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Dept. of Electrical and Computer Engineering

University of Connecticut
Contact: krishna@engr.uconn.edu (860) 486-2890

ECE 336
Stochastic Models for the Analysis of Computer Systems
and Communication Networks

k L

oYL L

Copyright ©2004 by K. Pattipati



mailto:krishna@engr.uconn.edu

FFF oL L

&

(I Outline of Lecture 2 l

O Summary of Lecture 1
 Discrete-time Markov Chains
O Continuous-time Markov Chains

O Uniformization (Embedded Markov Chains)
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(I Summary of Lecture 1 I

Characterizing Queuing Models : Arrivals, Service, Queuing Discipline, Storage

Little’s law: Q=A4AR, Q, =AW, U=4At = R=W+t

« When applied to a multi-access communication system,
provided asymptotic bounds (ABA)

‘ ‘ 'N
Nt + z
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l—l-||H

Throughout x(t)

Can we get better information?  yes, but requires the knowledge of the
stochastic process A(t), D(t) and Q(t) = Need to have background in
probability theory and stochastic processes
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Examples:

« A Component is (up, down)

TN

If we assign a variable X (w, t) D
1 if w=w,attimet (bus
X (a),t) _ - w a)l - ( - y)
0 If w=w,attimet(idle)

X(w , t) 1s a discrete-state rv at time t

Copyright ©2004 by K. Pattipati

(I Random Variables l

« A Communication channel is (busy, idle)

« A program is in one of n states (wait, execute, I/0, system up/down)

The possible observations or sample space is denoted by Q

Example: Q= (o, ®,) = (busy,idle)

\_—

X(w , t) 1s termed the random
variable (rv) at time t, i.e.,
functions defined on the sample
space Q. We omit o from the
definition of a random variable
from now on for simplicity.
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N 4 (I Stochastic Processes -1 l

Definition: A stochastic process is a family of random variables
{X(t), t €T } where t varies over an index set T

O For a fixed value of index t =t;, X(t,) is a random variable
d We can define four sets of stochastic processes depending on the

possible values that X and t can take
Examples:

1) Inthe channel example above t is time; T €[0,0) = continuous-time
S0, the process is: Continuous-time Discrete-state (CTDS) process
O Atypical realization (or sample path) of the process consists of
alternate busy and idle periods

A

4
Bus Idle Bus Idle Bus
y y y .
. > a3
time, t > -,
* Q(t), A(t), D(t) are also CTDS processes 4 :
Copyright ©2004 by K. Pattipati .
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: (I Stochastic Processes -2 l

2) W, = time k™ customer has to wait in the system before receiving service
Wk
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X

1 2 3 4

k —

keT={1 2 3,4.. }=Z" setof positive integers >0
Discrete—index (Discrete-time)-continuous state (DTCS) process

 Discrete-time Control Systems
Xy =PX +T'U, + EW,
Y, =CX +V,

k L
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DTCS processes
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(I Stochastic Processes - 3 |

3) Cumulative service demand of all jobs in the system (“workload”)
{Y(t),te T € [0, o)

Continuous-time continuous-state (CTCS) process

Y(t)

oYL L
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: (I Stochastic Processes - 4 l

4) N, =# of customers in the system at the time of arrival of k™ customer

=N, | k=123 ..} N e(01234,.)

Discrete — index (Discrete-time) Discrete — state (DTDS) stochastic process

N
X

# of customers in the system, N,

X X

Y AV 4
ZAY N J J
1 2 3 4 3) -
Arriving customer, k > a
o
o
Copyright ©2004 by K. Pattipati .



1Y Classification of Stochastic Processes
d
a Classification Summary:
|
N state _ _
\ Discrete Continuous
W time
Discrete DTDS DTCS
Continuous CTDS CTCS
DTCS... e.g., Delayanalysis Que_Uir_‘g_ &
DTDS... e.g., Markov Chains Rella_bllle
CTDS... e.g., Continuous time Maikov chains | APplications j j
CTDS + CTCS...  Performability processes j j
=
Copyright ©2004 by K. Pattipati .
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¥ - | Probability Distribution ]

For a fixed time t;, X(t,) is a random variable - For a random variable X(t,),
we can talk about the cumulative distribution function (CDF)

F(Xl’tl): P{X(tl) < Xl}

EF O DL L

Suppose we have sampled the process X(t,)) at t=t, t,, ...., z,, then

F(Zvl): P{x(tl)gxl; X(tz)gxz ;"';x(tn) an}

R _tl .
X t
x=|." t=|’
_Xn_ 1:n
Joint Distribution of X(t,), X(t,)..., X(z,) is difficult to compute 4 4
d ']
: a3
We can make one of two assumptions. a
Copyright ©2004 by K. Pattipati :
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(I Independent Process I

O Independent process: Renewal process (e.g., failures of components
with negligible repair time), Xi= inter-failure times i.i.d.

