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O Phase type (general Markovian) queues
— Quasi-Birth-Death (QBD) Processes

O Why Markovian queues are simple to solve?
— Time reversibility

0 Burke’s Theorem

O Introduction to Open networks
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Erlang Density as Exponential Stages

« What if arrival and service processes have memory ?
* Recall sum of m exponential random variables is Erlang (m)
-- X1 T2 ... T;m are i.i.d exponential with rate parameter "
1 _
~mpmgs) e ™

Y =X Xy F et X, = ()= (1) t>0

-- Moment generating function (MGF)
m
m — 1 1 1
L(s)=| 4| ¥ =T 62=— =C =<1
S+mu Y7, mu Jm

-- Can be viewed as a serial combination of exponential stages of service (or
inter-arrival times)

1 2 | m a
_________________________________________________________________________________ J

-- If viewed as a Markov chain, the system has (m+1) states, where the end o
state, (m+1) is an absorbing state. d

o
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-- Let

—mu mu 0
—mu mu

0

(I Phase Type Distributions -1 I

-- State transition rate matrix, Q: (m+1) by (m+1) matrix

—mu mu

m

Qe=0=>Al+c=0=>A"c=-1
1=[111-111]; mvector

-- Time to absorption = inter-arrival time or service time

m+1

Valid for any

Markov chain with
absorbing states

j be the probability distribution of (m+1) states

p(t)

Prnes (D)

p,.(0)] [c'[e do 1| p,.(0)

|
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(I Phase Type Distributions - 2 I

-- Probability of absorption at time t

p,.(1)=c'[[1""do |p(0) + p,..(0)
=p' (O)Uge’*"da}g+ P,...(0)
Valid for any

T
= —E (O)GAtl+1 Markov chain with

t A LA . absorbing states
since |[ e~do=A"(e" —1)and A*c=-1

-- The density of time to absorption is:

f,(H)=p (0)e"c

Copyright ©2004 by K. Pattipati
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- For the Erlangian state transition matrix Q, easy to show that

_e‘m”t mlute_m/’t Me—mﬂt . (mﬂt )m—l e—myt |
2! (m-1)
0 g M4 mute ™ ... (m/‘t)m_z oMt
e = (m-2)
0 0 g MA (mga)" oMt
(m-3)!
B O e—;n,ut |

Cmp(mpt) e ™

= f (t 1>0
! ( ) (m —1)' Jd'a
od o
— By appropriately selecting Q, we can approximate any pdf! fuw
o d
a
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r Phase Type Distributions - 3
: Moment generation function (MGF)
; L (s)=p"(0)(sl - A) e
|
3 _ dL, (s . " T .
[v]=v =~ o)ate=p (o)A
For Erlangian case, i
1 1 .- .- 1]
o1 .- - 1
A1=—i 0 0 1 1 :>\7=i when p'(0)=[1 0 0]
me| . Lo H o
0 0 - - 1)
In general, Valid for any
E[Y T= (-0 k(P (0)A™), k=L.2..] ey chan s
i opyrig y K. Pattipati
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(I Phase Type Distributions - 4 I

-- A computational trick

suppose (Ak )T v, = (_1)k k!E(O)
(A v, = (1) (k+1)1p(0)

— AT\_/k+1 :_(k +1)\_/k; Vo :E(O)

Can solve for V, via LU decomposition recursively
So, k1,7
E[Y*]=v1

- Erlang(m) has C, <1. Can we generate densities with C, >17?
« Parallel stages
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(Hyperexponential Density -1

. |
o |
ol
ol M B u
T woo
: i S+ L 0 —u, - - n
N . o
3 - a; Q= :
Efy]=> %
by 0 o u
: Mo 0 v i i D
Elr2]=2) % - o
) i=1 Hi E(O):[al o, - aM]
M
a:
2y L H
CzZE[Yz]—{E[Y]}z: éuf T o 1,
CIRRE e A D) = ~Omg(e o
b "
M
= f, (t)=> et >0 Hyper exponential Density -+
i=1 o |
e |
r
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(Hyperexponential Density -2

From Cauchy-Schwarz inequality

[a"bf <(a"alo"b) |
a=|Jo, o, - M]T; b{*/f \/iz \/Z}

and

Zai —1, we have
i=1

C>1

oYL L
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(I Series - Parallel Stages - 1 l

