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Outline of Lecture 2

 Summary of Lecture 1

 Discrete-time Markov Chains 

 Continuous-time Markov Chains

 Uniformization (Embedded Markov Chains)
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Little’s law: ttWQ   W R      U,Q   R, w 

• When applied to a multi-access communication system, 

provided asymptotic bounds (ABA)

Can we get better information? yes,  but requires the knowledge of the 

stochastic process A(t), D(t) and Q(t)  Need to have background in 

probability theory and stochastic processes
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Characterizing  Queuing  Models : Arrivals, Service, Queuing Discipline, Storage

Summary of Lecture 1
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Examples:

• A Communication channel is (busy, idle)

• A Component is (up, down)

• A program is in one of n states (wait, execute, I/o, system up/down)

The possible observations or sample space is  denoted by Ω

Example: Ω=   (ω1, ω2)   =    (busy, idle)

Random Variables

If we assign a variable X ( ω, t)










(idle) t at time  if   0

(busy) t at time  if    1
),(

2

1




 tX

 X( , t)  is termed the random 

variable (rv) at time t, i.e., 

functions defined on the sample 

space Ω. We omit ω from the 

definition of a random variable 

from now on for simplicity.
X( , t) is a discrete-state rv at time t
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Definition:  A stochastic process is a family of random variables 

{X(t), t  T } where t varies over an index set T

 For a fixed value of index t = t1 , X(t1) is a random variable

 We can define four sets of stochastic processes depending on the  

possible values that X and t can take 



Stochastic Processes -1

Examples:

1) In the channel example above t is time; continuous-time

so, the process is: Continuous-time Discrete-state (CTDS) process

 A typical realization (or sample path) of the process consists of 

alternate busy and idle periods

      ,0 T

• Q(t), A(t), D(t) are also CTDS processes

Busy Busy BusyIdle Idle

time, t

X
(t

)
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2)  Wk = time kth customer has to wait in the system before receiving service

1 2 3 4

x

x
x

x

k

Wk

k  T = { 1, 2, 3, 4 ….  } = Z+ set of positive integers > 0

Discrete–index (Discrete-time)-continuous state (DTCS) process

• Discrete-time Control Systems
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Stochastic Processes -2
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3)   Cumulative service demand of all jobs in the system (“workload”)

{Y(t), t  T  [0, ∞)

t

Y
(t

)
Continuous-time continuous-state (CTCS) process

Stochastic Processes - 3
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4)    Nk = # of customers in the system at the time of arrival of  kth customer

Discrete – index (Discrete-time) Discrete – state (DTDS) stochastic process

 , ...), , , , (N, ..., ,  kN kk 43210     ,321  | 
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Stochastic Processes - 4
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Classification Summary:

state

time

Discrete

Continuous

DTDS

CTDS

ContinuousDiscrete

DTCS

CTCS









 chains Maikov  timeContinuous e.g.,     CTDS...

Chains Markov e.g.,     ...

analysisDelay  e.g.,     ...

 DTDS

DTCS Queuing  &

Reliability 

Applications

CTDS + CTCS…      Performability processes

Classification of Stochastic Processes



Copyright ©2004 by K. Pattipati 

10

For a fixed time t1,  X(t1 ) is a random variable - For a random variable X(t1), 

we can talk about the cumulative distribution function (CDF)

} x)  P { X(t),tF(x 1111 

Suppose we have sampled the process X(t1) at t=t1, t2, …., tn,  then
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Joint Distribution of X(t1), X(t2)…, X(tn) is difficult to compute

Probability Distribution

We can make one of two assumptions.
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 Independent process: Renewal process (e.g., failures of components 

with negligible repair time),  Xi= inter-failure times i.i.d.

By chain rule:  P(ABC) = P(A|BC) P(B|C) P(C)

) , t F(x) x)  P(X(t ) t, xF(

ceIndependen

) x) , ..., X(t x)  | X(t x)  P(X(t                 

} x) }, P{X(t x)(tx |  x)P{X(t              

}x)X(t; ......; x)  X(t  x) P { X(ttxF
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Independent Process
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 Markov (first-order dependency) process

