Lecture 2

Prof. Krishna R. Pattipati

Dept. of Electrical and Computer Engineering University of Connecticut
 Contact: krishna@engr.uconn.edu (860) 486-2890

ECE 336 Stochastic Models for the Analysis of Computer Systems and Communication Networks

Outline of Lecture 2

\square Summary of Lecture 1
\square Discrete-time Markov Chains
\square Continuous-time Markov Chains
\square Uniformization (Embedded Markov Chains)

Summary of Lecture 1

Characterizing Queuing Models:Arrivals, Service, Queuing Discipline, Storage
Little's law: $Q=\lambda \mathrm{R}, \mathrm{Q}_{\mathrm{w}}=\lambda W, \mathrm{U}=\lambda \bar{t} \Rightarrow \mathrm{R}=\mathrm{W}+\bar{t}$

- When applied to a multi-access communication system, provided asymptotic bounds (ABA)

Can we get better information? yes, but requires the knowledge of the stochastic process $A(t), D(t)$ and $Q(t) \Rightarrow$ Need to have background in probability theory and stochastic processes

Random Variables

Examples:

- A Communication channel is (busy, idle)
- A Component is (up, down)
- A program is in one of n states (wait, execute, I/o, system up/down)

The possible observations or sample space is denoted by $\boldsymbol{\Omega}$
Example: $\quad \Omega=\left(\omega_{1}, \omega_{2}\right)=\quad$ (busy, idle)

If we assign a variable $X(\omega, t) \ni$

$$
X(\omega, t)= \begin{cases}1 & \text { if } \omega=\omega_{1} \text { at time } \mathrm{t} \text { (busy) } \\ 0 & \text { if } \omega=\omega_{2} \text { at time t (idle) }\end{cases}
$$

$$
X(\omega, t) \text { is a discrete-state rv at time } t
$$

Stochastic Processes -1

Definition: A stochastic process is a family of random variables $\{X(t), t \in T\}$ where t varies over an index set T
\square For a fixed value of index $t=t_{l}, X\left(t_{l}\right)$ is a random variable
\square We can define four sets of stochastic processes depending on the possible values that X and t can take

Examples:

1) In the channel example above t is time; $T \in[0, \infty) \Rightarrow$ continuous-time so, the process is: Continuous-time Discrete-state (CTDS) process
\square A typical realization (or sample path) of the process consists of alternate busy and idle periods

Stochastic Processes -2

2) $W_{k}=$ time $k^{\text {th }}$ customer has to wait in the system before receiving service

$k \in T=\{1,2,3,4 \ldots\}=.Z^{+}$set of positive integers >0
Discrete-index (Discrete-time)-continuous state (DTCS) process

- Discrete-time Control Systems

$$
\left.\begin{array}{l}
\underline{x}_{k+1}=\Phi \underline{x}_{k}+\Gamma \underline{\mathrm{u}}_{k}+\mathrm{E} \underline{\mathrm{w}}_{k} \\
\underline{\mathrm{y}}_{k}=\mathrm{c} \underline{x}_{k}+\underline{\mathrm{v}}_{k}
\end{array}\right\} \text { DTCS processes }
$$

Stochastic Processes - 4

4) $N_{k}=\#$ of customers in the system at the time of arrival of $k^{\text {th }}$ customer

$$
=\left\{N_{k} \mid k=1,2,3, \ldots\right\}, \quad N_{k} \in(0,1,2,3,4, \ldots)
$$

Discrete - index (Discrete-time) Discrete - state (DTDS) stochastic process

Classification of Stochastic Processes

Classification Summary:

state	Discrete	Continuous
Discrete	DTDS	DTCS
Continuous	CTDS	CTCS

\(\left.\begin{array}{ll}D T C S . . . \& e.g., Delay analysis

D T D S . . . \& e.g., Markov Chains

CTDS... \& e.g., Continuous time Maikov chains\end{array}\right\}\)| |
| :--- |
| Reliability |
| Applications |

CTDS + CTCS... Performability processes

Probability Distribution

For a fixed time $t_{1}, X\left(t_{1}\right)$ is a random variable - For a random variable $X\left(t_{1}\right)$, we can talk about the cumulative distribution function (CDF)

$$
F\left(x_{1}, t_{1}\right)=P\left\{X\left(t_{1}\right) \leq x_{1}\right\}
$$

Suppose we have sampled the process $X\left(t_{1}\right)$ at $t=t_{1}, t_{2}, \ldots, t_{n}$, then

$$
F(\underline{x}, \underline{t})=P\left\{\mathrm{X}\left(\mathrm{t}_{1}\right) \leq \mathrm{x}_{1} ; \mathrm{X}\left(\mathrm{t}_{2}\right) \leq \mathrm{x}_{2} ; \cdots ; \mathrm{X}\left(\mathrm{t}_{\mathrm{n}}\right) \leq \mathrm{x}_{\mathrm{n}}\right\}
$$

$$
\underline{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right], \underline{t}=\left[\begin{array}{l}
t_{1} \\
t_{2} \\
\vdots \\
t_{n}
\end{array}\right]
$$

$$
\text { Joint Distribution of } X\left(t_{1}\right), X\left(t_{2}\right) \ldots, X\left(t_{n}\right) \text { is difficult to compute }
$$

We can make one of two assumptions.

Independent Process

- Independent process: Renewal process (e.g., failures of components with negligible repair time), $X_{i}=$ inter-failure times i.i.d.

