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N 4 rl Product-form Networks l

We considered a general graph G = (V,E) where V is the set of nodes
{1,2,.....,M} and E is the set of ordered pairs denoting directed arcs.

B Arrival rate A from the source }
=)

EF O DL L
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External arrival rate

.= Probability that a customer goes to )
Psi y J to node i = Ap,

node i on arrival
E Routing probabilities P;;=Probability {a customer departing node |
will go nexttonode i}; 1=1,2,....M; j=1.2,....M,d
B Markov chain is irreducible and aperiodic

M
Vi:psi+zpjivj = \_/:ES"‘PT\_/ (OR) \_/=(|—PT)_1ES
-1

v; = average # of visits to node i by a customer
B Service demand at each node is s; exponentially distributed

state-dependent node

Copyright ©2004 by K. Pattipati

B Service rate functions : z;(n) = nu; = Infinite server; w;(n) = x; = single
server; w;(n) = min(n,m) x; = multi-server; w;(n) = { 1(2)... (M)} =
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Jackson’s Decomposition Theorem

E The steady state distribution of the number of customers at each node p(n,,
n,, =--My)is-aproduct of the state p Hiti he-tndividualnodes of
the network

(M) = [ [ 25 5 (0) = [T (1)
R EIQ -

B Wecan apply our earlier results on M/M/1, M/M/m, M/M/oo and PSrth -death
processes with the following interpretations: 2 — A; u(n) —

B Nework Measures:

M
Network Queue Length:Q =) Q,
i=1
Q

Network Response Time R = B

Bottleneck node: k =arg mm{ }
V.S
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Y. J_| Infinite and Single Server Nodes l

B Infinite server nodes:

n.

Q=p

R VS

U, =0

g~/ AV.S.
pi(ni):,OI—;p' =—

Poisson process with rate p;

! | Hi )

(over all visits) >~

B Single server nodes:

If need only Q; ,R;, U
don’t need p;(k)

Li ) york

Pi (ni ) — (1_
= 1fipi
Ay (1 Pi)
U, = p,

over all visits

Modified geometric

~ | don’t need p;(K)

If need only Q; ,R;, U
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: fl Multi-server Node l

E Multi-server node;

Avs, ) 1
/Lli . nl !

: p,(0); n,<m,

) foS

p; (N;) =4 - S
Avs. ) 1 ( Avis, )
(#j : [ ' 'j p,(0); n,>m,
L A m; T4,
AV,S, (m o)1 B AV,S,
. 1 . o =
b, (0) = Pz[ K j L. 1_@} o =
/‘tvs
p,(k—1);1<k<m -1
pi (k)=
p,(k—1);k > m,
P ' B Note that we need the distribution
Q= 1- p, [1+ kZ;‘ (m; =nypi k- 1)} for0<k<m;-2only
R, =% d'd
Tk A A o
ViS;, X s g
U= 3 im0+ 3 P (0 =200 p (k1) 37 p (k1)) = 205 = |3
Copyright ©2004 by K. Pattipati :
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@ ( State-dependent Node l

B State-dependent node: {4 (1), 4 (2),. 24 (M)}

Q=10 p.{“z{ﬂ' )‘@pn(k 1)}, A=%

As in multi server case, p;(k) is obtained from

1-1

D (O): 1_|_miz_: (f’visi) (/1VS) 1
a0 Hﬂ.(l) o

p, (k)= Y% b (k-1); 1<k=m, -1

w4 (k) "
pi (k) =—2Y5_p (k-1); k=m
4 (M, )
R_g.u _miz_:l,ui(k) p(k)+ip(k)— AV;S, jj
oA k=1 ,Ui(mi) | k=m, | ,ui(mi) jj
o
Copyright ©2004 by K. Pattipati .
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r CPU —

gy =03 W

& 1 = 0.45 Disk2
0.1 AT

1=

Departures

1 “cpu

Hepy =10°Instr /sec

A=0.3Jobs/sec;s... =50000 Instr; Sp, =50 blocks; Sp, =50 blocks
#p, =100 blocks /sec

Hp, =200 blocks /sec

R =0.60sec; R, =6.9sec;

R=R,, +Rp, +Rp, =9.21sec;

Copyright ©2004 by K. Pattipati

VS, 0.3(10)5.10" AVo s,  0.3(4.5)50
j— pcpu = pu__cp = ( 10)6 = 015, le = 070 — (100)
cpu /uD1
AV S 0.3(4.5)50
Pp, = —222 = (45) =0.3375
C 200
0.15 0.675 0.34
=" _0.18; =2.07; =" _052
Qups 0.85 b, = 0.325 Q, 0.62

Rp, =1.71sec

Q=2.77 ; Bottleneck node : Disk 1; 4, =

=0.675

- i =0.44 Jobs/sec

2.25
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Delays in Communication Networks -1

Cap. C, Cap. C, . link1 5
2
A packets/sec /\ P,
\\/ link2
link1 o link2
Packet lengths are exponentially distributed with mean s Ps

Inter-arrival times are independent of packet length
First link is M/M/1 queue. Second link is not M/M/1. why?