  
1

11


 
n

i

i-iii )x) | X(t x) P( X(t )t,xF(

More often then not,   X(ti-1) is known exactly, i.e.  X(ti-1)= xi-1, so

The probability distribution of X(ti) at time ti depends only on the state 

at X(ti-1) time ti-1 for any sequence of time instants t1, t2,…,ti-1        t1<t2<…ti
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n

i

i-iii )x) | X(t x) P( X(t )t,xF(



Markov Process

“Knowledge of the present makes the past irrelevant”
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We are mostly interested in discrete-state Markov Process… known 

as Markov chains
Markov Chains

Discrete-time

(DTMC)

Continuous time

(CTMC)

• Transitions from

one-state to the next

are allowed at discrete 

time instants 0, D, 2D,… 

• Transitions are allowed 

at any point in time

Similar to:

For Markov chains, Q has a special structure:
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Markov Chains
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We will discuss some applications before we discuss the theory

0 1  (n)  Pi)  j|XP(X ijnn  2101  and, ..., N), , (X n  
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 DTMC: A process {Xn, n=0, 1, 2, …} is a finite-state Markov chain
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State at step n+1       →

One-step Transition Probability Matrix (TPM)

Pij (n) ~ a function of step or stage n   non-homogenous ( non stationary or time-varying) Markov chain

Pij = constant   time homogenous (or stationary or time-invariant) Markov chain

Discrete-time Markov Chains -1

eeP 
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 If we let the unconditional probability  that the chain is in state j at 

time step (n+1) by pj (n+1) then
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Example: 1) A cascaded communication channel 1)  (0,    nX

X0 =1

X0 =0
X1 =0

X1 =1

p p

q q

1-q
1-p

1-q

1-p

Xn =0

Xn =1
Xn+1 =1

Xn+1 =0
pp

q q

1-q 1-q

1-p 1-p

DTMC Example 1
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Notes:
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Example 2: Routing in a central server modal of a CPU-I/O subsystem

…..Uni-programmed (single job) system

Devices: i= 0, 1, 2, , m

X = state of job 

X= i if job is at device i

N=m

0

m

1
q0

q1

qm

CPU

DTMC Example 2
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Other Applications:

• Relative visits in 

closed networks

• Modeling programs
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Example 3:  Memory interference in a shared-memory multi-processor system

MmM2M1

P1 P2 PP

Problem: Find average # of memory requests completed per memory cycle

DTMC Example 3

Assumptions

1. Cross – bar switch  (m x P )

2. Memory split into m modules

3. Only one processor is granted access

to a memory module

4. Processes generate new requests as 

soon as current request is processed  

 P requests at memory modules.

5. Memory access time is a constant (= 1 

unit of time) (deterministic)

6. qi = prob. that a processor generates 

request to memory module i
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Consider P=2, m=2

Possible states:  (1, 1),  (0, 2),  (2, 0)

P requests

M1

M2

Mm

q1

q2

qm1, 1 0, 2

2, 0

q2
2

q1

q2

q1
2

q2

q1

2q1q2

Both busy
1 idle

2 busy

1 busy

2 idle
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q1 +q2+..+qm

Memory Interference in a Multi-processor
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In Steady State
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Memory Interference in a Multi-processor

We can compute other measure of interest.  For example, the expected 

number of memory requests completed per memory cycle, E(B) can be 

computed as follows:
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Memory Interference in a Multi-processor

 Optimization Problem:

2

3
)(

2

1
1 ubject to )( **

21
, 21

21

 BEqqqqsBEMax
qq

References:

1. F. Baskett and A.J. Smith, “Interface in  Multi-processor Computer 

Systems with Interleaved Memory,” CACM, Vol.19, No.6, 327-334, 1976.

2. D. Chang,  D.J. Kuck, and D.H. Lawrie,” On the Effective Bandwidth of 

Parallel Memories,”  IEEE Trans. on Computers, Vol C-26-5, May 1977,  

pp.480-42

3. S.H. Fuller, “Performance Evaluation,” in Introduction to Computer 

Architectures, H.S. Stone (ed.), Science Research Associates, Chicago, IL, 

1975.



Copyright ©2004 by K. Pattipati 

23

Before considering some interesting properties of DTMC,  let us 

introduce the corresponding continuous-time Markov chains (CTMC) 

so that we can study their properties by analogy.
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Q(t) = [ qij(t) ]      (N+1) by (N+1) matrix is termed the “infinitesimal 

generator matrix” or “the transition rate matrix”

DTMC  CTMC - 2
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Notes : 
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What do the transition rates means ?

