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N 5 ( Queues with Vacations

B Suppose that at the end of a busy period, the server goes on “vacation” for some random
interval of time. Thus, a new arrival to an idle system, rather than going into service
immediately, waits for the end of a vacation period.

Xo | X | Xs | X | Vi |V, | X | Xe | Vo | X0 |V, | Vs |Xg

A

Busy Period———«—Vacation—«— Busy —xe—\acation—s«—Busy

—e—
Vacation Busy

Usual M/G/1: Alternate busy-idle-busy cycles
M/G/1 with vacations: busy - vacation - - - busy

v
can be multiple vacationcycles

B \ariations:
. The server may continue taking vacations until, on return from a vacation,
it finds at least one customer ... multiple vacations model
. The server takes exactly one vacation. Single vacation model
»  Busy-vacation-idle-busy-vacation-busy- ...cycles

kL L
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pplication of Queues with Vacations -1

P Applications:

Serving Customers (Primary customers)

1. Machine breakdown:<
Maintaining the system when machine fails

(secondary customers)

EF O DL L

Can also be viewed as a priority model:
 Two priorities
 Breakdowns have preemptive priority over the primary customers.

2. Maintenance in production systems:

. During idle periods, we do preventive maintenance on the system.
The system is assumed to never breakdown during production (i.e., busy period)
. This is a single vacation model.

Lecture 10
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pplication of Queues with Vacations -2

3. Maintenance in computer and communication systems:

«  Processor in computer and communication systems perform considerable testing and
maintenance to improve reliability. There exist several ways in which the maintenance
functions are scheduled in these situations:

« Maintenance is divided into short segments. Whenever the primary jobs are absent,
the processor does a segment of the maintenance work. If upon completion of the
segment, there are no primary jobs, the system continues with the next segment of
maintenance. This corresponds to “multiple vacation models™ case

»  There exist variations on this model. Some examples include:

» Always make sure that a certain amount of time o is spent on maintenance

» For every m primary jobs, do one maintenance job. This is a limited service
vacation model, in which the server takes vacation on becoming idle
or after serving m consecutive primary jobs.

» For every T seconds on primary jobs, spend on one segment on the maintenance job

» Periodic maintenance => secondary jobs with preemptive or non preemptive
priority over primary jobs

kL L
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pplication of Queues with Vacations - 3

4, Cyclic server queues:

» These arise naturally as models of schedules in computer systems and communication
networks, e.g., task processing in computer systems, scheduling virtual circuits or ports
In a communication system.

» The basic model here has m classes of customers, each with its own queue

« These m queues are served by a single server cyclically.

EF O DL L

Question: When does the server move from one queue to the next?

Server

. X/\ -

« Exhaustive Service: The server leaves a queue when it is empty
= Multiple vacation model

« Gated Service: The server upon arrival to a queue, closes a gate behind the waiting
customers in that queue, and leaves that queue when the customers present before the
gate is closed are served.

kL L
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Application of Queues with Vacations - 4

 Limited Service: There is a limit R, placed on the number of customers served on each
visit to queue i. The server leaves queue i when that queue is empty or when R; customers
have been served during the current visit.

B We will consider M/G/1 queue with vacations and applications of cyclic server queues to
communication networks.
 Poisson arrival process
« V;,V,,V,, ... are i.i.d random variables.
 Service times are i.i.d random variables.

EF O DL L

B M/G/1 multiple vacation case:

» What does a new arrival do?
 Wait in the queue for the completion of current service and then the service of
all customers waiting before it.
» Wait for vacation
X R
1-p
X, =mean residual time of completion of service or vacation in process

= W=

when the i" customer arrives.

kL L
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r(z)

«— Xl —>
Time averages = Ensemble Averages

1 flw , 1w
Srde =1 2 S x2S
L1 t[zg | 2;'}

M(t) = number of service completions in (0,t)
L(t) = number of vacations in (0,t)

AS t > oo,

X, =limfr(e)dz

—1{ItirDM(t) S N TUONIEES }

2

. SRR | P S VA
t M@EOT 2%t L(t)g'
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As t — oo, fraction of time occuoied with vacationsis (1- p)
Total vacation time = (1- p)t

Average vacation timeV = (L= p)t
L(t)
t V
Also, 1= M(®)
t
1. o5 1 V?
So, X.=ZAX'+-(l-p)_
=5 2( p)v
1 AX® 1V*®

MIGIN, — +
" 20-p) 2V
=W + Residual VVacation Time

M/G/1

Indeed, This decomposition is valid in a wider generality.