By chain rule: $P(A B C)=P(A \mid B C) P(B \mid C) P(C)$

$$
\begin{aligned}
F(\underline{x}, \underline{t})= & P\left\{X\left(t_{n}\right) \leq x_{n} \mid X\left(t_{n-1}\right) \leq x_{n-1} ; \ldots \ldots, X\left(t_{1}\right) \leq x_{1}\right\} \ldots \\
& P\left\{X\left(t_{2}\right) \leq x_{2} \mid \underline{x}\left(t_{1}\right) \leq x_{1}\right\}, P\left\{X\left(t_{1}\right) \leq x_{1}\right\} \\
= & \prod_{i=1}^{n} P\left(X\left(t_{i}\right) \leq x_{i} \mid X\left(t_{1}\right) \leq x_{1}, \ldots, X\left(t_{i-1}\right) \leq x_{i-1}\right)
\end{aligned}
$$

Independence \Rightarrow

$$
F(\underline{x}, \underline{t})=\prod_{i=1}^{n} P\left(X\left(t_{i}\right) \leq x_{i}\right)=\prod_{i=1}^{n} F\left(x_{i}, t_{i}\right)
$$

Markov Process

\square Markov (first-order dependency) process

$$
F(\underline{x}, \underline{t})=\prod_{i=1}^{n} P\left(X\left(t_{i}\right) \leq x_{i} \mid X\left(t_{i-1}\right) \leq x_{i-1}\right)
$$

More often then not, $X\left(t_{i-1}\right)$ is known exactly, i.e. $X\left(t_{i-1}\right)=x_{i-1}$, so

$$
F(\underline{x}, \underline{t})=\prod_{i=1}^{n} P\left(X\left(t_{i}\right) \leq x_{i} \mid X\left(t_{i-1}\right)=x_{i-1}\right)
$$

The probability distribution of $X\left(t_{i}\right)$ at time t_{i} depends only on the state at $X\left(t_{i-1}\right)$ time t_{i-1} for any sequence of time instants $t_{1}, t_{2}, \ldots, t_{i-1} \ni t_{1}<t_{2}<\ldots t_{i}$
"Knowledge of the present makes the past irrelevant"

Markov Chains

We are mostly interested in discrete-state Markov Process... known as Markov chains

- Transitions from one-state to the next are allowed at discrete time instants $0, \Delta, 2 \Delta, \ldots$
- Transitions are allowed at any point in time

Similar to: $\quad \underline{x}_{k+1}=P^{T} \underline{x}_{k} \quad \underline{\dot{x}}=Q^{T} \underline{x} \Rightarrow \mathrm{P}=\mathrm{e}^{\mathrm{Q} \Delta}$
For Markov chains, Q has a special structure:

$$
\begin{aligned}
& P \underline{e}=\left(I+Q \Delta+\frac{Q^{2} \Delta^{2}}{2}+\cdots\right) \underline{e}=\underline{e} \\
& \Rightarrow \text { Eigen value }=1 \& \text { Eigen vector }=\underline{e}
\end{aligned}
$$

$Q \underline{e}=\underline{0} \ni \quad \underline{e}=\left(\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right)$
\Rightarrow Eigen value $=0$
\Rightarrow Eigen vect or $=\underline{e}$

[^0]
Discrete-time Markov Chains -1

We will discuss some applications before we discuss the theory
\square DTMC: A process $\left\{X_{n}, n=0,1,2, \ldots\right\}$ is a finite-state Markov chain

$$
\ni X_{n+1} \in(0,1,2, \ldots, N) \text { and } P\left(X_{n+1}=j \mid X_{n}=i\right)=P_{i j}(n) \geq 0
$$

also
$\sum_{j=0}^{N} P_{i j}(n)=1 \quad \forall i \quad \& n=0,1,2, \ldots$

		State at step n+1				\rightarrow
0	1	2	3			
State at	0					
Step n						
\downarrow	2					
\downarrow	3					

P_{10}(n) \& P_{11}(n) \& P_{12}(n) \& P_{13}(n)

P_{20}(n) \& P_{21}(n) \& P_{22}(n) \& P_{23}(n)

P_{30}(n) \& P_{31}(n) \& P_{32}(n) \& P_{33}(n)\end{array}\right]\)

One-step Transition Probability Matrix (TPM)

$$
\begin{aligned}
& P_{i j}(n) \sim \text { a function of step or stage } \mathrm{n} \Rightarrow \text { non-homogenous (non stationary or time-varying) Markov chain } \\
& P_{i j}=\text { constant } \Rightarrow \text { time homogenous (or stationary or time-invariant) Markov chain }
\end{aligned}
$$

Discrete-time Markov Chains -2

\square If we let the unconditional probability that the chain is in state j at time step $(n+1)$ by $p_{j}(n+1)$ then

$$
\begin{aligned}
p_{j}(n+1) & \stackrel{\Delta}{=} P\left(X_{n+1}=j\right) \\
& =\sum_{i=0}^{N} P\left(X_{n+1}=j, X_{n}=i\right) \quad \text { by Total Prob. Theorem } \\
& =\sum_{i=0}^{N} P\left(X_{n+1}=j \mid X_{n}=i\right) \cdot P\left(X_{n}=i\right) \\
& =\sum_{i=0}^{N} P_{i j}(n) p_{i}(n)
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \quad \underline{p}(n+1)=P^{T}(n) \underline{p}(n) ; \quad p(n)=\left[\begin{array}{l}
p_{0}(n) \\
p_{1}(n) \\
\vdots \\
p_{N}(n)
\end{array}\right] \\
& \underline{p}(n+1)=P^{T} \underline{p}(n) \\
& \underline{p}^{T}(n) \underline{e}=\sum_{i=0}^{N} p_{i}(n)=1
\end{aligned}
$$