« The service times at the two links are strongly correlated, since the same
message must go through both links.

 Indeed, inter arrival times at the second link are strongly correlated with
the packet lengths. To see this, consider the busy period of link 1.

> Inter arrival time at link 2 between two such packets = transmission time of
second packet. so, long packet will wait less time at the second link, since their
transmission time at the first link takes longer, thereby giving the second link
more time to empty out.

Fastcars ocoooo | | sees lot of empty space d'd

slow truck 4 d

; . ] . o

No analytical solutions exist for such dependent queuing processes . %

Y

Copyright ©2004 by K. Pattipati .
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E It is even worse for communication
networks = need to make some
assumptions
B Consider several packet streams
following different paths
A path p consists of a
sequence of links : «
- .- 1
pr =k i).(i, i)} "
p2={(,).G, 1}
ps =1(k, 1),(I, )}
( links are bi-directional)
E Link flows: Ay =Xy + X0 Aa=Xp0 =X, 5 A4 =X, + X, Xpp
B Link flows depend on input streams and routing i
E Ingeneral, ,= > x
CAGHA .
We have just seen that even for two link tandem queue, even if the packet |1
; c - . . . o
streams are Poisson with independent packet lengths at their point of entry into i
the network, this property is lost after the first transmission line N
Copyright ©2004 by K. Pattipati .
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Delays in Communication Networks -3

B Kleinrock’s independence assumption = Make it into a Jackson network

« Based on simulation results, it was found that merging of several packet
streams on a link has an effect similar to restoring the independence of
inter arrival times and packet lengths. Indeed, this assumption is quite
accurate for networks with

1. Poisson arrivals to nodes (external traffic)
2. Packet lengths are exponentially distributed
3. Densely-connected networks

4. Moderate-to-heavy traffic loads.

EF O DL L

Each link is an M/M/1 queue with arrival rate 4; packets/sec, capacity of
link ;; bits/sec and packet lengths s bits/packet

s
= Py =

Hij
Lij A4S

Qi_ = = IJ
J 1-p; JZRlO

kL L
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Delays in Communication Networks -4

4 R oY
o
o ]
. B Total number of customers in the network : Q=>"Q, = XR
a _ (i.3) _
N X = Throughput in packets/sec = Z X, = total external traffic = y
p
: B Average response time (or delay) per packet
|:> R = E Z —/’Llj >
Y (i) My — A4S
B If there Is a propagation delay and processing delay of d;; sec/bit
1 A.:S
R==> —+ 4;sd;
Y in| M — A4S
B Response time over path p is given by
S S S
R = +d.s |= +—+d.s
P all(i,zj)on|:/uij _ﬂ'ijs J :| all(;j)on|:/uij (/uij _ﬂ’|js) Hij J
path p path p 3
B Research issues : e
F Independence assumption is crucial. Can we relax this? 4 'd
) ] ; < d
B Can we relax exponential packet length assumption? Only approximately. |g g
Copyright ©2004 by K. Pattipati .
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Capacity Assignment Problem - 1

E Problem : Optimize link capacities

Know 4; = Know routing. Want to find the best

FFF oL L

min Y s.ci; ¢, =costof link (i, j)
A (i)

A;S —
s.t.EZ{ + A sd”}_

7/( ) lulj /ll
B Equivalent problem :
min Zﬂu ’
“i (i)
A.S — - —
s.t.iz+s R; R:Rl—lz/pjsdij
¥ (i7) 4 — A4S /o

E Append the constraint with a Lagrange multiplier 3>0. At optimum, strict
equality.

Copyright ©2004 by K. Pattipati
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Y (i.i) Hij —

From first equation :

A S

Ay = ;lﬁjs -+ Z .

7 GCi;

From second equation :
— ;S
R=> -
Y (i.i) ,8 (i.j) 7//6
7/C|J

or

R(-n\/

Copyright ©2004 by K. Pattipati
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Square-root channel

> \fCanAmS J capacity assignment
(m,n

Optimal Cost = Z/l sC, +—{ > «/Cmnlmns}

B  Research Problems :

1. Channel capacities come in discrete quantities=) Integer programming problem
2. Want to min. w.r.t Z; (i.e. routing) and g;;

3.  May want to include reliability constraints w.r.t. connectivity

kL L
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N & [ Closed Queuing Networks |

B Central server model

Paging Disk

-
®

N jobs in the loop

I €7y

Job scheduling

queue G
P,

File Disk

)
o

o
wn
2

N = Degree of
multi-programming
(DOM)

s
o

m Let us consider a simple two-node closed queuing network first

N

N jobs in the loop 1/0
— P, —

69— T—O) .
- I |

n Yp N-n
! o 'd
od 'l
Y
Copyright ©2004 by K. Pattipati .