See B.T. Doshi, Journal of Applied Probability, Vol. 22, pp.419-428, 1985

Lecture 10
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M|G|1 Queue with a Single Vacation - 1

B M/G/1 queue with a single vacation: HW problem. See Doshi (1985) and
Fuhurmann, Operations Research, 1984, pp.1368-1373

Result : Hint: o
AX? NV d-pt=LOV +1)
= + —,—— .
2(1-p) B, (A)+AV 2V _{ 0if r, <V
where B,, (1) = je‘*" f, (V)dV .-Vt >V
0 7, =inter —arrival time

B Application to Communication Networks: Cyclic queues

« A communication channel is accessed by several spatially separated users.
 Only one user can transmit successfully on the channel at one time
=> a multi-access channel
« Communication resource of the channel can be divided into two portions:
Server

Packet transmissions ... data intervals

Reservation (or Polling) messages that schedule future packet
Transmissions ... reservation intervals

kL L
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R Cycle e S — Cycle —>
1 2 3 1 2 3 1
D N w — > time
Transmission

Reservation and data
intervals for user 3

interval for user 1

Reservation interval
where future
transmissions of user
1 are scheduled

* M USers
« Assume that each data interval contains packets of a single user
* Reservations for these packets are made in the immediately preceding reservation interval
* All users are taken up in cyclic order (1,2,3,...,m,1,2,3,...)
* Three versions depending on how packets are transmitted during the data interval of each user

Exhaustive system: A packet of a user that occurs during the user’s reservation or data interval
IS transmitted in the same data interval = channel goes to the next user only after completing
the transmission of all the packets of the current user ... Token ring

kL L
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: ( Cyclic Queues - 2

Partially gated system: Only packets that arrived until the end of the reservation interval are
transmitted during the current data interval.

Gated system: Only packets that arrived prior to the reservation interval can be transmitted.

B Analysis:

» Arrival processes of all users are Poisson with rate A/m

« 1t and 2"d moments of packet transmission times X = L and X? (i.i.d. random variables)
y7i

* Inter-arrival times and packet transmission times are independent

« Reservation intervals of different users can have different distributions, but we assume
it to be the same for simplicity.

oYL L
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Cyclic Queues - 3

B Single-user system: m=1 (Gated)
f— W, —

i Arrival time of ith Transmission of

packet packet i starts
A

Res. Res. Res.
//

< -

Residual Service
time

X

R

Transmission of
packet i ends

Transmission time of Qvlv
packets ahead of
packet i in queue

Reservation interval V|(')
1

V| :Ith

nd

2" oments V and V2

{VI'Xi’Ta} are independent. z_ = inter-arrival time
a

EW.]= E[><Ri ]+ E[Qwi IX +E[V

1)

Copyright ©2004 by K. Pattipati Lecture 10
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I Cyclic Queues - 4

@

Consider a gated system

FFF oL L

w2 o2 Similar to M/G/1 with vacations
AX®  (A-p)V . .
XR = 5 + N —> a vacation starts when all previous
X a 77 arrivals are served.
W = JA=PV OV +V
2 2V
V2 2 =
So, W= /X V + d (single user, gated)