DTMC Example 1

Example: 1) A cascaded communication channel $X_{n} \in(0,1)$

$$
\begin{array}{r}
P\left(X_{n+1}=0 / X_{n}=0\right)=p ; \quad P\left(X_{n+1}=1 \mid X_{n}=0\right)=1-p \\
P\left(X_{n+1}=1 / X_{n}=0\right)=1-q ; \quad P\left(X_{n+1}=1 \mid X_{n}=1\right)=q \\
P=\left[\begin{array}{cc}
p & 1-p \\
1-q & q
\end{array}\right] \Rightarrow \lambda_{1}(p)=1, p+q-1
\end{array}
$$

Eigen vectors :

$$
\alpha\left[\begin{array}{l}
1 \\
1
\end{array}\right] ; \alpha\left[\begin{array}{c}
\frac{1-p}{q-p} \\
\frac{q-1}{q-p}
\end{array}\right]
$$

Communication Channel Error Modeling

Notes:

1) The rows sum to unity $\|P\|_{\infty}=1$
2) $P \underline{e}=\underline{e} \Rightarrow 1$ is an eigen value of $P ; \underline{e}$ is an eigen vector of P
3) As $n \rightarrow \infty, \underline{p}(n) \rightarrow \underline{p}$

$$
\Rightarrow \underline{p}=P^{T} \underline{p} \quad \underline{p} \sim\left\{\begin{array}{l}
\text { Limiting probablity vector } \\
\text { Steady - state } \\
\text { stationary }
\end{array}\right\} \begin{aligned}
& \text { When } \\
& \text { does it } \\
& \text { exist? }
\end{aligned}
$$

4) $\operatorname{Rank}(P) \leq N \Rightarrow(N+1)$ unknowns, at most N independent equations

$$
(N+1)^{t h} \text { equation: } \quad \sum_{i=0}^{N} p_{i}=1 \Rightarrow \text { normalization equation }
$$

Steady state probabilities for comm. channel:
$p_{0}+p_{1}=1 ; p p_{0}+(1-q) p_{1}=p_{0}$
$\left.\Rightarrow(p-1) p_{0}+(1-q)\left(1-p_{0}\right)=0\right\} \Rightarrow p_{0}=\frac{1-q}{2-p-q} ; p_{1}=\frac{1-p}{2-p-q}$

DTMC Example 2

Example 2: Routing in a central server modal of a CPU-I/O subsystemUni-programmed (single job) system

DTMC Example 3

Example 3: Memory interference in a shared-memory multi-processor system

Assumptions

1. Cross - bar switch ($m \times P$)
2. Memory split into m modules
3. Only one processor is granted access to a memory module
4. Processes generate new requests as soon as current request is processed $\Rightarrow P$ requests at memory modules.
5. Memory access time is a constant (=1 unit of time) (deterministic)
6. $q_{i}=$ prob. that a processor generates request to memory module i

Problem: Find average \# of memory requests completed per memory cycle

	11	02	20	
11	[2 $q_{1} q_{2}$	q_{2}^{2}	q_{1}^{2}	Note:
$P=02$	q_{1}	q_{2}	0	
20	q_{2}	0	q_{1}	

Memory Interference in a Multi-processor

In Steady State

$$
\begin{aligned}
& p_{(1,1)}=2 q_{1} q_{2} p_{(1,1)}+q_{1} p_{(0,2)}+q_{2} p_{(2,0)} \\
& p_{(0,2)}=q_{2}^{2} p_{(1,1)}+q_{2} p_{(0,2)} \Rightarrow p_{(0,2)}=\frac{q_{2}^{2}}{1-q_{2}} p_{(1,1)} \\
& p_{(2,0)}=q_{1}^{2} p_{(1,1)}+q_{1} p_{(2,0)} \Rightarrow p_{(2,0)}=\frac{q_{1}^{2}}{1-q_{1}} p_{(1,1)} \\
& p_{(1,1)}=\frac{1}{1+\frac{q_{1}^{2}}{1-q_{1}}+\frac{q_{2}^{2}}{1-q_{2}}}=\frac{\left(1-q_{1}\right)\left(1-q_{2}\right)}{q_{1}^{2}+q_{2}^{2}-q_{1} q_{2}}=\frac{q_{1} q_{2}}{1-2 q_{1} q_{2}}
\end{aligned}
$$

We can compute other measure of interest. For example, the expected number of memory requests completed per memory cycle, $E(B)$ can be computed as follows:

$$
\begin{aligned}
& E(B)=E(B \mid[1,1]) p_{(1,1)}+E(B \mid[0,2]) p_{(0,2)}+E(B \mid[2,0]) p_{(2,0)} \\
& E(B \mid[1,1])=2 ; E(B \mid[0,2])=1 ; E(B \mid[2,0])=1
\end{aligned}
$$

Memory Interference in a Multi-processor

$$
\therefore E(B)=\left(2+\frac{q_{1}^{2}}{1-q_{1}}+\frac{q_{2}^{2}}{1-q_{2}}\right) \frac{q_{1} q_{2}}{1-2 q_{1} q_{2}}=\frac{1-q_{1} q_{2}}{1-2 q_{1} q_{2}}
$$