By chain rule: P(ABC) = P(A|BC) P(B|C) P(C)
F(Z!E):P{X(tn) < Xn | X(tnl) an-l; ;X(tl)gxl}
PIX(G) < %, | X(t) < x } P{X(L) < x}
= [T PO < X TXE) < %y o XGa) < X)
Independence =

F(ut) = [ PXG) < x)=T] Fix.t)

oYL L
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(I Markov Process I

O Markov (first-order dependency) process

F(xt)= _f[P( X(t) < % | X(t,)<%,)

More often then not, X(t;,) Is known exactly, i.e. X(t.1)=X;; SO

FOt) = [TPOXG) < X 1X()=X,)

The probability distribution of X(t,) at time t, depends only on the state
at X(t.,) time t,, for any sequence of time instants t;, t,,...,.; > {;<t,<...t;

“Knowledge of the present makes the past irrelevant”

oYL L
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5" (I Markov Chains I

We are mostly interested in discrete-state Markov Process... known
as Markov chains

Markov Chains

Discrete-time Continuous time
(DTMC) (CTMC)

e Transitions from
one-state to the next
are allowed at discrete
time instants 0, A, 2A,...

 Transitions are allowed
at any point in time

. ; 1
Similarto: X, =P'x,  %=Q'x =P=e* )
- - :O =
For Markov chains, Q has a special structure: Qe=0> €=,
od o
QZAZ 1
_ L )e— 4
Pe=(1+QA+ 2 +-)e=e — Eigen value=0 -,
— Eigen valule =1 & Eigen wector = e = Elgen vector=¢ o
Copyright ©2004 by K. Pattipati .



N 4 (I Discrete-time Markov Chains -ll

We will discuss some applications before we discuss the theory
d DTMC: Aprocess {X., n=0, 1, 2, ...} is a finite-state Markov chain
5X,,,€(0,1,2,..,N) and P(X,.,=jlX,=0) = Pn)=0

EF O DL L

N
2150 > P(n)=1 Vi &n =0,1,2,. —Pe=e

j=0

State at step n+1 —
0 1 2 3

O Poo(n) POl(n) POZ(n) POS(n)
Stateat 4 1p () Pyn) P,(n) Pun)
Stepn

. 2 on(n) P21(n) Pzz(n) st(n)

3 _Pso(n) P31(n) Psz(n) Pss(n)_

One-step Transition Probability Matrix (TPM)

P;; (n) ~a function of step or stage n = non-homogenous ( non stationary or time-varying) Markov chain

kL L
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P;; =constant = time homogenous (or stationary or time-invariant) Markov chain

ij
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@J—| Discrete-time Markov Chains -z|

O If we let the unconditional probability that the chain is in state j at

time step (n+1) by p; (n+1) then

pjin+1) = P(X,,=1))

n+l —

N

=0

n+l

M= 1M

I
o

P;(n)pi(n)

= > P(X,,,=],X,=i) byTotal Prob. Theorem

P(X,.a= 11X, =1). P(X, =)

/ Non-homogeneous B po(n) 7

7

= | p(n+1)=P'(n) pn)| ;

p(n+1) = P\T p(n)

Copyright ©2004 by K. Pattipati \ Homogeneous case

o) = E|ol(ln)
| pu(n). e
N o d
pme=>p(n)=1 aa
i=0 ‘
L
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A | DTMC Examplel |

Example: 1) A cascaded communication channel X, e (0, 1)

XO:
Xo=1
P(X,..,=0/X =0)=p; P(X,;=1]|X,=0) =1p Eigen vectors:
P(X.,, =1/X =0)=1-q; P(X,, =1X, =1) = q (1-p |
1 _
p 1-p {} q-p
P: = :1, + _1 @ ’a — o4 d
L_q q } A4(P)=1,p+q 1 q-1 .
[ 4— P ah
4
d
Copyright ©2004 by K. Pattipati .
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s 1 Communication Channel Error Modeling

Notes:

1) The rows sum to unity||P | =1

3) Asn - o, p(n) - p

i=0

Po+ P =1 pp, +(1—0)p, = Py
= (p_l) Po +(1—CI)(1— po) :O}: Po =

Limiting probablity vector
= p =P'p  p~qSteady-state “ | does it
stationary

2) Pe = e = 1 isaneigen value of P;e isaneigen vector of P

When

exist?