= + —

2(1-p) 2V 1-p

Cyclelength

Suppose V = A (deterministic), then
AX:E A A
+—+—
20-p) 2 1-p
Al 3-

=Wyent 3 =7

2|1-p

Exhaustivesystem: = M /G /1 with vacations

W =

Yz oz
w="%X" V. Yoasw =WM,6,1+é
2(0-p) NV 2

oYL L
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I Cyeclic Queues - 5

J

B Partially gated:
W =X, +pW + pV
v 2 \ /2 \/
AX +V_+ oV
20-p) 2V 1-p

(or)W =

V = A deterministic = W =W +ﬁ(1+_,0j

M/G/1 2 l—p
B Multi-user system:

Arrival time of ith Start of transmission
packet of packet i
< Waiting time W »
y

-« >

—> —>»Time

Residual time

Duration Y of 4 'd
reservation intervals o ol
until transmission of 4 G

acket i

Waiting time of Qw P

packets ahead of i o o
packet i ‘
Copyright ©2004 by K. Pattipati Lecture 10 .
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I Cyclic Queues - 6

e user data rates A/m for users 0,1,2,....m-1

e | reservation interval is used to make reservations for user | mod(m) = | —L— J.m

and the subsequent "

reservations
e Consider packet i

E{W} = E{XRi}+E{Qwi}Y+E{Yi}

data interval is used to send packets corresponding to those

asi— oo
W:X_R+pW+Y
W= X, +Y
1-p

m-1—
> — (1_P)2Vk2 _ W2
Know X, =2 X"+ — = _Axe A=pVo
2>V, 2 Y
k=0

0 exhaustive

NeedtocomputeY: m=1 =Y = p\/_partially gated

kL L
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| I Cyclic Queues - 7 l

B What happens when m>1 ? Consider Exhaustive case

Let
=E{Y‘| packet i arrives in user I's reservation or data interval}
’ and belongs to user (I + j) mod m
0;]=0 .
7T {v L

since packet i belongs to any user with probability 1 , we have
m

E{Yi | packet 1 arrives in user I's reservation or data interval}

m-1m — J .

= ;TV(Hj)modm

Finally, a packet will arrive during I's data interval with probability L
m

a packet will arrive during I's reservation interval with probability

kL L
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| I Cyclic Queues - 8 l

Let i > o

ml__,

i o (d- Vv

M N p)vl)mzlm—JVMmodm_p(m—l)v+(1—p)mV_( Y.
m ¥y, = ‘ 2 2 2mv

2V

k=0

1=0

ml — m-1
Y2 2 _ \/ (sz k) _ ka
=W, = AX Lo mop v ol=k0 Y = kO
2(l-p) 2V 2 (1-p) m m

See Bertsekas & Gallagher, pp. 200 for details

Partially gated system: Same as exhaustive, except that if a packet arrives during

user's own data interval, it is delayed by an additional mV .

This occurs with probability P
m
= YpG :Yexh +,0V
W —w + 2
P ex
-p

Copyright ©2004 by K. Pattipati Lecture 10
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I Cyclic Queues - 9

Gated System : If a packet arrives during a user's own reservation or data interval,

it is delayed by an additional mV time units. This occurs with probability 1
m

FFF oL L

Y=Y +V =W =W -
1-p
suppose V:é,then
m
Wexh: ﬂ(x +é(l_p/m) :WM/G/1+A(1_p/m) :WM/G/1/V +é'm_1' p
21-p) 2 Q-p) 2 (1-p) 2 m (1-p)

_ AX? L Al+plm)
© o 20-p) 2 (1-p)
AX? L AQ+2-p)/m)

° 21-p) 2 (1-p)
AS m—o

W, =W_=W, = AX” A
21-p) 2(1-p)
%f_J

1/2 cycle length

Copyright ©2004 by K. Pattipati Lecture 10
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I Cyclic Queues - 10

Limited service Systems: k. =1 case

¢ In each user's data interval, only the first packet of the user waiting in queue(if any)

Is transmitted rather than all waiting packets.
e Consider only gated and partially gated systems (exhaustive case doesn't make sense here)
As before

W =X, +pW +Y,

WhatisY, ?

