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Control of M/M/1 queues

• The stationary distribution of the network state is the product of the marginal 

distributions at each node               PRODUCT FORM

Known as JACKSON’S DECOMPOSITION THEOREM

• Individual nodes behave as if they are M/M/1 queues with rate         and service 

time per visit is           .  

Control of M/M/1 queues:

Recall uniformization of a CTMC
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Control of M/M/1 queues

Consider M/M/1 queue with controlled service rate

• Suppose that the service rate can selected from a closed subset M of an interval

• Service rate  can be changed at the times when a customer departs from the 

system (i.e., at the departure epochs).

A good choice of uniformization rate

So that the uniformized version is:

0 1 2 n n+1
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Control of M/M/1 queues

0 1 2 n n+1

• There is a cost         per unit time for using rate .  For example, faster service 

costs more.  Assume                              is continuous 
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Control of M/M/1 queues

• There is a waiting cost  c(n) per unit time when there are n customers in the 

system (waiting in service or undergoing service).  The waiting cost function c(n)    

is nonnegative, monotonically, nondecreasing, and “convex” in the sense that

Problem: want to minimize the expected discounted cost over an infinite horizon:

Key: the state          and control          stay constant between transitions.

Approach: Convert into a discrete-time Markov chain problem

Investigate properties of 

Let 
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Control of M/M/1 queues

Since the transition time intervals are independent

So, the expected cost is
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Control of M/M/1 queues

An optimal policy is to use at sate I, the service rate that minimizes the expression 

on the right.  So, the optimal policy is to use:

Where 
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Control of M/M/1 queues

Properties of the optimal polity:

1) 

2)

Proof is based on successive approximation method.

Let  

For

Also, let

From the theory of Markov decision processes (MDP),

) it suffices to show that                              . Proof is by induction.  Assume that

, we will show that                           .  By construction

By definition:
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Control of M/M/1 queues

So,

M/M/1 Queue with controlled arrival rate: ~ flow control
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Control of M/M/1 queues

Some equations:

Where 

Again:

Priority assignment and the c rule
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Control of M/M/1 queues

• m queues sharing a single server.  Customers in queue i require service time with 

mean

• Cost per unit time per customer in queue 

• Suppose start with (                      ) customers and no further arrivals

• What is the optimal ordering for serving the customers?

Objective:

Uniformization:

Let

When queue    is served:

0 1 2 n n+1
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Control of M/M/1 queues

As before:

=   # of customers in the      queue after the       transition (real or 

fictitious)

We transform the problem from one of minimizing waiting costs to one of 

maximizing savings in waiting costs through customer service.

Let  

Let



Copyright ©2004 by K. Pattipati 

12

Control of M/M/1 queues

Suppose we pick queue

Customer leaves with prob. 

does not leave with prob.

where
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Control of M/M/1 queues

Optimal Policy:

Route an arriving customer to queue 1 iff. the state (     ) at the time of 

arrival is 3

Can show this by showing that:
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Control of M/M/1 queues

So, expected reward is 

It is optimal to serve the nonempty queue    for which         is maximum.

Threshold policies for routing in a two-node network

Uniform rate:  
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Control of M/M/1 queues

2,0 2,1 2,2

1,0 1,1 1,2

0,0 0,1 0,2

2,0 2,1 2,2

1,0 1,1 1,2

0,0 0,1 0,2

Transition rates when routed to queue 1
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Control of M/M/1 queues
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