4) Rank (P) < N = (N +1) unknowns, at most N independent equations
N
(N +1)" equation: > p, =1 = normalization equation

Steady state probabilities for comm. channel:

-9 . 1-p

2-p-¢ 2-p-Q

kL L
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(l DTMC Example 2 I

Example 2: Routing in a central server modal of a CPU-1/O subsystem
...Uni-programmed (single job) system

/\qo

CPU
(d, O Opm
1 0 0 )
P= 0 0| =) g-=1
. i=0
: 0
1 0 0

Other Applications:

Copyright ©2004 by K. Pattipati

Devices: i=0, 1, 2,, m
X = state of job

X=1 ifjob is at device i
—>N=m

» Relative visits In
closed networks
» Modeling programs

N

qopo+2p o=t

’ 2-0,
Pi =4 P - = q; 44
Pi = I 4 4

m 2_0
Zpi =1 ! jj
i=0 o
L
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(l DTMC Example 3 l

Example 3: Memory interference in a shared-memory multi-processor system

N

Assumptions
Cross — bar switch (mx P)
Memory split into m modules
Only one processor is granted access
to a memory module
Processes generate new requests as
soon as current request is processed
= P requests at memory modules.
Memory access time is a constant (= 1
unit of time) (deterministic)
q; = prob. that a processor generates
request to memory module i

Problem: Find average # of memory requests completed per memory cycle

Copyright ©2004 by K. Pattipati
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Consider P=2, m=2

Possible states: (1, 1), (0, 2), (2, 0)

1 busy
2 idle

Copyright ©2004 by K. Pattipati

1 idle

ql +q2+-'+qm

4> 1 m
LN
>P requests Q—
11 02 2 0
11 2q q q2 q2 Note:
o 00 la o o | @rer=L

= Gy d, .
20 |9 0 q, | 0
J
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1Ys |Memory Interference in a Multi-processor
o
: In Steady State
: Py = 200, Pa1y + GPo2y + U2P20)
2
. P2y = q22 Pany TAPo2y = Pz zlq_z P11y
-0,
_ _ g
P20y = % Puay TA4P2ey = P20y ~1 Peia)
—q,
P — 1 — (1_q1)(1_q2) _ ql q2
L%, 4 oi+ai-g0, 1-2q.0,
1_q1 1_q2
We can compute other measure of interest. For example, the expected
number of memory requests completed per memory cycle, E(B) can be
computed as follows:
E(B)=E(B|[11]) Pigy T E(B|[0,2]) Prog) + E(B|[2,0]) P20 j j
E(BI[11]) = 2 E(B|[02]) =1; E(B|[20]) =1 a8
r
Copyright ©2004 by K. Pattipati .
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1Yes |Memory Interference in a Multi-processor
d 2 2
. L E(B)=(2+ 4, 4 9, ) G _ 1-g,9,
: 1_q1 1_q2 1_ZQ1q2 1_2q1q2
O Optimization Problem:
Max E(B) subject toqg, +q, =1= q: = q: = % = E(B) = g
01,42

References:

1. F. Baskett and A.J. Smith, “Interface in Multi-processor Computer
Systems with Interleaved Memory,” CACM, Vol.19, No.6, 327-334, 1976.

2. D. Chang, D.J. Kuck, and D.H. Lawrie,” On the Effective Bandwidth of
Parallel Memories,” 1EEE Trans. on Computers, Vol C-26-5, May 1977,
pp.480-42

3. S.H. Fuller, “Performance Evaluation,” in Introduction to Computer
Architectures, H.S. Stone (ed.), Science Research Associates, Chicago, IL,
1975.
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| DTMC & CTMC - 1 |

Before considering some interesting properties of DTMC, let us
Introduce the corresponding continuous-time Markov chains (CTMC)
so that we can study their properties by analogy.