Consider partially gated system
A packet arriving during user I's data or reservation interval will belong to any

one of the users with probability l. In steady state, the average number of packets
m

waiting in the individual queue of the user that owns the arriving packet = AW
m

oYL L

Copyright ©2004 by K. Pattipati Lecture 10




EF O DL L

, I Cyclic Queues - 11 l

Each of these packets cause an extra cycle of resrvations of length mV . So,

AW =
YL,pG :YpG +FmV
B XR+YpG
VO (L-p-AV)
_(A=-p)
®(l-p-aV)

—W

Gated System :

L.G; L,pG

— packet i arrives during the reservation interval of its owner
Y. =Y. +mV Prob

and the subsequent data interval is empty
Prob{packet I arrives during the resrvation interval} =1-p

A

Let Prob{reservation interval followed by an empty data interval}
Prob{reservation interval followed by a nonempty data interval} =1— p

Copyright ©2004 by K. Pattipati Lecture 10
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, I Cyclic Queues - 12 l

(—p)——l—:pv L-p)X —(L-p)pX
o,

N ep=N) AV

1-p=
- P 1-p 1-p) 1-p

So,
_y L WV@a-p-aV) (1-p)
o (1-p) m
W, o =| Xo +Y, o +V({I-p-AV) | /(- p-AV)

Y

L,pG

:WLpGLJ- 1_,0 j+\7
p—NV

e Note that we need A( X +V) <1 for stability

Lecture 10
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Application to Token Ring Networks

Application to Token ring networks:

: : A
e M poisson streams with rate —
m

FFF oL L

e \V propagation delay + relaying delay per step =V =

3>

OY:l:p:/l

Exhaustive System:
AX? A m-p V(m-2)

2(1-1) 2ml-p) wien ™ 2(1- A1)

V =

3| >

Partially gated, limited service system:

CAXP+(M+ ANV
21-A—AV)

k L

oYL L

= stableif A< i_
1+V
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TDM vs. FDM vs. SFDM

o Slotted time-division and frequency-division multiplexing:

FDM: e m poisson streams with rate 4
m

e transmission time of each packet = m time units.

Each channel is an M/D/1 queue =W, = Am
2(1-4)

Slotted FDM :Packet transmissions can start only at times 0,m,2m,.... M/D/1 queue with vacations

FFF oL L

where V =m\V?2=m?
m m

W +—=
M2 2-2)

SFDM

=W,

DM: W, =W, =W,

m m
™M — YVsFDMm E: 2(1_2)

FDM

Response Times :

RFDM m+ _———-
2(1- 1)

RTDM =1+L= RFDM - m_l)
2(1— 1) 2

Copyright ©2004 by K. Pattipati Lecture 10
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Networks with General Service Times

No product form = Approximation
MVA s ideally suited for these approximations
For product-form networks, have

R(n)=-" [1+Q(a-e)]

At FCFS nodes, need S, =S, V |
1) Suppose S; is different for different classes j & exponential

EF O DL L

N Rij(ﬂ)g%: +[§;Qik(ﬂ_§j)8ik}i

2) General service demand requirement:

S. J S J S
ij\ 1t — +Z[Qik(ﬂ_§j)_uik(ﬂ_§j)}_'k+Zuik(ﬂ—%)_‘k
H, k=1 H k=1 M,

U
"y
=
>
) —
I

5 i - S + o7
S, = residual service demand :Ikz—

Copyright ©2004 by K. Pattipati Lecture 10
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M|G|1 Queues with Priorities -1

B References:
1. Kleinrock, Vol.1l, Chapter 3

2. N.K.Jaiswal, “Priority Queues”, Academic Press, 1968

« Customers are divided into J different priority classes
Class 1: higher priority Class J: least priority

Static priorities predetermined (not dependent on waiting time, # in the system, etc.)
« Arrival processes are independent, Poisson & independent of the service times

A, x_zi,_;
H,

Non-preemptive

Priority l:Resume
Preemptive ;

\ Repeat<

. Identical

|

Copyright ©2004 by K. Pattipati Lecture 10
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Non identical

)

Difficult to analyze

oYL L



FFF oL L

@

M|G|1 Queues with Priorities - 2

B Nonpreemptive priority: a customer is allowed to complete service without interruption
even if a customer of higher priority arrives in the mean time

- Aseparate queue for each priority class

- When the server becomes free, the first customer of the highest nonempty
priority queue enters service => Head-Of- the-Line (HOL) priority.