O Indeed, series-parallel combination of exponential random

variables can approximate any general distribution quite accurately
Y

., () (g i)
u@)—iaﬁﬁ[ - ]

i1 g1\ O T Hjj

\ 4

v
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Ly(s)=cy + ZamH

i= k=1
« This implies that we can solve general queues with general arrival and service
processes ...... but the size of state space will increase

* The state is no longer the number of customers, n...... It should include

the phase of the arrival process and the phase of the service process.

n,a,s
/( ? ‘)\ IQuasi-birth-death (QBD) process|

Number of Phase of Phase of
customers Arrival Service
Process Process

oYL L

Copyright ©2004 by K. Pattipati

Yannnnn



- (Phase Type Queues -1

Let us consider several special cases
M/Emsll, Ema/Mll, Ema/EmS/l, PH/PH/ 1

@

FFF oL L

M/E, /1 can be viewed in one of two ways:
-- service time is Erlangian
-- bulk arrival process
-- state (n, s)
* E, /M/1 can also be viewed in one of two ways:
-- Inter-arrival time is Erlangian
-- bulk service system
-- state (n, a)
E, /E, /1 system
-- state (n, a, S)
PH / PH /1system
-- state (n, a, S)
-- arrival process represented by ) A,C ) where Ais an m, x m, matrix
.- service process represented by( (0),B,d ) where B is anM, x M_matrix

Copyright ©2004 by K. Pattipati
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- (Phase Type Queues - 2

-- State space, S

S =1{011),(021).--,(0,m, 1)212),--,@1,ms ),222),---,(L.2,mg ),
< (Lmg ) Lmg mg ).+, (2,mg mg ).+ (c0,my mg ) }

- Let us denote states with the same number of customers, n in the system
are said to belong to level n. m_ x m_ vector

FFF oL L

P.= [p(n,l,l)""i Pinamg) Pn2a)r 1 Ph2amg)r 1 Pinm, 1) p(n,ma,ms)]T

- The transition rate matrix has a special block tri-diagonal structure

By By, O -+ - -+ 0
By A A 0
Q=10 A A A 0
0 0 A A A 0

oYL L
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- (Phase Type Queues - 3

- Matrix By, describes state changes internal to level 0 (n=0). Since there is no
customer, only changes in the arrival process is needed.
B,=A m, x m, matrix

« A, describes transitions to the next higher level and includes ¢ which indicated
the rate at which the arrival process completes (i.e., transitions to absorbing state of
the arrival process).

A = QQIO) ®l, m,m, x m,m, matrix

the factor Q(O) accounts for the possible change in phase in the next arrival interval
Aside: 1 2

a b
A— { } B=|3 4||® Kronecker (tensor) product
c d
5 6
a 2a b 2b] a b 2a 2b]
3a 4a 3b 4b c d 2c 2d
b &b 5 b A mbyn and B gbyr

A®B = a 6a Sb 6 : B® A= Ja 3b da 4 — A® B and B® Aaremgbynr j j
c 2¢c d 2 3c 3d 4c 4d ARB=B® A n
3c 4c 3d 4d 52 5b 6a 6b N
5c 6¢c 5d 6d 5c 5d 6c¢ 6d a
Copyright ©2004 by K. Pattipati - - - .
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- (Phase Type Queues - 4

- By has a similar structure to A, . Since it represents the arrival of the first
customer after the system has been empty for some time, it needs an extra factor
taking into account the phase at which the next service is started, which explains

the factoréT (O) .

8, =ca’ ()4 (0)

m, x m,mg matrix

- A, describes the rate at which services complete multiplied by the vector éT (O)

to account for the next service epoch.

A=1, ®ds (0)

m,m, x m,m, matrix

« By, issimilarto A, except that it represents transition to the empty system, no
new service epochs can start, so that a factor ' (0) is missing.

BlO = Ima ®g

m_m, x m_ matrix

- A, describes changes in arrival or service process phase within a single level.

