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Phase type (general Markovian) queues

– Quasi-Birth-Death (QBD) Processes

Why Markovian queues are simple to solve?

– Time reversibility

Burke’s Theorem

Introduction to Open networks 

Outline
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Erlang Density as Exponential Stages

• What if arrival and service processes have memory ?

• Recall sum of m exponential random variables is Erlang (m)

-- are i.i.d exponential with rate parameter 

--

-- Moment generating function (MGF)

-- Can be viewed as a serial combination of exponential stages of service (or 

inter-arrival times)

-- If viewed as a Markov chain, the system has (m+1) states, where the end 

state, (m+1) is an absorbing state.
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-- State transition rate matrix, Q: (m+1) by (m+1) matrix

Since 

-- Time to absorption = inter-arrival time or service time

-- Let           be the probability distribution of (m+1) states
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-- Probability of absorption at time t

Since

-- The density of time to absorption is:
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-- For the Erlangian state transition matrix Q, easy to show that
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-- Moment generation function (MGF)

In general,
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-- A computational trick 

suppose 

Can solve for      via LU decomposition recursively

So,  

• Erlang(m) has             .  Can we generate densities with            ?  

• Parallel stages
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Hyperexponential Density -1
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• From Cauchy-Schwarz inequality

and 
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 Indeed, series-parallel combination of exponential random 

variables can approximate any general distribution quite accurately
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Y

• This implies that we can solve general queues with general arrival and service 

processes …… but the size of state space will increase

• The state is no longer the number of customers, n…… It should include 

the phase of the arrival process and the phase of the service process.
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Phase Type Queues -1

• Let us consider several special cases

• can be viewed in one of two ways:

-- service time is Erlangian

-- bulk arrival process

-- state (n, s)     

• can also be viewed in one of two ways:

-- Inter-arrival time is Erlangian

-- bulk service system

-- state (n, a)

• system

-- state (n, a, s)   

• system

-- state (n, a, s)

-- arrival process represented by                     , where A is an                matrix

-- service process represented by                     , where B is an              matrix 
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-- State space, S

-- Let us denote states with the same number of customers, n in the system 

are said to belong to level n.

-- The transition rate matrix has a special block tri-diagonal structure

             

        SaSaSaa

SSa

m,m,,,m,m,,,m,m,,,,m,,

,m,,,,,,,m,,,,,,,,m,,,,,,,,S









2111

211211111110120110

            Tm,m,n,m,nm,,n,,nm,,n,,nn SaaSS
p,,p,,p,,p,p,,pp  1212111



































000

00

0

00

012

012

0110

0100

AAA

AAA

AAB

BB

Q

Phase Type Queues - 2

 vector
a s

m m



Copyright ©2004 by K. Pattipati 

15

• Matrix         describes state changes internal to level 0 (n=0).  Since there is no 

customer, only changes in the arrival process is needed.

• describes transitions to the next higher level and includes      which indicated 

the rate at which the arrival process completes (i.e., transitions to absorbing state of 

the arrival process).     

the factor         accounts for the possible change in phase in the next arrival interval

Aside:

00B

00
     B A

0A

matrix sasa mmmm 
 00

 
s

T

m
A c I 

Kronecker (tensor) product

 0



























65

43

21

B                 
dc

ba
A

2 2 2 2

3 4 3 4 2 2

5 6 5 6 3 3 4 4
;          

2 2 3 3 4 4

3 4 3 4 5 5 6 6

5 6 5 6 5 5 6 6

a a b b a b a b

a a b b c d c d

a a b b a b a b
A B B A

c c d d c d c d

c c d d a b a b

c c d d c d c d

   
   
   
   

      
   
   
   
   

c
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• has a similar structure to       . Since it represents the arrival of the first 

customer after the system has been empty for some time, it needs an extra factor 

taking into account the phase at which the next service is started, which explains 

the factor           .

• describes the rate at which services complete multiplied by the vector          

to account for the next service epoch. 

• is similar to      except that it represents transition to the empty system, no 

new service epochs can start, so that a factor            is missing.