- Need to compute waiting time of each priority class. We appeal to conceptual reasoning
rather than analytic derivation

Qwi: Average number waiting in queue k
W, : Average waiting time for priority k customers

D, = A System Utilization for priority k customers
H,

X . :Mean residual time

R

Assume

p+p,+..+p <1
Ifnot3 ak’> W, =0 i=012,..,J-k

XR
1_p1

Wl:X_R+QW1Z - le

oYL L
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M|G|1 Queues with Priorities - 3

@

Future arrivals
f_/%

Wz = X_R +Qw171 + szx_z + ﬂ‘lwzx_l

SV Xq +pW X
:XR+pl TPV, oW, = sz e == "

1_p2_p1 (1_p1)(1_p1_p2)

In general,

k-1
W, =Xz + oW, + pW, +....+ p W, +(;pijwk

X
= Wk: k-1 . K
5n |12
I:ak_Wk—i_)(_k
Need X&'
- J -
XRZE( ﬂij ’
A=
X=X Xy X
> A 24 24

Waiting time of a high priority class (e.g., W,)
depends on the arrival rates of lower priority classes

Lecture 10
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M|G|1 Queues with Priorities - 4

Note:

ok k-1
DW, =X, +|Z,1:'0'W' +|:|lep| :|Wk
1k 3kt

J -
zpkwk :pXR +ZZP|PKW| +Zzplpkwk

k=1 I=1 k=1 I=1

k=1
3 3/ J k-1
kZ;,pkwk :IOXR +Z(zpk |W| +ZZP|Pka

ERNE] k=1 1=1

N J J
:pXR+Z( p|jpka
k=1 \I=1
J ;)5(; . L
=> pW, = independent of priorities

k=1 1— ,O
M/G/1 Conservation law

A 3
W; 2 FcFs

2

Some customer classes
do better than FCFS,
Others do worse.

For multi-server queues,
see Buzen, Operations Research, 1983

2) Suppose it costs $C, per unit of wait in the queue by a class k customer

Want to minimize

k=1 k=1 X

Copyright ©2004 by K. Pattipati Lecture 10
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Suppose classes are ordered according to [1] [2] ... [kK][k + 1] [k+2]...[]]... Optimal = Cost=

Suppose we interchange [k] and [k+1]
Does not affect waiting times of [1] [2] ... [k-1] & [k + 2] [k + 3]...[J]

—

The pC Rule

M-
S
=

e}

=

=

s

=~

=

C C C
[k] [k+1] [k+1] (k]
N/ p W ] += Wk+l]p[k+1] S W[k+1]10[k+1] + W[k]IO[k]
XK X ks XWH XM
C[k*“ AW, AW, AW, =W =W <0;AW, =W, —W, >0
x [k+1] [k+1] - [k]? [k+1] [k+1] [k+1]
[k+1] [k]

C C
= |:% X, :| [k+1]AW[k+1] <0 since Zp[k]AW =0

[k+1] [k]
Crren < Cug since AW 0=C <C
= X— > X_ I [k+1] >U= [k+1]lLl[k+1] - [k]'Ll[k]
[k+1] [k]

or CyXy; SCuX

[k+1] [k+1]

or X[k] < x[k+l]
C[k] C[k+1]
arrange priorities according to «C rule or weighted shortest-processing time rule (WSPT) j j
uC = uC, 2.2 uC, a'a
-uC rule minimizes expected waiting cost a3
Y
Copyright ©2004 by K. Pattipati Lecture 10 .
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Ve J—| M/G/1 with Preempt—resume Priority - 1 l