FFF oL L

DTMC CTMC
0A24 --- nd(n+1)A % t+$At

nA  (n+1)A
Know
p((n+1)A) = P'(nA) p (nA)
plt+4y) = PT(t) p(t)
[ py(t) |

p(D) |

pt) = p, (t) = P{X(t) =i}

| Py(0).
pt+49-pt) = (PT(X) - 1) p()

oYL L
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| DTMC & CTMC - 2 |

_opt+do-pt) o PT(0) -l
lm S = (lim= =) pl)
dpt)y
5 —QOPO
where
o P - R4
Q(t) B !!To At = qii(t) = JIETO 1
= lim [PiX(t+49=i] X(©) =i} -1]
At—0 At
R
WO = fm= s i

QM) =[a;®) ] (N+1)by (N+1) matrix is termed the “infinitesimal
generator matrix” or “the transition rate matrix”

oYL L
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Y.2- (l DTMC > CTMC - 3 |

Notes :
1) P=e%

N N
2)Since Y P(t)=1 = > q,(t) = 0 Vi = rowsums of Q arezero
=0 j=0

Pe=e=e%e=e=Qe=0
2) q;(t) = g; = Homogenous Markov chain
3y Qe = 0 = 1 = 0 isaneigen value of Q with eigen vector e
4) Steady state probability distribution :

CTMC « DTMC When

p=0= Qp=0e p=Pp does it

( . N - ist?

Since Rank (Q)<N = atmost N independent equations exist:

N
(N +1)" equation > p, =1

i=0

p = normalized (with 1- norm) eigen vector of Q" for eigen value =0

or normalized eigen vector of P" for eigen valuel.

kL L
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¥ J—| What do Transition Rates Mean? l

What do the transition rates means ?

 Given that the process is in state I at time t, then the probability
that a transition occurs to any other state during the interval (t, t+4t]
IS given by - q;(t) A4t + o(4t) = - g;(t) Is the rate at which the
stochastic process leaves state i at time t, given that the process is
In state i at time t

6 = - >q,(t) (or) 1= - 2218 _ Zqut);zi(t) = Gy()

EF O DL L

 Given that the process in in sate I at time t, the conditional
probability that it will make a transition to state j in the time
interval (t, t+4t] is given by
q;(t) 4t + o(4t) = P{X(t+4t) = j | X(t) = i}= q;(t) 4t + o(4t); i=]

= (;;(t) is the rate at which the process moves from state i to state | at
time t+4t, given that the system is in state i at t

kL L
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o5 (l CTMC Example 1 I

UExample: Poisson process ... simplest form of continuous-time
Markov chain .... also know as pure-birth process
Suppose we observe the arrival of messages at a communication channel (or # of

failures or jobs at a computer center) for the time interval (0, T). Let X(t) denote
the number of messages (or jobs) at timet.  X(0) = 0 = P{X(0) =0} = p, (0) =1

4
e | | - P{X(t+ 42 = n} = p,(t+42)
t t+AL = p.,(t) A At+ p (t) 1- 1 At)
For At “small”, we assume that dp, (t)
L - — . >1: =
n+1 - dt ﬂ“ pn—l(t) ﬂ“ pn(t)1 n —1’ pO(O) 1
ne 1-)\At +0(At) n o o
Po -\ 0 Cee e e e 0 Po
pl by -\ cee e e e 0 P,
AAL +0(At) po| | o A A 0ll: _ Qii=
n-1 : : - : S0l qu_l:j~
0 I I S A N E
N B R A -1 0]|p, ] Differential — o4 d
P, (t) =—Ap, (1) differgnce o
t trat p,O)=Ap,,O)-Ap,(t); n>1 equation a'J
od 'd
a
Copyright ©2004 by K. Pattipati .
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4 Digression : Moment Generating Function
o
: O Moment Generating Function (MGF): suppose a discrete random
r variable X(t) assumes values 0, 1, 2, ... with probability, P.(t);n=0
a -
: Guo(2:1) =E[2"V]= 2 p, (1) 2" = py () + Py (D)2 +--
G0 =3 Pr(0) =1
aGxa)(z’t) _ in 0. (t) Z™ aGX(t)(l: t) — E[X(1)]
0z - z
D S yp, 02t = T2 e o] EX )
0°Gy (2,1
E[X*(1)] = 2‘2‘)2(2 )|z:1 +E[X(1)]
o’ = E[X*()]-{E[X(]F
. = _IXO__ coefficiert of variation; C, T = larger variability d Jd
E[X(1)] a3
MGF provides a simple method of evaluating moments of random variables j j
r
Copyright ©2004 by K. Pattipati .
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' (I Poisson Process |