A=1_®dg (0)

Copyright ©2004 by K. Pattipati
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IE (l Matrix Geometric Solution -1 I

 The steady state equation:

BJOEO + BlToE1 =0
BupP, +A P, +A p,=0

A;’rEn+AirEn+1+A;En+2 :Q vn>0

« Atechnique, termed matrix-geometric solution, assumes a solution of the form:

P

—n+1 -n

=R"p  R:m,m,xm,m, matrix

For n>0

Ap,+A R p +ARfp =0

= R*A, +RA + A, =0 ... Quadratic matrix equation

LR=—(A+R°A)AY o R=-A(A+RA)" -

* lterative Algorithm d '
- 43

R(k+1)=—-(A+R'(K)A)A" or R(k+])=-A(A+R(K)A) iR(0)=-AAT fua
Copyright ©2004 by K. Pattipati .
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(l Matrix Geometric Solution - 2|

- IBetter algorithms. See books by Daigle & Haverkort and

1. A. Latouche and V. Ramaswami, “ A logarithmic reduction algorithm for quasi-
birth and death processes”, J. of Applied Probability, vol. 30, pp. 650-674, 1993.

2. D.M Lucantoni and V. Ramaswami, “Efficient algorithms for solving the nonlinear
matrix equations arising in phase-type queues”, Stochastic models, vol. 1, pp.
29-51, 1996.

3. A different approach: L. Lipsky, Queuing Theory: A Linear Algebraic Approach,
McMillan, 1992.
- Once R is known, can get P as follows:

K
Rl : BJo Bo|_|O
Bu A +AR P 0

also . .
2P 1=pl+2 p 1
n=0

FFF oL L
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« Performance measures
-- Average inter-arrival time:

-- Average service time:

A

- Utilization: U =—=p=

7,

E(r)=—c'(0)AL A=

-- Average system length:

=p, (1-R)
-- Average response time:
T -2
R:Q:_El(l _R) 1
A a (0)AL

Copyright ©2004 by K. Pattipati

Perf. Measures of Phase Type Queues -1

oYL L

Yannnnn



FFF oL L

20

&

« Performance measures

-- Average waiting queue length:

QW :Q_p
-- Average waiting time: \W =R _i =R+ IBT (O) Bl
U
p,=p, 1

Copyright ©2004 by K. Pattipati
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- Time Reversibility - 1]

O Why is M/M/1, M|M|1|N, M/M/1, M/M/m analysis so simple? Because
« they are special cases of birth-death processes
« they satisfy local (detailed) balance equations
An—1Pn—1 = pnPn|
O What does it all mean?
« B-D processes are time-reversible Markov chains. Consider a
discrete-time Markov chain{x,} wherex, € (0,1,2,..N), n=0,1,2,..
with stationary transition probabilities P{X,, 11 = j|Xn =i} = F;;

FFF oL L

e Let pj(n) = P(Xp =j)andp; = nli_)moopj(n), j=0,1,2,... N

« Markov chain is homogeneous, irreducible and aperiodic ) {pgxists
» This Markov chain is running forward in time. Suppose we want to run

this chain backward in timen—2 n—1 n d'd

- How do we describe the evolution of X, X, _ 1, ..., the reversed chain’ J:

« Key: The reversed chain is also a DTMC. Suppose it is Markov: a

Copyright ©2004 by K. Pattipati :
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! Fl‘ime Reversibility - 2

P;; = P{Xn — j|Xn,—{—l — Z}
— P{Xn-l—l — 7:|X7l- — J}P{X'n — j}
P{X'n,—i-l — L}
Pg');' — % Pj;
Py

Note that time reversibility requires homogeneity (or stationarity)

 |f Markov, we need
P{Xn=j|Xp41 =10, Xpq0 =12, ..., Xy =i} = p{*;.

Proof:
P{Xn = jIXp41 =1, Xppo = 12, o, Xy = g}

P{Xn — .ijn—I—l — ivXn—}-Q — 7;2, "'vXn—}—k — ik}
P{Xn‘+1 — i,Xn+2 — iz, "°7Xn—|—k- — ZA}

1}

k L

P{Xp41 =1}  P{X 40 = 02| Xpq1 = i}.. P{ X4 = iy

Copyright ©2004 by K. Pattipati
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: Fl‘ime Reversibility - 3

Pj
P == Pj

1

— Reversed process is also a Markov chain with transition probabilities

Py

1. p

7

a Definition: A Markov chain is time-reversible if

Transition probabilities of backward & forward chains are identical

= p;Fi; = pjby

Proportion of transitions
from state 7 to state j

__ Proportion of transitions
from state 7 to state @

d Properties:

1. The reversed chain is irreducible and aperiodic. It has the same

steady state distribution as the forward chain.