KEY: The waiting time of a high priority customer class is independent of
the arrival rates of lower priority classes (unlike non-preemptive

priority)

*  service of alower priority customer is interrupted when a high
priority customer arrives, and is resumed from the point of
Interruption once all customers of higher priority have been
served

Here, we find it convenient to calculate the response time rather than the
waiting time. Consider class j. Rj consists of :

EF O DL L

R; =Term, +Term, +Term,

Term a: Average service time X; =1/ ;(since preempt-resume)

Term b: Average time required, upon arrival of a priority j customer, to
service customers of priorities 1 to j, that are already in the
system = average unfinished work corresponding to priorities
1 through j.

Copyright ©2004 by K. Pattipati
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32

@J—' M/G/1 with Preempt—tesume Priority - 2 l

—
L1

_ The average waiting time of an M/G/1 queue with arrivals due
e 'STe””jb>to classes 1, 2, ..., j (priorities j+1, j+2, ..., J are neglected)

] -
2
2—1:& X YRJ_
Term, = —=

20-3p) @-2p)

Term c: Average waiting time for customers of priorities 1 through (j-1)
who arrive while the customer of class j is in the system

i1 1 j-1
[H:l What is Termjc> Termc = Z—ﬂi Rj = (ZPI)RJ
. i=1

i=1
R RS

—@-> p)+X,
: 1 Xs S _ A i j j
LR =—+ J. +(;pi)Rj = R= j — =

H; (l—z,oi) B (1_Zpi)(1_zpi)
i=1 i—1 i-1 J:
Copyright ©2004 by K. Pattipati Lecture 10 .
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33

Ve J—| M/G/1 with Preempt—resume Priority - 3 l

Can recursively evaluate R; :

RHOSUM=0

X, =0

Doj=1,...,J
TEMP=RHOSUM

RHOSUM = RHOSUM + P;
A, sz

X, = X, +

[1(1— RHOSUM ) + x. ]

J

R =
. (1- RHOSUM)(1-TEMP)
End do

Extension to multiple servers: Buzen, Operations Research, 1983
Agrawal Metamodeling, MIT Press 1985

Copyright ©2004 by K. Pattipati Lecture 10 F
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34

4 Extension to Multi-class Queuing Networks - 1

B Two approximations:
— Shadow approximation, due to Sevcik, valid for only preempt-resume
discipline
— Bryant, Lakshmi, Chandy and Krzenski approximation (also termed MVA
approximation) .... The Best

Assume only single server nodes. Infinite server nodes are easy;,
multi-server & state-dependent nodes are research issues.

— Mnodes {1, 2, ..., M}

— JClasses {1, 2, ..., J}, class 1 has highest priority,..., class J has lowest
— Visits, vj;;
— Mean service time per visit : s, =1/,
— R;;= Response time over all visits;

— Q;= Queue length at node i for class j;

— X = Throughput of class j customers

kL L

oYL L
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4 Extension to Multi-class Queuing Networks - 2

e Shadow approximation:

K. Sevcik, “Priority scheduling disciplines in QN models of computing
systems”, Proc. IFIP congress, North Holland, 1977, pp. 565-574

B Preempt resume service discipline. Assume a single PR center
e Keyidea:

1. Replace each priority center by J shadow centers, where J is the number
of priority classes

2. Each shadow service center is visited by one class only
3. Service time per visit of class j customers at the shadow service center is

s = u . = XS
sj j-1 J ppk — Mpk
1—
k=1 P 4 'd
Solve (M+J-1) node product-form network j j
e |
=
Copyright ©2004 by K. Patupat Lecture 10 g
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e Algorithm:

Extension to Multi-class Queuing Networks - 3

Initialize O,

While P not converged Do

S,

= =
1 R prk
k=1

Solve (M+J-1) product
form network = X,

S

)

Compute P
End

e Can easily extend to multiple preempt-resume service centers

Copyright ©2004 by K. Pattipati
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® Algorithm:

Extension to Multi-class Queuing Networks - 4

Initialize P, atall peP,

While Py , peP, not converged Do

. Sp

§ gL
1_ prk
k=1

Solve (|P,|J+M—| P, |) node

product form network
Compute £
End

®E  Errors can be as high as 40%!!