O
d
d
. O Coming back to Poisson process
‘ c d nt n C n c n 86 t(z’ t)
u RO~ e 02 —23pwz ;0 2B Ex)
. n=0 8’[ n=0 n=0
G 9 =1zG(z - 1G(z, 1) =A(z-1)G(z,t)
At(z-1 At(z-1 C }“ t)
= G(z,t) = e"YG(z,0) = " = « For At>30,
_ n-o I Poisson ~ Normal
Since p(0)=1 & p,(0) =0 for n21 = G(Z, 0) = L. Square root of X(t)
P V2 is nearly normal
. PO =€” n =012 with variance 0.25
_ « More properties in
O Moments of Poisson process Lecture 3

E[X()] = Ate Y| =it
E[X?(t)] =(A1)° + At= o5y = At =mean

1 .
Cypy =—— =C,,, >0 as t —» oo = impulse at the mean At <4 d
X (t) \/l_'[ X (t) e

. #of arrivals (or events)in (0, t

so, A=1lim ( )in(0.1) _ = "rate of arrivals" a
t—0 ‘[ .
o
Copyright ©2004 by K. Pattipati .
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&

Poisson Process : Three Definitions

O Counting process {X(t), t>0} is Poisson with rate 4 > 0, if

(i) N(0)=0

1) N(0)=0
(1) has independent increments, and (HN()

(i) hasstationary &

<«  Independent increments, and
Lo (iif) P(X (At) =1) = 4 At + O(At)
p,(t)=e"* ( |) 'n=012,. (iv) P(X (At) > 2) = O(At)

7 >

The inter-arrival times{z,;n >1}are i.i.d.

(ii1) # of eventsin any interval
of length t is distributed as

exponential random variables having mean 1/4
Ha(0)=P(z >0 =P(X () =0) =™
h. ()=4e™;t>0

kL L
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i Distribution of Time between State Changes

O Distribution of time between state changes ina DTMC and CTMC
DTMC < Geometric pmf

Homogeneous case

EF O DL L

CTMC < Exponential density

O DTMC: Suppose that the Markov chain is in state 1 at time 0 = X(0) =

e The chain will remain in state i with probability P;; and it will
leave the state with probability (1- Pj)

* Suppose that the next state is i (= X(1) =1). Then, the same
two choices are available at the next time step

Let T, = time the Markov chain spends in
state i during a single visit to state i
= 1+ # of (i — i) transitions made
before leaving state i

od o
T. =1 with probability (1-P,) d '
T, = 2 with probability (1-P,) P, Geomeftric j j
m
T = n with probability (1-P,) P**/L_P r
Copyright ©2004 by K. Pattipati .

31 L LR LR
LR L LR



(I Geometric pmf I

A

Q Geometric pmf I Geometric pmf
P(T.=n)=(@1- P“)Piin'l;nzl,z,... ?

EF O DL L

O Moments of Geometric pmf ‘ [ T ;

_ (1'Pii) z ‘Z‘<i 1 2 3 4
(1'Pii Z)’ Pii n
_dG(2) = (1-P; )2 +Pi(1-F) 1
dz i (1'Pii )2 1'Pii
2
E(Tiz): ddcjz(Z) |z=1 + -r 2F)II 1 — (]i:'_PPI)IZ

G(z)zi P(T. =n)z"

T =E(T)

= +
- (R) IR

o= sothat C, = [P, = High T, - High C;

" (1'Pii )2

DTMC (Geometric pmf) < CTMC (Exponential density)

kL L
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e J—| CTMC = Exponential Density I

O CTMC: Limiting case of DTMC

Intuitive proof: The process may leave state i even during (0, At)
P{O<z <4t} = (1-P,)= -q,4t
P {at<t <24t} = (1-R,)P, = -q;4t(1+ ;A1)
PInAt <z, <(N+1)At} = (1-R,)P" = -q, At(1+q;40)"
LetAt—> 0 & n > > nAt—> t
h ()= lim P {nAt <z, <(n+1)At]
' At—0 At