Copyright ©2004 by K. Pattipati

detailed balance
or
local balance egns.

k L

oYL L

Yannnnn



FFF oL L

24

@

- [T ime Reversibility . 4]

5= Xairy =Tt

- Zpi ij  From tlme-reversibility, P =P

= p; = pj Vj

2. If we can find{pi.i > Olp; > 0;>_p; =1 } & find a transition probability
matrix [P] such that: Z
piP; = p;Pj, >0
Then {7} is the steady state distribution of the forward and reversed

chains.[F7];] is the transition probability matrix of the reversed chain.
Proof: ij i = p?z =
] ]

Note that we did not assume time-reversibility
O The above ideas extend naturally to continuous-time Markov chains.
Transition rates

OP;;
Qi; = =

L _OFi
or 1T T a

Copyright ©2004 by K. Pattipati
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Fl‘ime Reversibility - 5

» The reversed chain is Markov with the same steady-state distribution with transition

rates:

IR
' Pq

Vi,j > 0

- If we can find pi & ¢;; >

then

pid;; = pjqj; and) p; =1
;

g;; are the transition rates of the reversed chain &

{p;|i > 0} is the steady-state distribution of both forward & reversed chains

» The forward chain is time-reversible iff its steady-state distribution & transition
rates satisfy the detailed (local) balance equations

Pi%i; = Pjdi Vi,J
= |4 = 4

In particular, for B-D processes

Pnbin = Pp—1An—1 = Qn.n+1 — An; Adn4-1n — Mn41

Copyright ©2004 by K. Pattipati
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@ Markovian Queues and Time Reversibility -1

Q Since M/M/1, M/M/m, M/M/1/N, M/M/1 , M/M/m/m etc. are all B-D
processes, they are time reversible. Physically, what this means is that:

FFF oL L

Departure process of forward system = Arrival process of reversed system
Arrival process of forward system = Departure process of reversed system

Forward and reversed processes are indistinguishable in the steady-state

Copyright ©2004 by K. Pattipati
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@ Markovian Queues and Time Reversibility -2

o
o
a
a
F AM |
o
N bt tg T t—
. D(1) T
tf t§ 4 T

Q1) S
AX(2) Hj
D*(t) ’—‘_ﬁ

Q" (1)

Copyright ©2004 by K. Pattipati
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- (l Burke’s Theorem -1 l

O Burke's Theorem: For M/M/1, M/M/m and M/M/1 systems with arrival
rate A , suppose we start the system in the steady state, then
» The departure process is Poisson with rate A
» At each time t, the number of customers in the system is independent of
the sequence of departure times prior to time t
« If customers are served in the order they arrive, then given that a customer
departs at time t, the arrival time of that customer is independent of the
departure process prior to time t

O Proof of 1): Departure process is Poisson with rate A
* Processes in M/M/1, M/IM/M & M/M/1 are time-reversible Markov chains.
Know that:

« the forward and reverse chains are statistically indistinguishable in the
steady state.

 the departure process in the forward chain is the arrival process in the
reverse system. The only way this can happen is if the departure
process is Poisson with rate A.

Copyright ©2004 by K. Pattipati

k L

oYL L

Yannnnn



FFF oL L

29

@

- rBurke’s Theorem - 2

1 Alternative Proof for M/M/1;

L. _ A Z
, D (3)‘01111)ty_

D*(s) |1101101npty

s+ u s+A s+ u
gy = 2. _H Ak A
- Dils) = [ s—l—,u-i_s—l—/\ s—l—,u(l u)
_ é 7 [1_ A ] AL
oS+ p s+l (s+u)(s+ )
AS AL A

GEMGIN T GEDGEN s+r

O Proof of 2: # of customers independent of prior departure times

Departures prior to time t
in the forward process

time direction of
- the forward process

Arrivals after time t t  time direction of
the backward process

in the reversed process

Copyright ©2004 by K. Pattipati
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rBurke’s Theorem - 3

» Departures prior to time tin Arrivals after time t in
the forward process ~ the reversed process
« Arrivals in the reversed Future arrival process is independent

system are independent —>  of # of customers in the system in

& Poisson

the reversed process

—> + Past departure process is independent of the # of customers in the system
O Proof of # 3: Arrival time of a departing customer is independent of

prior departure times

Customer arrival in
the forward process

Customer departure in
A A A A A the forward process

time direction of
—— forward process

Copyright ©2004 by K. Pattipati
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- (I Burke’s Theorem - 4 l