EF O DL L

17

J

: [ Assumptions of the Model |

Lengths of successive CPU bursts are exponentially distributed random
variables with mean s, instructions. Instruction execution rate of the CPU is g,
instructions/sec => service time per visit = s,/u,

Successive 1/O bursts are also exponentially distributed with mean data transfer
of s, words. Transfer rate Is u, words/sec = service time per Visit = s,/u,

Routing : At the end of CPU bursts, a program completes execution with
probability p, or requires an 1/O operation with probability p, = (1- p;). As soon
as a program completes execution, another statistically equivalent program
enters the system so that the number in the system, termed the degree of multi-
programs is constant

@@@@@@@MC@

/J"_Lpz/s /Jipz/s /vﬁpz/s /’LlpZ/S :LL_Lpz/Sl

Similar to M/M/1/N gueue

Copyright ©2004 by K. Pattipati
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[ Detailed Balance Equations -1 |

HB p(0/N) =42 p(n=YN) = p(n/N) =-£2%p(n-YN) = pp(n-YN)

S, P, _ CPU service time

P= wp, p,s, |/0 servicetime
N 1 1-p 1
N/N)=1= p(0/N )= = =
;p(/ ) P(O/N) I+ p+p°+..+p" 1-p"" G(N)
1-p
e 1
1_pN+l p<
(0/N)=1-1 -1
P N1 P
p—-1
1
ION+1 1 p>

B Throughput

ALCPU X, (N) =43 p(n/N) =% (1- p (0] N))= o 2(=2")

1 Sl 1_p(N+l ) J J
: N 1-p" a'd
At Disk : X, (N)=*2 N-n/N)=*2(1-p(N|N))=*2.
A(N) =3 (N —/N) =22 (1= p(N | N)) =42 n
Note : Job completion rate: X (N) = X, (N)p, = X,(N) = X(N); X,(N) = X(N).& :
p p
Copyright ©2004 by K. Pattipati ' ' .
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| Detailed Balance Equations- 2

\/
E Utilization : )
p(1-o")
X, (N 1-pMt Pl
CPU : Uﬁzllf%zl—mmN): Np
N +1 p=1
1-p" p#1
X N S 1_ N+1
00 s u, =XM% gy - N
/'12 p:1
N+1

B Queue Length :

_(A=p)pl1-p" -Np"  pl-p")
1-p" 1 1-p 1-p  (@-p)

:1L[1—(N +1) p(N | N)]= identical to M | M |1| N result (see Lecture 4)
—P

[1p }ﬂ_(N+D0;£N”]
-p 1-p

Copyright ©2004 by K. Pattipati
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Insights from the Model

N —1L CPU bound case

U -p
. Q
CPU bound case ' % Balanced
I/0 bound case P 1/0 Bound
1-p
N N
P<l AS N >o0,p =1-pU, = p,Q =2~ gince MM/I/N M/M/1 queve U, =1Q,=N-—~—
1-p 2 2 1-p

p<1 = CPU service rate > I/O service rate (OR) system is I/O bound

= (ueue length at the I/O gets arbitrarily large.

l_ N
= utilization of I/O — 1 look at # —1 asN—w
= 1/O device becomes a Poisson source with rate %
2
: : . . H ;
= Q= 1,001 Po =1- M /M /1 queue with arrival rate S—Z and service rate :
— 2

p>1 = CPU service rate < I/O service rate (or) system is CPU boundasN — o, p, - 0= U, =1(or) CPU is always busy

= CPU becomes a Poisson source with rate 4Pz do

= Each additional increase in N will increase the queue lengthby 1 = le =1
p=1 = Balanced = gradual increase in utilization = N/2 split in customers = Maximum Throughput

Copyright ©2004 by K. Pattipati
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- [ Global Balance Equations |

4 Qe
o
: B Let us look at the queuing system in a slightly different way
|
N 1/0
- p2 -
| | @ > | /\
Q — N LA NG
nl \ 4 P, n2
&
4P, /s, 4P, /s, 4P, /s,

Global balance equations :

(1) {&+ﬂ1—p2} p(nl,nz)zﬂls—p2 p(n +1n, —1)+& p(n,-1n,+1);n,n, >0

S S

2 1 1 2

21

(2) “p(o,N)=£PepN-1) 2

s, S, d'a

(3) P p(N,0)=*£ p(N-11) .