\square Optimization Problem:
$\underset{q_{1}, q_{2}}{\operatorname{Max}} E(B)$ subject to $q_{1}+q_{2}=1 \Rightarrow q_{1}^{*}=q_{2}^{*}=\frac{1}{2} \Rightarrow E(B)=\frac{3}{2}$

References:

1. F. Baskett and A.J. Smith, "Interface in Multi-processor Computer Systems with Interleaved Memory," CACM, Vol.19, No.6, 327-334, 1976.
2. D. Chang, D.J. Kuck, and D.H. Lawrie," On the Effective Bandwidth of Parallel Memories," IEEE Trans. on Computers, Vol C-26-5, May 1977, pp.480-42
3. S.H. Fuller, "Performance Evaluation," in Introduction to Computer Architectures, H.S. Stone (ed.), Science Research Associates, Chicago, IL, 1975.

DTMC \leftrightarrow CTMC - 1

Before considering some interesting properties of DTMC, let us introduce the corresponding continuous-time Markov chains (CTMC) so that we can study their properties by analogy.

$$
\text { DTMC } \quad \leftrightarrow \quad \text { CTMC }
$$

$$
\begin{array}{lll}
0 \Delta 2 \Delta & \cdots & n \Delta(n+1) \Delta
\end{array} \begin{gathered}
t \\
\\
\\
\\
\\
n \Delta
\end{gathered} \quad \begin{aligned}
& t+\Delta t \\
& (n+1) \Delta
\end{aligned}
$$

Know

$$
\begin{aligned}
& \underline{p}((n+1) \Delta)=P^{T}(n \Delta) \underline{p}(n \Delta) \\
& \underline{p}(t+\Delta t)=P^{T}(t) \underline{p}(t) \\
& \underline{p}(t)=\left[\begin{array}{l}
p_{0}(t) \\
p_{1}(t) \\
\vdots \\
p_{N}(t)
\end{array}\right] ; \quad p_{i}(t)=P\{X(t)=i\} \\
& \underline{p}(t+\Delta t)-\underline{p}(t)=\left(P^{T}(t)-I\right) \underline{p}(t)
\end{aligned}
$$

DTMC \leftrightarrow CTMC - 2

$$
\begin{gathered}
\lim _{\Delta t \rightarrow 0} \frac{\underline{p}(t+\Delta t)-\underline{p}(t)}{\Delta t}=\left(\lim _{\Delta t \rightarrow 0} \frac{P^{T}(t)-I}{\Delta t}\right) \underline{p}(t) \\
\frac{d \underline{\underline{p}}(t)}{d t}=Q^{T}(t) \underline{p}(t)
\end{gathered}
$$

where

$$
\begin{aligned}
Q(t)=\lim _{\Delta t \rightarrow 0} \frac{P(t)-I}{\Delta t} \Rightarrow q_{i i}(t) & =\lim _{\Delta t \rightarrow 0} \frac{P_{i i}(t)-1}{\Delta t} \\
& =\lim _{\Delta t \rightarrow 0} \frac{[P\{X(t+\Delta t)=i \mid X(t)=i\}-1]}{\Delta t} \\
q_{i j}(t) & =\lim _{\Delta t \rightarrow 0} \frac{P_{i j}(t)}{\Delta t} ; \quad i \neq j
\end{aligned}
$$

$Q(t)=\left[q_{i j}(t)\right] \quad(N+1)$ by $(N+1)$ matrix is termed the "infinitesimal generator matrix" or "the transition rate matrix"

DTMC \leftrightarrow CTMC - 3

Notes:

1) $P=e^{Q \Delta}$
2) Since $\sum_{\mathrm{j}=0}^{\mathrm{N}} P_{i j}(t)=1 \Rightarrow \sum_{\mathrm{j}=0}^{\mathrm{N}} q_{i j}(t)=0 \quad \forall i \Rightarrow$ row sums of Q are zero

$$
P \underline{e}=\underline{e} \Rightarrow e^{Q \Delta} \underline{e}=\underline{e} \Rightarrow Q \underline{e}=\underline{0}
$$

2) $q_{i j}(t)=q_{i j} \Rightarrow$ Homogenous Markov chain
3) $Q \underline{e}=\underline{0} \Rightarrow \lambda=0$ is an eigen value of Q with eigen vector \underline{e}
4) Steady state probability distribution :

$$
\begin{aligned}
\text { CTMC } & \leftrightarrow \text { DTMC } \\
\underline{\dot{p}}=0 \Rightarrow Q^{T} \underline{p} & =\underline{0} \Leftrightarrow \underline{p}=P^{T} \underline{p}
\end{aligned}
$$

When does it exist?

Since $\operatorname{Rank}(Q) \leq N \Rightarrow$ at most N independent equations

What do Transition Rates Mean?

What do the transition rates means ?