• describes changes in arrival or service process phase within a single level. 
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• The steady state equation:

• A technique, termed matrix-geometric solution, assumes a solution of the form:

For n>0
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• Iterative Algorithm 
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• Better algorithms.  See books by Daigle & Haverkort and 

1. A. Latouche and V. Ramaswami, “ A logarithmic reduction algorithm for quasi-

birth and death processes”, J. of Applied Probability, vol. 30, pp. 650-674, 1993.

2. D.M Lucantoni and V. Ramaswami, “Efficient algorithms for solving the nonlinear 

matrix equations arising in phase-type queues”, Stochastic models, vol. 1, pp. 

29-51, 1996.

3. A different approach:  L. Lipsky, Queuing Theory: A Linear Algebraic Approach,

McMillan, 1992.

• Once R is known, can get       as follows:
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Perf. Measures of Phase Type Queues -1

• Performance measures

-- Average inter-arrival time: 

-- Average service time:

-- Utilization: 

-- Average system length:

-- Average response time:
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• Performance measures 

-- Average waiting queue length:

-- Average waiting time:

--

--
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Copyright ©2004 by K. Pattipati 

21

 Why is M/M/1, M|M|1|N, M/M/1, M/M/m analysis so simple?  Because 

• they are special cases of birth-death processes

• they satisfy local (detailed) balance equations

 What does it all mean? 

• B-D processes are time-reversible Markov chains. Consider a

discrete-time Markov chain           where

with  stationary transition probabilities

• Let 

• Markov chain is homogeneous, irreducible and aperiodic )       exists

• This Markov chain is running forward in time.  Suppose we want to run

this chain backward in time 

• How do we describe the evolution of 

• Key:  The reversed chain is also a DTMC.  Suppose it is Markov:

Time Reversibility - 1 
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• If Markov, we need

Proof:

Note that time reversibility requires homogeneity (or stationarity)

Time Reversibility - 2 
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Reversed process is also a Markov chain with transition probabilities

 Definition: A Markov chain is time-reversible if 

Transition probabilities of backward & forward chains are identical

 Properties:

1. The reversed chain is irreducible and aperiodic.  It has the same 

steady state distribution as the forward chain.

Time Reversibility - 3 
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2. If we can find                                          & find a transition probability

matrix        such that:

Then        is the steady state distribution of the forward and reversed

chains.       is the transition probability matrix of the reversed chain.

Proof:

Note that we did not assume time-reversibility

 The above ideas extend naturally to continuous-time Markov chains.

Transition rates

Time Reversibility - 4 

From time-reversibility, 
*

ij ij
P P
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• The reversed chain is Markov with the same steady-state distribution with transition 

rates:

• If we can find 

then

are the transition rates of the reversed chain &

is the steady-state distribution of both forward & reversed chains

• The forward chain is time-reversible iff its steady-state distribution & transition 

rates satisfy the detailed (local) balance equations  

In particular, for B-D processes

Time Reversibility - 5 
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Markovian Queues and Time Reversibility -1

 Since M/M/1, M/M/m, M/M/1/N, M/M/1 , M/M/m/m etc. are all B-D

processes, they are time reversible.  Physically, what this means is that:

Departure process of forward system =  Arrival process of reversed system

Arrival process of forward system       =  Departure process of reversed system

Forward and reversed processes are indistinguishable in the steady-state
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Markovian Queues and Time Reversibility -2
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Burke’s Theorem -1

 Burke’s Theorem: For M/M/1, M/M/m and M/M/1 systems with arrival 

rate  , suppose we start the system in the steady state, then

• The departure process is Poisson with rate 

• At each time t, the number of customers in the system is independent of 

the sequence of departure times prior to time t

• If customers are served in the order they arrive, then given that a customer

departs at time t, the arrival time of that customer is independent of the

departure process prior to time t

 Proof of 1):  Departure process is Poisson with rate 

• Processes in M/M/1, M/M/M & M/M/1 are time-reversible Markov chains. 

Know that:

• the forward and reverse chains are statistically indistinguishable in the

steady state.