Q In the reversed system, the time spent by a customer arriving at t2(= ¢ ) IS not
affected by customers arriving after time ¢t (i.e, to the Ieft of t&). In the forward
system, this means that the time spent in the system (td — tf) is independent of
the departure process prior to the customer’s departure

0 M|M|m queue (cute proof)
 Let d, be the mean number of departures over a small interval A when there
are n customers in the system

« Clearly, _
Y 0:n=0

d = E{number of departures over At|n}<nuAt;1<n<m
| muAt;n>m

« Expected number of departures, d

o0 m-1 ©
d=>d,p,=At[> nup, +mu p,] e
n=0 n=1 n=m
m-1 © .
=AY p,, + . p,,]=AAt = Poisson a
Copyright ©2004 by K. Pattipati " = :
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Departure Process of of M|M|1|N Queue

O Because of blocking, output is not Poisson!

0 Recall a departing customer sees a system with himself removed.

D’ () [,o= (

A\ A
s+/1j(s+ﬂ} D (8) sz 1= (

U
S+

2

D" 1- p A po|, pA- p“ )
()—
—p "\ s+ A )\ s+u 1-p" s+y
N
p)( ) 0 P T A
S+A )\ S+ u S+ u 1-p  \s+u
1 A
= N[( j_pN - ]
1-p" s+ 4 S+ u
1 -t pN —ut .
fD(t):l_ N/leﬂ—mlue ,tZO
1 l A | 1 1- 1 R
E(D) = L _Lloely. f =l P 20" 14 )
1-p" A 1- o u A1 yol AQ-P,) 1-p") 2 J
ol
A M1 —pp) = throughput = u(1l — pg) 0
App<+—ij < > a
o
Copyright ©2004 by K. Pattipati .
‘\l“...



FFF oL L

33

@

- [ Two-stage Tandem Queue

Two stage tandem queue
« simple network or sequential (pipeline or assembly) network

M/M/1 M/M/1

saource )\ : ‘@{

sink
n1 n2
Inf. buffer sizes

» The service times at the two nodes (servers) are exponentially distributed
and mutually independent
» Can show that

p(ny,ns) = p(nl»p(nz):(l—i) (i) (1—1) (i)
1) \p no) \ 1o

= (1= p1)p1 (1 = p2)p5?
* We provide only intuitive proof. We will provide proof in a more general
context later.

Copyright ©2004 by K. Pattipati
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- rl>r~c)c:luet Form of Joint pmf -1

* Node 1 is an M/M/1 queue. Using Burke’s theorem, the departure process
from node 1 is Poisson with rate A and independent of service time of node 2.

@

p(ny at node 1) = (1 — py)p7?

p(no at node 2) = (1 — f)2)f);2

» Burke’s theorem also tells us that the number of customers at node 1 is
independent of the sequence of earlier departures from node 1 (or
equivalently, the sequence of earlier arrivals at node 2)

FFF oL L

—> the number of customers at node 1 are independent of the number of
customers at node 2
p(n1,n2) = p(n1) - p(n2) = (1 — p1)py (1 — p2)ph?
Q Performance measures

node 1 node?2 overall

— P — _P —
Q= 1_1’01 Q2 = 1_2[)2 Q=01+ Q>

X = X =X X =2 .

_ 1 _ 1 —
fiy = p1(l—p1) Ro p2(l—p2) R= R+ R d '
Ui = p1 Us = po bottleneck = max(Uq1,U>) o
a
a
Copyright ©2004 by K. Pattipati .
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: (l Product Form of Joint pmf - 2 I

* Result is similar to M/M/1 queue, node with larger A/u is the bottleneck in
the system

* the result above extends to any feedforward network, since the outputs of
M/M/m queues are Poisson. Indeed the result is true for any acyclic network.

FFF oL L

no feedback paths

—> what happens when we have feedback paths?
JACKSON NETWORKS
Arrivals at each node are not Poisson, but they behave as if they were!!
PRODUCT FORM still holds!!