- Given that the process is in state i at time t, then the probability that a transition occurs to any other state during the interval $(t, t+\Delta t]$ is given by $-q_{i i}(t) \Delta t+o(\Delta t) \Rightarrow-q_{i i}(t)$ is the rate at which the stochastic process leaves state i at time t, given that the process is in state i at time t

$$
q_{i i}(t)=-\sum_{i \neq j} q_{i j}(t)(o r) \quad 1=-\sum_{i \neq j} \frac{q_{i j}(t)}{q_{i i}(t)}=\sum_{i \neq j} \frac{q_{i j}(t)}{\lambda_{i}} ; \lambda_{i}(t)=-q_{i i}(t)
$$

- Given that the process in in sate i at time t , the conditional probability that it will make a transition to state j in the time interval $(t, t+\Delta t]$ is given by

$$
q_{i j}(t) \Delta t+o(\Delta t) \Rightarrow P\{X(t+\Delta t)=j \mid X(t)=i\}=q_{i j}(t) \Delta t+o(\Delta t) ; i \neq j
$$

$\Rightarrow q_{i j}(t)$ is the rate at which the process moves from state i to state j at time $t+\Delta t$, given that the system is in state i at t

CTMC Example 1

DExample: Poisson process ... simplest form of continuous-time Markov chain also know as pure-birth process
Suppose we observe the arrival of messages at a communication channel (or \# of failures or jobs at a computer center) for the time interval $(0, T)$. Let $X(t)$ denote the number of messages (or jobs) at time $t . \quad X(0)=0 \Rightarrow P\{X(0)=0\}=p_{0}(0)=1$

For $\Delta \mathrm{t}$ "small", we assume that

$$
\begin{aligned}
& P\{X(t+\Delta t)=n\} \stackrel{\Delta}{=} p_{n}(t+\Delta t) \\
& \quad=p_{n-1}(t) \lambda \Delta t+p_{n}(t)(1-\lambda \Delta t) \\
& \Rightarrow \frac{d p_{n}(t)}{d t}=\lambda \quad p_{n-1}(t)-\lambda p_{n}(t) ; n \geq 1 ; p_{0}(0)=1
\end{aligned}
$$

$$
\left[\begin{array}{c}
\dot{p}_{0} \\
\dot{p}_{1} \\
\dot{p}_{2} \\
\vdots \\
\dot{p}_{n}
\end{array}\right]=\left[\begin{array}{ccccccc}
-\lambda & 0 & \cdots & \cdots & \cdots & \cdots & 0 \\
\lambda & -\lambda & \cdots & \cdots & \cdots & \cdots & 0 \\
\cdots & \cdots & \lambda & -\lambda & \cdots & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \cdots & 0
\end{array}\right]\left[\begin{array}{l}
p_{0} \\
p_{1} \\
\vdots \\
\vdots \\
\vdots
\end{array}\right] \Rightarrow q_{i i}=\lambda
$$

Differential difference equation

Digression : Moment Generating Function

Moment Generating Function (MGF): suppose a discrete random variable $X(t)$ assumes values $0,1,2, \ldots$ with probability, $p_{n}(t) ; n \geq 0$

$$
\begin{aligned}
& G_{X(t)}(z, t)=E\left[z^{X(t)}\right]=\sum_{n=0}^{\infty} p_{n}(t) z^{n}=p_{0}(t)+p_{1}(t) z+\cdots \\
& G_{X(t)}(1, t)=\sum_{\mathrm{n}=0}^{\infty} p_{n}(t)=1 \\
& \frac{\partial G_{X(t)}(z, t)}{\partial z}=\sum_{\mathrm{n}=0}^{\infty} n p_{n}(t) z^{n-1} ; \frac{\partial G_{X(t)}(1, t)}{\partial z}=E[X(t)] \\
& \frac{\partial^{2} G_{X(t)}(z, t)}{\partial z^{2}}=\sum_{\mathrm{n}=0}^{\infty} n(n-1) p_{n}(t) z^{n-2} \Rightarrow \frac{\partial^{2} G_{X(t)}(1, t)}{\partial z^{2}}=E\left[X^{2}(t)\right]-E[X(t)] \\
& E\left[X^{2}(t)\right]=\left.\frac{\partial^{2} G_{X(t)}(z, t)}{\partial z^{2}}\right|_{z=1}+E[X(t)] \\
& \sigma_{X(t)}^{2}=E\left[X^{2}(t)\right]-\{E[X(t)]\}^{2} \\
& C_{x}=\frac{\sigma_{X(t)}}{E[X(t)]} \Rightarrow \text { coefficiert of variation; } C_{x} \uparrow \Rightarrow \text { larger variability }
\end{aligned}
$$

MGF provides a simple method of evaluating moments of random variables

Poisson Process

- Coming back to Poisson process

$$
\begin{aligned}
& \quad \sum_{n=0}^{\infty} \frac{d p_{n}(t)}{\partial t} z^{n}=\lambda \sum_{n=0}^{\infty} p_{n-1}(t) z^{n}-\lambda \sum_{n=0}^{\infty} p_{n}(t) z^{n} ;\left.\frac{\partial G_{X(t}(z, t)}{\partial z}\right|_{z=1}=E[X(t)] \\
& \frac{\partial G(z, t)}{\partial t}=\lambda z G(z, t)-\lambda G(z, t)=\lambda(z-1) G(z, t) \\
& \Rightarrow G(z, t)=e^{\lambda(z-1)} G(z, 0)=e^{\lambda(z-1)}=e^{-\lambda t} \sum_{n=0}^{\infty} \frac{(\lambda t)^{n}}{n!} z^{n} \\
& \quad \text { Since } p_{0}(0)=1 \& p_{n}(0)=0 \text { for } n \geq 1 \Rightarrow G(z, 0)=\begin{array}{l}
\text { - For } \lambda t>30, \\
\text { Poisson } \sim \text { Normal } \\
1 \\
\therefore p_{n}(t)=e^{-\lambda t}\left(\frac{\lambda t)^{n}}{n!} ; n=0,1,2 \ldots\right. \\
\text { is neare root of } X(t) \\
\text { with variance } 0.25 \\
\text { - More properties in } \\
\text { Lecture 3 }
\end{array} \\
& \text { Moments of Poisson process }
\end{aligned}
$$