Sl SZ .

Copyright ©2004 by K. Pattipati .
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Product Form

Local balance : %p(nl_l,nZH)

2

Note that local balance equation is valid when we multiply LHS and RHS by a constant. It turns out that

_ P
S

p(n.n,)

3 infinite # of ways of specifying the Local balance equations.

Define variablesv;, v, ......

Known as “visit ratios” (or) “relative throughput”

=V, =PV t+V,

Facts e 3 infinite # of solutions to the equation v=P'v

e can pick v, or v, arbitrarily

)
T

Can prove that p(nl,nz)=m.

substitute in local balance equation :

v.s, )"
. ZJ Product form

n-1 n,+1 n n,
s 6N ) () s o)) Ta 12
2 2 < 'd
&ﬁﬁ:_ﬂlpz :>V_2: P, Yes 11 L
S, M K S Vi e
Although v, can be specified in an infinite # of ways, 3 four popular choices. ¥
Copyright ©2004 by K. Pattipati .
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. [ Choice of Visit Ratios - 1

B Choices for V;

@

1) v= % - # of visits to CPU/Job

. 2 1 1 V,S
=l+p,+p, +...= Y %1 — relative service time per job at the CPU
p2 pl : ll,Ll
Vo =PV = % 2% _ relative service time per job at the 1/0
1 H

p(n n )= 1 [ > jnl.(szpz jnzz 1 [ St Jnl_(SszJN_nl
Y G (N)Ups ) b, ) GU(N) b)) \ puy
N n
2
G, ( N ) Y22 S, P,

N-+1
1_( HyS, j .
zp(n1)=1:>1: 45, P, J(Szpzj

"=0 G (N) (l— oS, Putt,
X :
:‘ulSZ p2
Hy
1-p" (s p N S

G,(N)= | 2P, S 4
1-p \ Py P -
S .
~op(n) = 1_’5 - independent of how we select v; a
1-p™ L
Copyright ©2004 by K. Pattipati .
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. | Choice of Visit Ratios - 2

Indeed, the performance measures are independent of how we choose v;’s ; choice of v,
affects only the normalization constant G(N).

o)

1_pN+l

@

U,=U,, =1-p(0)=

FFF oL L

Similarly,U, =

B Some observations :

(i) Ul:p(l—PN): ws (1-P") _ S 4B (1-p") _ (vl_sl]GI(N—l)

1_pN+1 /'Liszpzll_pNJrl pl:ul.szpz .1_pN+l H Gl(N)
X (N)= G,(N 1) Throughput = normalizaFion- constant With.(N —1) customers
G,(N) normalization constant with N customers
() o) = 2250 1 p(n/N) vs, -
Y- pht ' < [p(n/N) :1; X(N)p(n,-1/N-1)| <« Basis of MVA
1-p o
p(n, ~1/N-1) =~ pn N N
1 - QUN) =X mp(n N R(N) = 1. we have -
p(nl/N) _ 1_,0N —U n
- NPTV V.S ] o d
p(n,-1/N-1) 1-p R(N)=-"1[1+Q(N -1)] MVA equation o
Vlsl luj'
=1L X (N) a
a o
Copyright ©2004 by K. Pattipati .

24 L LR LR
LR L LR



EF O DL L

25

7. | Cholce of Visit Ratios - 3 )

(iii) Gl(N):ZN:(Vlslj [V252] h
m=0\ A4 H,

N-n n,
Gl(Z)(N - nl) - 61(2) (nz) = (\ﬁj = (VZSZ J
H, H,

= Normalization cons tant with node 1 removed and (N —n,) customers

G,(N)=G”(N)*G,”(N)

B Homework :

VS e : e
Choice2: W= ek =V, = ek p, = —==1= all utilization will be scaled by CPU utilization.

Sy Sy Hy

Choice3: v, =1,v,=p, —> CPU is the reference node with 1 visit. Lavenberg’s book uses this.

V.S

1
H, P

272

Choice4: v,+v,=1,v,=p,V,..... Probability interpretation less common d'd

«d Jd

Prove that all the choices lead to same utilization, throughput, etc. a %

< d

o

Copyright ©2004 by K. Pattipati .
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(I Summary I

B Jackson Networks
B Applications of Jackson Networks
E Computer Systems
E Delay Analysis in Communication Networks
B Capacity Assignment Problem
B Single-class Closed Queuing Networks
B Local and Global Balance Equations

B Analysis via a two node network (equivalence to M|M|1|N
network)

E Insights from the Model
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