• Given that the process is in state i at time t,  then the probability

that a transition occurs to any other state during the interval (t, t+Δt]

is given by  - qii(t) Δt + o(Δt)  - qii(t) is the rate at which the  

stochastic process leaves state i at time t, given that the process is

in state i at time t

• Given that the process in in sate i at time t, the conditional 

probability that it will make a transition to state j in the time

interval (t, t+Δt] is given by 

qij(t) Δt + o(Δt)  P{X(t+Δt) = j | X(t) = i}= qij(t) Δt + o(Δt); i j

 qij(t) is the rate at which the process moves from state i to state j at 

time t+Δt, given that the system is in state i at t

What do Transition Rates Mean?

    (t) -q(t) λ
λ

(t)q
  

(t)q

(t)q
 -    or  tq - (t)  q iii

ji i

ij

ji ii

ij

ji
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Example:   Poisson process … simplest form of continuous-time 

Markov chain …. also know as pure-birth process

Suppose we observe the arrival of messages at a communication channel (or # of 

failures or jobs at a computer center) for the time interval (0, T).  Let X(t) denote 

the number of messages (or jobs) at time t.     X(0) = 0  P{X(0) =0} = p0 (0) =1

o T
t t+Δt

t t+Δt
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n
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Differential –

difference 

equation

For Δt  “small”, we assume that

CTMC Example 1



Copyright ©2004 by K. Pattipati 

28

 

iabilityer lCiationt of coefficien
tXE

C

tXEtXE

tXE
z

tzG
tXE

tXEtXE
z

tG
zt) pn (n-

z

tzG

tXE
z

tG
ztn p

z

tzG

tptG

ztptpztpzEtzG

x 

tX

x

X(t)

X(t)n

n

X(t)

X(t)n

n

X(t)

nX(t)

n

n

n

tX

X(t)

tX

vararg      ;var  
)]([

)]([ )]([   

)]([  
) ,(

  )]([

)]([ )]([ 
) ,1(

     )(1
) ,(

)]([ 
) ,1(

   ;  )(
) ,(

1)( ) ,1( 

)()(   )(][) ,( 

)(

222

1z2

2

2

2

2

2

2

0n
2

2

1

0n

0n

0

10

)(

)(





































































 Moment Generating Function (MGF): suppose a discrete random 

variable X(t) assumes values 0, 1, 2, … with probability,

Digression : Moment Generating Function

0;)( ntpn

MGF provides a simple method of evaluating moments of random variables
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 Coming back to Poisson process 

Poisson Process

 Moments of Poisson process 
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• For t>30, 

Poisson ~ Normal

• Square root of X(t)

is nearly normal 

with variance 0.25

• More properties in

Lecture 3 
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Poisson Process : Three Definitions
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 DTMC: Suppose that the Markov chain is in state i at time 0  X(0) = i

• The chain will remain in state i with probability Pii and it will

leave the state with probability (1- Pii)

• Suppose that the next state is i ( X(1) = i).  Then, the same 

two choices are available at the next time step

 Distribution of time between state changes in a DTMC and CTMC

DTMC ↔ Geometric pmf

CTMC ↔ Exponential density

Homogeneous case

Let Ti = time the Markov chain spends in 

state i during a single visit to state i

= 1+ # of (i → i) transitions made 

before leaving state i

Distribution of Time between State Changes
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Intuitive proof: The process may leave state i even during (0, Δt)
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 Formal proof:

suppose the process has been in state i for r time units.  Want to find

Formal Proof of Exponential Density
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 Uniformization

Suppose have a continuous time Markov chain with transition rate

matrix Q = [qij] such that

Uniformization - 1

• # of transitions by time t {N(t),

t≥0} is Poisson with rate λ

• Computationally useful, since

can truncate summation at finite k
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 Question: What if  qii ≠ qjj

Suppose that λi are such that

Uniformization - 2

k
k

 max Real process leaves 

state i at rate λi.  But, 

this is equivalent to 

saying that transitions 

occur at rate λ, but only 

the fraction λi/λ of 

transitions are real ones 

(and these real 

transitions occur at rate 

λi) and the remaining 

[1- (λi/λ)] fraction of  

transitions are fictitious 

self-transitions, which 

leave process in state i.  
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Summary

 Discrete-time Markov Chains  geometric holding time pmf 

 Continuous-time Markov Chains  exponential holding time density 

 Poisson process

 Uniformization