$$
\begin{aligned}
& E[X(t)]=\left.\lambda t \mathrm{e}^{-\lambda t(z-1)}\right|_{\mathrm{z}=1}=\lambda t \\
& E\left[X^{2}(t)\right]=(\lambda t)^{2}+\lambda t \Rightarrow \sigma_{\mathrm{X}(\mathrm{t})}^{2}=\lambda t=\text { mean } \\
& C_{X(t)}=\frac{1}{\sqrt{\lambda t}} \Rightarrow C_{X(t)} \rightarrow 0 \text { as } \mathrm{t} \rightarrow \infty \Rightarrow \text { impulse at the mean } \lambda t \\
& \text { so, } \lambda=\lim _{\mathrm{t} \rightarrow 0} \frac{\# \text { of arrivals (or events)in }(0, t)}{t}=\text { "rate of arrivals" }
\end{aligned}
$$

Poisson Process : Three Definitions

\square Counting process $\{X(t), t \geq 0\}$ is Poisson with rate $\lambda>0$, if
(i) $N(0)=0$
(ii) has independent increments, and
(iii) \# of eventsin any interval of length t is distributed as $p_{n}(t)=e^{-\lambda t} \frac{(\lambda t)^{n}}{n!} ; n=0,1,2, .$.

The int er-arrival times $\left\{\tau_{n} ; n \geq 1\right\}$ are i.i.d. exponential random variables having mean $1 / \lambda$

$$
\bar{H}_{\tau_{i}}(t)=P\left(\tau_{i}>t\right)=P(X(t)=0)=e^{-\lambda t}
$$

$$
h_{\tau_{i}}(t)=\lambda e^{-\lambda t} ; t \geq 0
$$

Distribution of Time between State Changes

\square Distribution of time between state changes in a DTMC and CTMC

DTMC \leftrightarrow Geometric pmf

Homogeneous case
CTMC \leftrightarrow Exponential density
DTMC: Suppose that the Markov chain is in state i at time $0 \Rightarrow X(0)=i$

- The chain will remain in state i with probability $P_{i i}$ and it will leave the state with probability $\left(1-P_{i i}\right)$
- Suppose that the next state is $i(\Rightarrow X(1)=i)$. Then, the same two choices are available at the next time step

Copyright ©2004 by K. Pattipati
Let $T_{i}=$ time the Markov chain spends in state i during a single visit to state i $=1+\#$ of $(i \rightarrow i)$ transitions made before leaving state i

$T_{i}=1$ with probability $\left(1-P_{i i}\right)$
$T_{i}=2$ with probability $\left(1-P_{i i}\right) P_{i i}$
$T_{i}=n$ with probability $\left(1-P_{i i}\right) P_{i i}^{n-1}$

Geometric pmf

Geometric pmf

- Geometric pmf

$$
P\left(T_{i}=n\right)=\left(1-P_{i i}\right) P_{i i}^{n-1} ; n=1,2, \ldots
$$

- Moments of Geometric pmf

$$
G(z)=\sum_{\mathrm{n}=0}^{\infty} P\left(T_{i}=n\right) z^{n}=\frac{\left(1-P_{i i}\right) z}{\left(1-P_{i i} z\right)}, \quad|z|<\frac{1}{p_{i i}}
$$

$$
\bar{T}_{i}=E\left(T_{i}\right)=\left.\frac{d G(z)}{d z}\right|_{z=1}=\frac{\left(1-P_{i i}\right)^{2}+P_{i i}\left(1-P_{i i}\right)}{\left(1-P_{i i}\right)^{2}}=\frac{1}{1-P_{i i}}
$$

$$
E\left(T_{i}^{2}\right)=\left.\frac{d^{2} G(z)}{d z^{2}}\right|_{z=1}+\bar{T}_{i}=\frac{2 P_{i i}}{\left(1-P_{i i}\right)^{2}}+\frac{1}{1-P_{i i}}=\frac{1+P_{i i}}{\left(1-P_{i i}\right)^{2}}
$$

$$
\sigma_{T_{i}}^{2}=\frac{P_{i i}}{\left(1-P_{i i}\right)^{2}} \quad \text { so that } C_{T_{i}}=\sqrt{P_{i i}} \Rightarrow \operatorname{High} \bar{T}_{i} \rightarrow \operatorname{High} C_{T_{i}}
$$

DTMC (Geometric pmf) \leftrightarrow CTMC (Exponential density)

