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 Stabilization of Slotted Aloha

 Splitting Algorithms  

 Introduction to CSMA

Outline of Lecture 12
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We know that as the number of users (nodes),              , slotted Aloha

becomes unstable. 

Ordinary slotted aloha is unstable for any arrival rate      >0 (recall     is 

normalized to sloth length)

Maximization stable throughput of slotted Aloha = 0

i.e., the least upper bound of arrival rates for which the system is stable
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So, if you know n exactly, can control G(n), 1)( nG

and achieve n ofestimator an  need     
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The above assume that all nodes use the same 

2) We can get better throughput (i.e.,            )
e

1
max  if each node keeps

track of its own history of retransmissions and the feedback history 

(idle, success, collision)  Splitting Algorithms
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“Pseudo Bayesian” Algorithm

n  rateattempt  the 

If there are n packets (including new arrivals) at the beginning of a slot,

1)-(1n  prob.   nsuccess 

Assumption: new and collided packets are assumed to be backlogged

But, don’t know n and needs to be estimated online based on the knowledge

that 1) The previous slot is idle or a packet was successfully transmitted

2) There was a collision in the previous slot.  
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1
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How to get the estimate ?n̂
Suppose that the prior prob of the number of backlogged packets n

At slot k is poisson with mean     (i.e. just before we know what happened

In slot k)
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Similarly,
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Where,      accounts for new arrival during slot k.
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If |ˆ| nn   is large is too high or too low depending on whether

0)n̂-(nor  0)ˆ(  nn

You may decide to send at a prob more than necessary

 n  collisions more 

  0)ˆ( nn

  0)ˆ( nn You may decide not to send





n and  n̂n  Eventually                         

|n̂-n|Ebut  arrivals,  todue n  states idle
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Splitting algorithm:

All of them have some form of tree structure to resolve conflicts.

Suppose a collision occurs in slot k, then the collisions are resolved as follows:

• All nodes not involved in the collision go into a waiting node

• All nodes involved in the collision do the following

• Split into two subsets (e.g. by flipping a coin)

this splitting may also be based on time of arrival  

The first subset transmits in slot (k+1)

If slot is idle or successful

second subset transmits in slot (k+2)

else (i.e., collision)

split again and continue
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S collision

L 

collision

R 

Idle

LL

success

LR

collision

LRR

collision

LRL

Idle

LRRL

success

LRRR

success

3 packets
slot transmit set Waiting set Feedback

1 S --- E (error)

2 L R E

3 LL LR, R 1 (success)

4 LR R E

5 LRL LRR, R 0 (idle)

6 LRR R E

7 LRRL LRRR, R 1

8 LRRR R 1

9 R --- 0
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• We can implement this algorithm using a stack.

• A node can keep track of when to transmit



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 transmit       0

R  L
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Improvement to the tree algorithm:
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Since equal split xL and xR are poisson if x is poisson

Collision implies 
2Lx

)-i|xP(xxxxixP LRRLLk 2  )2,2|( 

CRPcurrent   ofpart not  are they  arrivals new arethey 

if as  treat x,small"" is for x packets ofnumber   expected Since RR



So, 

FCFS splitting algorithm

“Split the subset on the basis of arrival intervals”

At each time slot k, the algorithm specifies the packets to be transmitted

to be the set of packets that arrived in some earlier interval ))(T(k) (T(k), k
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is the allocation interval(k))T(k) ),(( kT

)(kT

Arrival times
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Arrival times 
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k
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k +1
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k +2

)3( kT
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allocation

RR

T(k+2)
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l)subintervaright  split  of lsubintervaleft  (i.e., packets lsubintervaleft Transmit                           
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)(kT
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allocation interval Waiting interval
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Idle or 

success

L,1 L,2 L,3

R,1 R,2 R,3

PL,3
PL,2PL,1

Start of 

CRP
R, 0 1-PR,0

PR,1

PR,2

PR,3

PR,0

end of 

CRP

If a collision occurs (R,0) (L,1)

left, one split

(R,0)

(L,i)

(R,i)

(L,i+1)

collision

idle

i splits so far

collision

end of 

CRP

Success PL,i

PR,i

success collision

Markov Chain: Representation of Splitting Algorithm:
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• Each split decreases the allocation interval by a factor of 2.

i splits 
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• Average # of packets in the allocation interval
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In general,
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If we let E{k} be the average number of slots in a CRP, then







1

)],(),([1}{
i

iRPiLPKE



Copyright ©2004 by K. Pattipati 

22

Note:
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• Change in T(k) from one CRP to the next

Initial allocation interval

If left hand intervals have collisions, then the corresponding right hand

Intervals are returned to the waiting interval.
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The fraction of the original interval returned on such a collision is 2-i 
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CS MA random access

• These are refinement on the pure and Slotted Aloha – We use additional

hardware to detect (i.e., sense) the transmissions of other stations.

• Very useful for systems with propagation delays << packet transmission

Times. Can have slotted or unslotted versions.

           endsion  transmissaafter               

 channel idlean detect  delay todetection  andn propagatio   Let

sizeslot   theas  uses    CSMA•

slot. a of beginning at theit must tranm slotted, If    •
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General: CSMA random access:

Packet

Ready

Carrier sense 

strategy

Delay to beginning of 

next slot

Not busy

Transmit

Wait 2-way 

propagation Delay

Pos

ACR

Retransmission

Strategy

Done
yes no

busy

yes

no
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Two types of CSMA:

Non-Persistent CSMA

P- persistent CSMA

Non-persistent CSMA

Channel

Busy

yes

no

wait

transmit

Channel 

Busy

Delay 1 slot 

sec

Select a uniform random 

number p in (0,1)

yes

no



yes

no
hpp 

p - persistent CSMA
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Analysis of unslotted CSMA random access procedures:

Model assumptions:

1. Number of users (nodes) is infinite and the arrival process is poisson.

2. Propagation and detection delay is      seconds.

3. All packets have the same length and the same transmission time, s.

4. At any point in time, each node has at most one packet ready for 

transmission, including any previously collided packets.

5. Carrier sensing takes place immediately (instantaneous feedback)

6. Noise-free channel  failure of transmission is due to collision only.

Collision occurs whenever two packets overlap.


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Unsuccessful and successful busy periods for nonpersistent CSMA:

unsuccessful busy period:

Time

0 1 n2 n+1

Arrival to all stations

Packet 0Station i

Packet 1Station j

t



st t

Packet nStation l Y

 Yst t1

All stations

sense channel idle

All stations sense channel busy and reschedule

Arriving packets

idleBusy period

cycle

Yst Yt 
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 st  t+s  t 

cycle 

Idle (I) Busy period (B) 

time t1 

packet 0 

time 

• Packet o arrives at the reference station at time t, since the channel is sensed

idle, the packet is transmitted immediately.

• Packets 1,2,…, n do not know the existence of packet o. Let t+Y be the time 

at which the last packet ( in this case n) arrives before           .

• After        , stations know that channel is busy. So they reschedule packets

for a later time ( packet n+1).

• Packet n transmission ends by time t+Y+s an all stations know about it by 

.

t

 sYt

t

Successful busy period:
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0y occur, collisions no in  arrival  τ) (t,tNo
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2) Busy period length
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The throughput has a maximum at
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