= Jl!To -0;(1+ 0,49

= -0;(1+ q“At)UA/

= -q. eQiit

_ e 120
letting 4, = - g;, we have h (t) =

' 0 t<0

CDF :H,_ (t)=P(r; <t)=1-e™* = Complementary CDF ‘H.(t)=P(r; >t) =e ™

kL L
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Formal Proof of Exponential Density

O Formal proof:

suppose the process has been in state i for r time units. Want to find
P(r, >r+t,z; >r)  P(g > r+t)

P(ri > I’) - P(ri > r)
= P{g,>r+t} =P(g;>r) P(g,> r+tz; >r)
LetH, ()= P (zr; > r+t| 7, > r) VrsothatP (z; > r+t) = p(z; > r) H,(t)
If we setr =0 and noting that P(z; > 0)=1,we have H, (t)= P ( > t)
SO,P(z; > r+t) =P (g, > t)P(r; > r)=P (g, > t)[I-P (g, < r)]
P(Ti>t)-P(‘L’i>r+t)=P(‘L’-<r+t) P( ) (r>t)P(r-£ I’)

P{Ti>r+t|‘[i > r} =

H,_(r +1) - H_(t) h (r+t)
H+t)-H () =[1H O]H, (N=H_(r) = — —=h (r) = -
i i i i i [1_H . (t)] i 1_ H . (t)
h_(t i
=h,(0) = 0 = hazard rate = density Is constant
I-H, () complementary CDF
d h.(0)t

e —In[-H_ O]=In[1-H )] = -h (0)t+ c=1-H () =e ™ "¢
Since att=0,1-H_(0)=1 = c=0=H_(1) :1—6'h’i(°)t:>hri(t) _ hTi(O)e'h"(O)t
Since hfi(O)At: [1'pii] = -0 Atjhri(o):-qii =4
0 H,() = 1-e" =1-e"h, (1) =4

kL L
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Moments of Exponential Density

U

Moment of exponential density

Recall Laplace transfams: L(s) = je'S‘ h, (t) dt
0

dL(S) th (1) dt = E(z,)

o, = E@)-[E@)]’

ol
d” L(S) ]O h, (t) dt = E(%)

dn L(s)

E(z’) = (1) Lo
For exponential den5|ty
9= S = S A )=
S+ 4 ds  (s+4) 4
2
ds (s+4) ' A A r
d"L(s n! ; n! -
(@ T8 Ao = T r
ds (s+4) A %
Y
Copyright ©2004 by K. Pattipati .
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' (I Uniformization - 1 I

O Uniformization
Suppose have a continuous time Markov chain with transition rate
matrix Q = [q;] such that

j“i = O = A Vi
0 % % G ]
A A yl « # of transitions by time t {N(t),
| 0 % g % .. O t>0} is Poisson with rate 4
DefineP =1+ —= 2 4 A - Computationally useful, since
' : can truncate summation at finite k
G Gm g
LA yl i
Then, P is a transition probability matrix with B, = 0;P, = qi;i # |
A
i . t
®.(0) = P{x(0) = jIx0)=)} = ).
J 1) dd
00 k 00 — At K e |
But eQt = APVt _ At Pt _ it 5 (GO 5 o & ()" n
k=0 K k=0 k! a
| - a
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' (I Uniformization - 2 I

QO Question: What if q; # g;,

Suppose that 4; are such that 2

(1A G
A A
o | B g
FormP =1+ N A A
90
)
Then P isa transition probability matrix with
ot o B Ap o
ii i ij )N )N
P
Note:Real DTMC: P, =0; P, = —
d-R)
But th _ e(/1P — M)t o= Al APt
_t 2 (AP ©
k=0 k=0

Copyright ©2004 by K. Pattipati

=max A,
K

G
A

O2n
A

qnn—l

A

170
A

Real process leaves
state i at rate A,. But,
this is equivalent to
saying that transitions
occur at rate 4, but only
the fraction A;/4 of
transitions are real ones
(and these real
transitions occur at rate
/;) and the remaining
[1- (4;/A)] fraction of
transitions are fictitious
self-transitions, which
leave process in state I.
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(I Summary I

O Discrete-time Markov Chains = geometric holding time pmf
O Continuous-time Markov Chains = exponential holding time density
O Poisson process

O Uniformization
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