Copyright ©2004 by K. Pattipati
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sink or
destination

source

Pg,, ’ ' Network
SR Proper

_______________________

- Ageneral network is a directed graph G=(V,E) :rfglzeg\e/f\r/er
V={1,2,...,M} is the set of vertices or nodes or service stations & muitiple server
E =V £ Vis the set of edges (arcs) that link the vertices

k L

oYL L

state dep. node
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: rGeneral Network Structure - 2

= ordered pairs of the form (i,k) where i € V, k€ V and
(%, k) denotes a link from node i to node &
 Stochastic process: queue lengths at each node

[nq1(t),no(t),...,np(t)]

@

FFF oL L

n;(t) = number of customers at node 4 at time ¢.

We are interested only in the steady state.

[n1,n0, ..., nps]
O Closed (Gordon-Newell) Network: N =n; +ns+ ..., +nj; = Constant

O Open (Jackson) network:

« customers enter the network proper from a fictitious Poisson source node.
Arrival rate at node ¢, m; = ps;A . Since the merging and decomposition of a
Poisson process is Poisson, no loss of generality. Have a sink that absorbs

all customers who are departing from the network proper.

e Total arrival rate A. Individual stream at each node ; is also Poisson with
rate r; = )\pS@'
« Service demand at each node ; , s; has Exponential distribution.

« Service rates y;(n)
Copyright ©2004 by K. Pattipati
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' rRf)lu’ting in a Jackson Network

; single server
p;(n) = ¢ np; infinite server
min(n, m;)p; multiple server

* Any work conserving queuing discipline <

serve when customer is present
service demand is independent of
queuing disciplline

» The routing of customers in the network proper is governed by a first-order
Markov chain

P;; = Prob{customer departing node ¢ will go next to node j}

j=1,2,..,.M,d
L _ o T absorbing state _
Markov chain is irreducible and ap%rlodlc —> steady state distribution exists.
U, — DPs; + Z .P.j.l{'l?.j; 1 < 7 < M
j=1

v o= Bg—l—PTg = Q:(I—PT)_lBS

M

= Ps; = U — Z Pjvg; 1 <5< M
=1 J
p(n) = Probability that the system is in staten = (n1,no, ..., nps) .
a
a
Y
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! (Tr-ansition Rate Diagram

[ 1ifi=]
i 10: otherwise

t+ At

A

ciew =
P, M

. 3% piln)

.09 = 3
?}»\’Dl =1 '
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: J—| Steady State Probability Equations l

M M .
[/\ S uim)] W = 3¢ P D
i=1 v !
+ A Z ps;p(n — ;)
i=1
M M 1 —
+ 3 S p LT e
1=17=1 Sj
Substitute: o Z P, <i<M
) - 3° P, ““(”8“) (n+ ¢)
=1 ! p
R(n)
M
= - {“Z(nl) (n) — AU{P(E—Q)}
i=1 | Si »
Bi(n) .
M M (o s 4 d
i=1j=1 | 57 g 2 .
o
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Product Form of S.S. Probabilities -1

Bi(n) =0 Vn '
=IO

R(n) =0 Vn wi(n;)/s;

w;p(n) = Av;s;p(n—e;)...Local (dctaﬂod) balance equations

= »p@) =plny,n ny) = (O)ﬁ T
pin) = p\ni,nz,..,nyp ) — PO izlﬂ?:l“i(k)

M M
= p(o) H Y;(n;) = H pi(n;)

=1 1=1

@

FFF oL L

?’L@' A
V;S; .
Y;(n;) = H Lo A = total arrival rate
k=1 pi(k) v; = # of visits to node ¢
v;8; = total service demand at node ¢

Stable if p(0)is non-zero —=> ergodic Markov process. Steady state solution
exists = p;(0) is nonzero.

pi(0) = {Z S

=0 g (k)

>0
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Product Form of S.S. Probabilities - 2

@

O The stationary distribution of the network state is the product of the
marginal distributions at each node i = Product form
« Known as Jackson’s Decomposition Theorem

FFF oL L

O Individual nodes behave as if they are M|M|SD queues with rate v,
and service time per visit s,
()

oYL L
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(I Summary I

O Phase type (general Markovian) queues
— Quasi-Birth-Death (QBD) Processes

O Why Markovian queues simple to solve?
— Time reversibility

0 Burke’s Theorem

O Product form of steady state distribution in open networks
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