Copyrignt ©2004 py K. Pattpat
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Extension to Multi-class Queuing Networks = 5

MVA approximation:

Bryant, M.S.Lakshmi, K.M.Chandy and A.E.Krzenski “MVA Priority
Approximation”, ACM Trans. on Comp. Systems, Feb. 1983

Recall product-form MVA equations
Repeat v n € 0<n<N

Rij (D) = VijSij [1+ Qi (D —€, )]
X (m)=n /3R, 1)
Q;(n) =x;(n)R; (n)

End Loop

®  Restrictions: QD _ PS or LCESPR
Qb -~ FCFS = s; =s; Indpendentof ] y
-
i i .. d
How do we extend these results to queuing networks with priority nodes? N
Copyright ©2004 by K. Pattipati Lecture 10 :
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Ve J—| Extension to Multi-class Queuing Networks - 6 I_I

ol
od
o . . . . . .
g T Suppose we have an isolated open node with arrival rates4,, 4,,---, 4, with visits
a v, =1. Then,
: — Preempt-resume
J j—1
. R, =5, + 3 (Q, — p)S, + T RAS, +5,;
j _
2
s =N _gpsirCil o o,
e 2 k—1 2 S S,
i sZ
|:Sj "‘kZ: (Qk _pk)sk +/1k2k}:|
=1
— Rj — 71
1— Zpk
k=1
] s, (C? —1
|:SJ+ZJ: kak_'_pk - : )}:|
= 2
_— =
1— Zpk
k=1
J
|:Sj + Zkak]
For exponential case: R, = =L
1-— kz—:l;pk

Lecture 10
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Extension to Multi-class Queuing Networks - 7

— Non-preemptive:

i - j-1
Wj = E(Qk _pk)sk +\ Sp J+ ijﬂ’ksk

EF O DL L

e =1
~~ remaining ~—
waiting time due service waiting time due to
to customers ahead of time arrivals after our tagged
our tagged customer customer came in
[1 + Csk ]

+W, Zpk

zg(Qk _pk)sk +ipk

2
Z(Qk Pk)s +Zpk k[12+Csk]
=R, =W, +s, =5+ k=1 = faled
1_Zpk
k:jl ;
2.QS. + 2. S,

k=j+1

For Exponential case: R =s, +-=

Equation (*) and (**) form the basis of MVA equations for priority networks

Lecture 10

oYL L
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Extension to Multi-class Queuing Networks - 8

g1 ®  Consider preempt-resume priority case first

:: — Assumption 1: Poisson arrival s at the nodes ------ not true in networks
! | i A 2
- p's [cs —1]
Wl v [S; +ZQi(kJ)(N)5ik + Z : Ik2 .
Ry (n) = = =

1= p (N)]

— Q) = average number of class k customers at node i as seen by an
arrival of a customer of class J ... q.nv-e) for product-form networks

— Assumption 2: we assume that the arrival theorem is valid
= Q) = Qi(N —¢€;)
] i pWs [c2 —1]
ViJ' I:Sij + ZQik (N _Qj)sik + Z t 'k2 sk
- P ()]

- Need means of computing p;,

Copyright ©2004 by K. Pattipati
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Extension to Multi-class Queuing Networks - 9

— Assumption 3: Know

P (N) =x"(N)s, (N)v,
Pi(kj)(ﬂ) = Py (M_QJ) Not Good !!
P (N) =p, (N) Not good when utilization of server > 0.7

(Bryant—Krzenski approximation)

p(N)=p, (N-Q,e,)  Bestapproximation !