CTMC \Rightarrow Exponential Density

- CTMC: Limiting case of DTMC

Intuitive proof: The process may leave state i even during $(0, \Delta t)$

$$
\begin{aligned}
& P\left\{0 \leq \tau_{i}<\Delta t\right\}=\left(1-P_{i i}\right)=-q_{i i} \Delta t \\
& P\left\{\Delta t \leq \tau_{i}<2 \Delta t\right\}=\left(1-P_{i i}\right) P_{i i}=-q_{i i} \Delta t\left(1+q_{i i} \Delta t\right) \\
& P\left\{n \Delta t \leq \tau_{i}<(n+1) \Delta t\right\}=\left(1-P_{i i}\right) P_{i i}^{n}=-q_{i i} \Delta t\left(1+q_{i i} \Delta t\right)^{n} \\
& \text { Let } \Delta t \rightarrow 0 \text { \& } n \rightarrow \infty \text { э } n \Delta t \rightarrow t \\
& h_{\tau_{i}}(t)=\lim _{\Delta t \rightarrow 0} \frac{P\left\{n \Delta t \leq \tau_{i}<(n+1) \Delta t\right\}}{\Delta t}=\lim _{\Delta t \rightarrow 0}-q_{i i}\left(1+q_{i i} \Delta t\right)^{n} \\
& =-q_{i i}\left(1+q_{i i} t t\right)^{t / \Delta \lambda} \\
& =-q_{i i} e^{q_{i j} t} \\
& \text { letting } \lambda_{i}=-q_{i}, \text { we have } h_{\tau_{i}}(t)= \begin{cases}\lambda_{i} e^{-\lambda_{i} t} & t \geq 0 \\
0 & t<0\end{cases} \\
& \text { CDF: } H_{\tau_{i}}(t)=P\left(\tau_{i} \leq t\right)=1-e^{-\lambda_{i} t} \Rightarrow \text { Complementary CDF }: \bar{H}_{\tau_{i}}(t)=P\left(\tau_{i}>t\right)=e^{-\lambda_{i} t}
\end{aligned}
$$

Formal Proof of Exponential Density

- Formal proof:
suppose the process has been in state i for r time units. Want to find

$$
P\left\{\tau_{i}>r+t \mid \tau_{i}>r\right\}=\frac{P\left(\tau_{i}>r+t, \tau_{i}>r\right)}{P\left(\tau_{i}>r\right)}=\frac{P\left(\tau_{i}>r+t\right)}{P\left(\tau_{i}>r\right)}
$$

$\Rightarrow P\left\{\tau_{i}>r+t\right\}=P\left(\tau_{i}>r\right) P\left(\tau_{i}>r+t \mid \tau_{i}>r\right)$
Let $\bar{H}_{\tau_{i}}(t)=P\left(\tau_{i}>r+t \mid \tau_{i}>r\right) \forall r$ so that $P\left(\tau_{i}>r+t\right)=p\left(\tau_{i}>r\right) \bar{H}_{\tau_{i}}(t)$
If we set $r=0$ and noting that $P\left(\tau_{i}>0\right)=1$, we have $\bar{H}_{\tau_{i}}(t)=P\left(\tau_{i}>t\right)$
So, $P\left(\tau_{i}>r+t\right)=P\left(\tau_{i}>t\right) P\left(\tau_{i}>r\right)=P\left(\tau_{i}>t\right)\left[1-P\left(\tau_{i} \leq r\right)\right]$

$$
\begin{gathered}
P\left(\tau_{i}>t\right)-P\left(\tau_{i}>r+t\right)=P\left(\tau_{i} \leq r+t\right)-P\left(\tau_{i} \leq t\right)=P\left(\tau_{i}>t\right) P\left(\tau_{i} \leq r\right) \\
H_{\tau_{i}}(r+t)-H_{\tau_{i}}(t)=\left[1-H_{\tau_{i}}(t)\right] H_{\tau_{i}}(r) \Rightarrow H_{\tau_{i}}(r)=\frac{H_{\tau_{i}}(r+t)-H_{\tau_{i}}(t)}{\left[1-H_{\tau_{i}}(t)\right]} \Rightarrow h_{\tau_{i}}(r)=\frac{h_{\tau_{i}}(r+t)}{1-H_{\tau_{i}}(t)} \\
\Rightarrow h_{\tau_{i}}(0)=\frac{h_{\tau_{i}}(t)}{1-H_{\tau_{i}}(t)} \Rightarrow \text { hazard rate }=\frac{\text { density }}{\text { complementary CDF }} \text { is constan } t \\
=-\frac{d}{d t} \ln \left[1-H_{\tau_{i}}(t)\right] \Rightarrow \ln \left[1-H_{\tau_{i}}(t)\right]=-h_{\tau_{i}}(0) t+c \Rightarrow 1-H_{\tau_{i}}(t)=e^{-h_{\tau_{i}}(0) t} \cdot e^{c}
\end{gathered}
$$

Since at $t=0,1-H_{\tau_{i}}(0)=1 \Rightarrow c=0 \Rightarrow H_{\tau_{i}}(t)=1-e^{-h_{i}(0) t} \Rightarrow h_{\tau_{i}}(t)=h_{\tau_{i}}(0) e^{-h_{\tau_{i}}(0) t}$
Since $\quad h_{\tau_{i}}(0) \Delta t=\left[1-p_{i i}\right]=-q_{i i} \Delta t \Rightarrow h_{\tau_{i}}(0)=-q_{i i}=\lambda_{i}$
so $\quad H_{\tau_{i}}(t)=1-e^{q_{i i} t}=1-e^{-\lambda_{i} t} ; \mathrm{h}_{\tau_{\mathrm{i}}}(t)=\lambda_{\mathrm{i}} \mathrm{e}^{-\lambda_{i} t}$

Moments of Exponential Density

- Moment of exponential density

Recall Laplace transforms: $L(s)=\int_{0}^{\infty} e^{-s t} h_{\tau_{i}}(t) d t$

$$
\left.\begin{array}{l}
-\left.\frac{d L(s)}{d s}\right|_{s=0}=\int_{0}^{\infty} t h_{\tau_{i}}(t) d t=E\left(\tau_{i}\right) \\
\left.\frac{d^{2} L(s)}{d s^{2}}\right|_{s=0}=\int_{0}^{\infty} t^{2} h_{\tau_{i}}(t) d t=E\left(\tau_{i}^{2}\right)
\end{array}\right\} \sigma_{\tau_{i}}^{2}=E\left(\tau_{i}^{2}\right)-\left[E\left(\tau_{i}\right)\right]^{2}
$$

