

[ 1] [ ]

; 0; 0

0 0

0

k k

k k k k k k k k k k

k k

J
k k

k k k k
k

k k

k k

k

k k

C C
W W W W W W W W

X X

C C
W    since  W

X X

C C
   since  W C

X X

 

 



    





 










           

 
      

 

    



[ 1] [ 1] [ ] [ ]

[ 1] [ ] [ ] [ 1]

[ ] [ 1]

[ ] [ 1]

1 1 2 2
...

k k k k

k k k k

k k

k k

J J

C

or C X C X

X X
or

C C

arrange priorities according to C rule or  weighted shortest-processing time rule (WSPT)
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 rule minimizes expected waiting cost

The C Rule
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KEY: The waiting time of a high priority customer class is independent of 
the arrival rates of lower priority classes (unlike non-preemptive 
priority)

* service of  a lower priority customer is interrupted when a high     
priority customer arrives, and is resumed from the point of 
interruption once all customers of higher priority have been 
served

Here, we find it convenient to calculate the response time rather than the 
waiting time.   Consider class j.       consists of : 

M/G/1 with Preempt–resume Priority - 1

jR

cbaj TermTermTermR 

Term a: Average service time (since  preempt-resume)

Term b: Average time required, upon arrival of a priority j customer, to 

service customers of priorities 1 to j, that are already in the 

system  average unfinished work corresponding to priorities 

1 through j.

1/j j
x 
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What is Term b?

2

1

1 1

2(1 ) (1 )

j

i i
Rji

j jb

i i
i i

x x
Term



 



 

 

 



 

M/G/1 with Preempt–resume Priority - 2

The average waiting time of an M/G/1 queue with arrivals due 

to classes 1, 2, …, j (priorities j+1, j+2, …, J are neglected)

Term c: Average waiting time for customers of priorities 1 through (j-1)

who arrive while the customer of class j is in the system  

What is Term c?

1 1

1 1

1
( )

j j

c i j i j
i i

i

Term R R 


 

 

  

1
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1
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1 1 1

1
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1
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i Rj
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Rj j

j j jj i j j
i

j
i i i

i i i

x
x

R R  R =     





   







  

 

    

  




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Can recursively evaluate        :

Extension to multiple servers: Buzen,     Operations Research,  1983

Agrawal Metamodeling, MIT Press 1985

jR

RHOSUM=0

=0

Do j = 1, … , J

TEMP=RHOSUM

RHOSUM = RHOSUM + 

End do

Rx

j
2

2

j j

R R

x
x x


 

1
[ (1 ) ]

(1 )(1 )

R

j

j

RHOSUM x

R
RHOSUM TEMP


 


 

M/G/1 with Preempt–resume Priority - 3
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Two approximations:

– Shadow approximation, due to Sevcik, valid for only preempt-resume 
discipline

– Bryant, Lakshmi, Chandy and Krzenski approximation (also termed MVA 
approximation) …. The Best

– M nodes {1, 2, …, M}

– J Classes {1, 2, …, J}, class 1 has highest priority,…, class J has lowest

– visits, vij ; 

– Mean service time per visit : 

– Rij = Response time over all visits;

– Qij= Queue length at node i for class j;

– = Throughput of class j customers

Extension to Multi-class Queuing Networks - 1

Assume only single server nodes. Infinite server nodes are easy; 

multi-server & state-dependent nodes are research issues.

1/
ij ij

s 

j
x
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Shadow approximation:

Preempt resume service discipline.  Assume a single PR center

Key idea: 

1. Replace each priority center by J shadow centers, where J is  the number 

of priority classes

2. Each shadow service center is visited by one class only

3. Service time per visit of class j customers at the shadow service center is 

Solve (M+J-1) node product-form network

K. Sevcik, “Priority scheduling disciplines in QN models of computing 

systems”, Proc. IFIP congress, North Holland, 1977, pp. 565-574

1

1

;

1

pj

jsj pk k pk

pk
k

s
s   x s






 



Extension to Multi-class Queuing Networks - 2



Copyright ©2004 by K. Pattipati         Lecture 10

36

Algorithm:

Can easily extend to multiple preempt-resume service centers

Initialize 

While         not converged Do

Solve (M+J-1) product 

form network 

Compute 

End 

pk


1

1

1

pj

jsj

pk
k

s
s










pk


pk


Extension to Multi-class Queuing Networks - 3

j
x
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Algorithm:

Errors can be as high as 40%!!