(Chandy-Lakshmi approximation)

When there are Q, customers at node I, the arrival rate of class k at
node i is determined by the (N, —Q; )customers in the network

— P (N - Q. €)= X (N - Q, Qk)sikvik
— Errors generally less than 10%. Extension to non-preemptive is easy (**)
I Open problems:
Method validated for exponential service times. General service times open.

Extension to multi-server & state-dependent server modes
B-S and C-N approximations for priority MVA

Copyright ©2004 by K. Pattipati Lecture 10
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[ M/G/1 Busy periods l

P, =Prob idle=Iim SRRl -4
o (I + 1,41 )+ (B, +B,+---B)) E(l)+E(B)

e For M/G/1

E(I):%

Also, knowl-P, =AE(X)=AX=p
1/2_ . B- X
1/1+B 1-AX

Average# of customsserved per busy period = 1

1-p

oYL L
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V. [ M/G/1 with Batch Arrivals |

449 g Batch arrivals:
4 'd o, = Prob{batch size = j}

au

:: Expected Batch Size =E(N)=i Jo,
=0

L X

R

W =X_,+AE(N)XW =W = —
1— AE(N)X

X, = remaining service time of customer in service ~ AE(X*)E(N)
+ waiting time due to those in batch - 2

E(W,)=> E(W, |batch size = j )Prob{batch size=j }
]

+E(W;)

o, _ i,

S, E(N)

j

Prob{batch size = j} =

E(W, [batch size = )= (i _M%:JT_lX = EW,)=X(j -Da,

{/1E(X2)E(N) L X[E(N") - E(N)]}
SO,W =

X  X[E(N?)—E(N)]
2E(N) 2E(N)

2 2E(N)
1- AE(N)X

Copyright ©2004 by K. Pattipati Lecture 10
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2O T & [ G/G/1 Waiting Time Bound - 1 l |
o
: ® Can get only bounds on waiting time
a A(o? +o7?) .
a < a x equalityas p —>1
r 21-p)
. o’: variance of inter-arrival times
o variance of service times
A arrival rate
A
p=—
y7;

Let W, : waiting time of k' customer
X, : service time of k" customer
T, . inter-arrival time between k™ and (k+1)™" customer

o
.|
o
o

Copyright ©2004 by K. Pattipati Lecture 10
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@ ' [ G/G/1 Waiting Time Bound - 2 l

Wk +1
T
Z'K Wk 1 < K >

W, X,
. .

< > > \ 4

W, X

y
\ 4
A
4

\4 A 4 A 4

A
A 4
A

k

W . =max(0, W + X, —7,)
=max(0, W _+V,)

B Some identities:

Y =max(0,Y) Y =-min(0,Y) V- v
=Y=Y"-Y & Y'Y =0
Y=Y"-Y" oy =0’ +0’ +2Y'Y"

Y

oYL L

Lecture 10
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' fl G/G/1 Waiting Time Bound - 3 l

Wen =W, +V,)" 5 7o be=W, +V,)
T ) = Ty a(zwkwk), +2W, +V,)" W, +V,)

=o, +0o, =0, +0, +o, (since W, and V, are independant)

2 2 .
o, +0.,+0, =0, +0, +2Wk+1lk+1

As k — o, W, —>VV B —)I_ Oy = Oy,
o}

— V\_/ _ Ga +_O' I_
21 21
2 2
Average idle time T =$=2) — \y < (% ¥ o)A
A 2(1-p)

as p—1, o; - 0since | — 0 with probability 1
Special case: M/G/1

_(oi+0y—0]) _ Aoy +u7)
21 2(1- p)
11

:>O'| ?—?

2 2 g2
Neglected item in the bound: —22L — ’“j(‘z‘ A) 1A Y Lo o
20— p) 221 (u-A) 24 wu A

Lecture 10
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: (I Summary I

E M|G|1 Queues with vacations

E Application of M|G|1 Results to Reservations & Polling

B Application to Token Ring Networks

E Extension to Non-product form Networks with M|G|1 Nodes
B  M|G|1 Queues with Priorities

E Extensions to Queuing Networks with Priorities

E G|G|1 Queues
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