• the departure process in the forward chain is the arrival process in the 

reverse system.  The only way this can happen is if the departure 

process is Poisson with rate .
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 Proof of 2: # of customers independent of prior departure times 

 Alternative Proof for M/M/1:

Burke’s Theorem - 2
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• Departures prior to time t in

the forward process

Arrivals after time t in

the reversed process

• Arrivals in the reversed

system are independent

& Poisson

Future arrival process is independent

of # of customers in the system in

the reversed process

• Past departure process is independent of the # of customers in the system

 Proof of # 3: Arrival time of a departing customer is independent of 

prior departure times

Burke’s Theorem - 3
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 In the reversed system, the time spent by a customer arriving at                is not 

affected by customers arriving after time      (i.e, to the left of      ). In the forward 

system, this means that the time spent in the system                  is independent of 

the departure process prior to the customer’s departure

 M|M|m queue (cute proof)

• Let dn be the mean number of departures over a small interval D when there

are n customers in the system

• Clearly,

• Expected number of departures, d

Burke’s Theorem - 4
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 Because of blocking, output is not Poisson!  

 Recall a departing customer sees a system with himself removed.

Departure Process of of M|M|1|N Queue 
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Two stage tandem queue

• simple network or sequential (pipeline or assembly) network

• The service times at the two nodes (servers) are exponentially distributed 

and mutually independent

• Can show that 

• We provide only intuitive proof.  We will provide proof in a more general 

context later.

Two-stage Tandem Queue
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• Node 1 is an M/M/1 queue.  Using Burke’s theorem, the departure process 

from node 1 is Poisson with rate  and independent of service time of node 2.

• Burke’s theorem also tells us that the number of customers at node 1 is 

independent of the sequence of earlier departures from node 1 (or 

equivalently, the sequence of earlier arrivals at node 2)

the number of customers at node 1 are independent of the number of 

customers at node 2          

 Performance measures

Product Form of Joint pmf -1
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• Result is similar to M/M/1 queue, node with larger / is the bottleneck in 

the system

• the result above extends to any feedforward network, since the outputs of 

M/M/m queues are Poisson.  Indeed the result is true for any acyclic network.

what happens when we have feedback paths?

JACKSON NETWORKS

Arrivals at each node are not Poisson, but they behave as if they were!!

PRODUCT FORM still holds!!

Product Form of Joint pmf - 2
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General Network Structure -1

 General network structure

• A general network is a directed graph G=(V,E)

V={1,2,…,M} is the set of vertices or nodes or service stations

E = V £ V is the set of edges (arcs) that link the vertices
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General Network Structure - 2

= ordered pairs of the form (      ) where                      and

(      ) denotes a link from node    to node 

• Stochastic process: queue lengths at each node 

We are interested only in the steady state.

 Closed (Gordon-Newell) Network:  

 Open (Jackson) network:

• customers enter the network proper from a fictitious Poisson source node.  

Arrival rate at node                     .  Since the merging and decomposition of a 

Poisson process is Poisson, no loss of generality.  Have a sink that absorbs 

all customers who are departing from the network proper.

• Total arrival rate .  Individual stream at each node     is also Poisson with 

rate  

• Service demand at each node   ,      has Exponential distribution.

• Service rates
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• Any work conserving queuing discipline 

• The routing of customers in the network proper is governed by a first-order 

Markov chain

Markov chain is irreducible and aperiodic        steady state distribution exists.

Routing in a Jackson Network



Copyright ©2004 by K. Pattipati 

39

Transition Rate Diagram

1 if 

0;
ij

i j
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
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Steady State Probability Equations

Substitute:
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Product Form of S.S. Probabilities -1 

Stable if         is non-zero            ergodic Markov process.  Steady state solution 

exists  is nonzero.
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 The stationary distribution of the network state is the product of the 

marginal distributions at each node i   Product form

• Known as Jackson’s Decomposition Theorem

 Individual nodes behave as if they are M|M|SD queues with rate      

and service time per visit 

Product Form of S.S. Probabilities - 2 
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Phase type (general Markovian) queues

– Quasi-Birth-Death (QBD) Processes

Why Markovian queues simple to solve?

– Time reversibility

Burke’s Theorem

Product form of steady state distribution in open networks 

Summary