For exponential density

$$
\begin{aligned}
& L(s)=\frac{\lambda_{i}}{s+\lambda_{i}} \Rightarrow-\frac{d L(s)}{d s}=\frac{\lambda_{i}}{\left(s+\lambda_{i}\right)^{2}} \Rightarrow E\left(\tau_{i}\right)=\frac{1}{\lambda_{i}} \\
& \frac{d^{2} L(s)}{d s^{2}}=\frac{2 \lambda}{(s+\lambda)^{3}} \Rightarrow E\left(\tau_{i}^{2}\right)=\frac{2}{\lambda_{i}^{2}} \Rightarrow \sigma_{\tau_{i}}^{2}=\frac{1}{\lambda_{i}^{2}} \Rightarrow C_{\tau_{i}}=1 \\
& (-1)^{n} \frac{d^{n} L(s)}{d s^{n}}=\frac{n!\lambda}{(s+\lambda)^{n+1}} \Rightarrow E\left(\tau_{i}^{n}\right)=\frac{n!}{\lambda^{n}}
\end{aligned}
$$

Uniformization - 1

- Uniformization

Suppose have a continuous time Markov chain with transition rate matrix $Q=\left[q_{i j}\right]$ such that

$$
\lambda_{i}=-q_{i i}=\lambda \quad \forall i
$$

Define $P=I+\frac{Q}{\lambda}=\left[\begin{array}{ccccc}0 & \frac{q_{12}}{\lambda} & \frac{q_{13}}{\lambda} & \ldots & \frac{q_{1 n}}{\lambda} \\ \frac{q_{21}}{\lambda} & 0 & \frac{q_{23}}{\lambda} & \ldots & \frac{q_{2 n}}{\lambda} \\ \vdots & \vdots & \vdots & \ldots & \vdots \\ \frac{q_{n 1}}{\lambda} & \cdots & \cdots & \frac{q_{m-1}}{\lambda} & 0\end{array}\right]$

- \# of transitions by time $t\{N(t)$, $t \geq 0\}$ is Poisson with rate λ
- Computationally useful, since can truncate summation at finite k

Then, P is a transition probability matrix with $P_{i i}=0 ; P_{i j}=\frac{q_{i j}}{\lambda} ; i \neq j$
$\left.\Phi_{i j}(t)=P\{x(t)=j \mid x(0)=i)\right\}=\left(e^{Q t}\right)_{i j}$
But $e^{Q t}=e^{(\lambda P-\lambda) t}=e^{-\lambda t} \cdot e^{\lambda P t}=e^{-\lambda t} \sum_{k=0}^{\infty} \frac{(\lambda P t)^{k}}{k!}=\sum_{k=0}^{\infty} P^{k} \frac{e^{-\lambda t}(\lambda t)^{k}}{k!}$

Uniformization - 2

1. Question: What if $q_{i i} \neq q_{j j}$

Suppose that λ_{i} are such that $\lambda=\max _{k} \lambda_{k}$
Form $P^{*}=I+\frac{Q}{\lambda}=\left[\begin{array}{ccccc}1-\frac{\lambda_{1}}{\lambda} & \frac{q_{12}}{\lambda} & \ldots & \ldots & \frac{q_{1 n}}{\lambda} \\ \frac{q_{21}}{\lambda} & 1-\frac{\lambda_{2}}{\lambda} & \ldots & \ldots & \frac{q_{2 n}}{\lambda} \\ \vdots & \vdots & \vdots & \ldots & \vdots \\ \frac{q_{n 1}}{\lambda} & \ldots & \ldots & \frac{q_{n n-1}}{\lambda} & 1-\frac{\lambda_{n}}{\lambda}\end{array}\right]$
Then P is a transition probability matrix with

$$
P_{i i}^{*}=1-\frac{\lambda_{i}}{\lambda} ; P_{i j}^{*}=\frac{q_{i j}}{\lambda}=\frac{\lambda_{i}}{\lambda} P_{i j} \Rightarrow P_{i j}=\frac{q_{i j}}{\lambda_{i}}
$$

Note $: \operatorname{Re}$ al DTMC $: P_{i i}=0 ; P_{i j}=\frac{P_{i j}^{*}}{\left(1-P_{i i}^{*}\right)}$
But $e^{Q t}=e^{\left(\lambda P^{*}-\lambda\right) t}=e^{-\lambda t} \cdot e^{\lambda P^{*} t}$

$$
=e^{-\lambda t} \sum_{k=0}^{\infty} \frac{\left(\lambda P^{*} t\right)^{k}}{k!}=\sum_{k=0}^{\infty} P^{* k} \frac{e^{-\lambda t}(\lambda t)^{k}}{k!}
$$

Real process leaves state i at rate λ_{i}. But, this is equivalent to saying that transitions occur at rate λ, but only the fraction λ_{i} / λ of transitions are real ones (and these real transitions occur at rate λ_{i}) and the remaining [1- $\left.\left(\lambda_{i} / \lambda\right)\right]$ fraction of transitions are fictitious self-transitions, which leave process in state i.

Summary

[. Discrete-time Markov Chains \Rightarrow geometric holding time pmf

- Continuous-time Markov Chains \Rightarrow exponential holding time density
- Poisson process
- Uniformization

[^0]: Copyright ©2004 by K. Pattipati