Initialize          at all 

While        ,         not converged Do

Solve                       node

product form network

Compute 

End 

1

1

;

1

pj

jsj

pk
k

s
s










R
p P

R
p P

|)||(| RR PMJP 

pk


pk


pk


Extension to Multi-class Queuing Networks - 4
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MVA approximation:

Recall product-form MVA equations

Repeat 

End Loop

Restrictions:

Bryant, M.S.Lakshmi, K.M.Chandy and A.E.Krzenski “MVA Priority 

Approximation”, ACM Trans. on Comp. Systems, Feb. 1983

1

0

( ) [1 ( )]

( ) / ( )

( ) ( ) ( )

jij ij ij i

M

j j ij
i

ij j ij

  n     n N

R n v s Q n e

x n n R n

Q n x n R n



   

  







jssQD

PRPSQD

iij  of indpendent       FCFS          ~       

 LCFSor               ~       



Extension to Multi-class Queuing Networks - 5

How do we extend these results to queuing networks with priority nodes?
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Suppose we have an isolated open node with arrival rates   with visits

Then, 

− Preempt-resume

J  ,  , , 21 
1.

j
v 
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1 1

2
2

1

1
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1
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[1 ]
;
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For exponential case:    R
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Extension to Multi-class Queuing Networks - 6
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− Non-preemptive:
1

1 1

( )
j j

j k k k R j k k
k k

remaining
service waiting time due waiting time due to 
timeto customers ahead of arrivals after our tagged

our tagged customer customer came in
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Extension to Multi-class Queuing Networks - 7

1 1

1

1

:

1

j J
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k k j

jj j

k
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Q s s

For Exponential case R s    
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
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 
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 



Equation (*) and (**) form the basis of MVA equations for priority networks
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Consider preempt-resume priority case first

− Assumption 1: Poisson arrival s at the nodes  ------ not true in networks

     )()( NQ j
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Extension to Multi-class Queuing Networks - 8

− average number of class k customers at node i as seen by an 

arrival of a customer of class j … for product-form networks

− Assumption 2: we assume that the arrival theorem is valid

− Need means of computing ik
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− Assumption 3: Know

When there are        customers at node i, the arrival rate of class k at 

node i is determined by the customers in the network

( ) ( )
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( )

( )

( ) ( ) ( )
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( ) ( ) 0.

( ) ( )

j j
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Bryant Krzenski approximation
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 




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 
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(Chandy-Lakshmi approximation)

t approximation !

)( ikk QN 

ikQ
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N Q e x N Q e s v   

Extension to Multi-class Queuing Networks - 9

− Errors generally less than 10%.  Extension to non-preemptive is easy (**)
Open problems:

Method validated for exponential service times. General service times open.

Extension to multi-server & state-dependent server modes

B-S and C-N approximations for priority MVA
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For M/G/1

M/G/1 Busy periods
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Batch arrivals:

= remaining service time of customer in service 

+ waiting time due to those in batch
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Can get only bounds on waiting time

Let     Wk : waiting time of kth customer

Xk : service time of kth customer

:  inter-arrival time between kth and (k+1)th customer

G/G/1 Waiting Time Bound - 1
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Some identities:
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G/G/1 Waiting Time Bound - 2
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G/G/1 Waiting Time Bound - 3

Special case: M/G/1
2 2 2 2 2

2

2 2

2 2 2

2 2

( ) ( )

2 2(1 )

1 1

( ) 1 1 1 1
( )

2(1 ) 2 ( ) 2

a X I X

I

I

W
I

Neglected item in the bound:  for 1
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Summary

M|G|1 Queues with vacations

Application of M|G|1 Results to Reservations & Polling

Application to Token Ring Networks

Extension to Non-product form Networks with M|G|1 Nodes

M|G|1 Queues with Priorities

Extensions to Queuing Networks with Priorities

G|G|1 Queues


