Lecture 6

Prof. Krishna R. Pattipati

Dept. of Electrical and Computer Engineering University of Connecticut
 Contact: krishna@engr.uconn.edu (860) 486-2890

EE 336
Stochastic Models for the Analysis of Computer Systems and Communication Networks

Product-form Networks

- We considered a general graph $G=(V, E)$ where V is the set of nodes $\{1,2, \ldots, M\}$ and E is the set of ordered pairs denoting directed arcs.
- Arrival rate λ from the source

External arrival rate to node $i=\lambda p_{s i}$

- Routing probabilities $P_{j i}=$ Probability $\{$ a customer departing node j will go next to node $i\} ; \quad i=1,2, \ldots . . M ; \quad j=1,2, \ldots . . M, d$
- Markov chain is irreducible and aperiodic

$$
v_{i}=p_{s i}+\sum_{j=1}^{M} P_{j i} v_{j} \Rightarrow \underline{v}=\underline{p}_{s}+P^{T} \underline{v} \quad(O R) \quad \underline{v}=\left(I-P^{T}\right)^{-1} \underline{p}_{s}
$$

$v_{i}=$ average \# of visits to node i by a customer

- Service demand at each node is s_{i} exponentially distributed
- Service rate functions: $\mu_{i}(n)=n \mu_{i} \Rightarrow$ infinite server; $\mu_{i}(n)=\mu_{i} \Rightarrow$ single server; $\mu_{i}(n)=\min (n, m) \mu_{i} \Rightarrow$ multi-server; $\mu_{i}(n)=\left\{\mu_{i}(1) \ldots \mu_{i}\left(m_{\mathrm{i}}\right)\right\} \Rightarrow$ state-dependent node

Jackson's Decomposition Theorem

- The steady state distribution of the number of customers at each node $p\left(n_{1}\right.$, $\left.n_{2}, \ldots . . n_{M}\right)$ is a product of the state probabilities at the individual nodes of the network

$$
p\left(n_{1}, n_{2}, \ldots, n_{M}\right)=\prod_{i=1}^{M} \frac{\left(\lambda v_{i} s_{i}\right)^{n_{i}}}{\prod_{k=1}^{n_{i}} \mu_{i}(k)} p_{i}(o)=\prod_{i=1}^{M} p_{i}\left(n_{i}\right)
$$

- We can apply our earlier results on $\mathrm{M} / \mathrm{M} / 1, \mathrm{M} / \mathrm{M} / \mathrm{m}, \mathrm{M} / \mathrm{M} / \infty$ and birth-death processes with the following interpretations: $\lambda \rightarrow \lambda ; \mu(n) \rightarrow \frac{\mu_{i}(n)}{v_{i} s_{i}}$
- Nework Measures:
Network Queue Length: $Q=\sum_{i=1}^{M} Q_{i}$
Network Re sponse Time $R=\frac{Q}{\lambda}$
Bottleneck node $: k=\arg \min _{i}\left\{\frac{\mu_{i}\left(m_{i}\right)}{v_{i} s_{i}}\right\}$

Infinite and Single Server Nodes

- Infinite server nodes:

$$
\begin{aligned}
& p_{i}\left(n_{i}\right)=\frac{\rho_{i}^{n_{i}} e^{-\rho_{i}}}{n_{i}!} ; \rho_{i}=\frac{\lambda v_{i} s_{i}}{\mu_{i}} \\
& Q_{i}=\rho_{i} \\
& R_{i}=\frac{v_{i} s_{i}}{\mu_{i}} \\
& U_{i}=0
\end{aligned} \quad \text { (over all visits) } \quad \begin{array}{r}
\text { Poisson process with rate } \rho_{i} \\
\hline \begin{array}{l}
\text { If need only } Q_{i}, R_{i}, U_{i}, \\
\text { don't need } p_{i}(k)
\end{array} \\
\hline
\end{array}
$$

- Single server nodes:

$$
\begin{aligned}
& p_{i}\left(n_{i}\right)=\left(1-\rho_{i}\right) \rho_{i}^{n_{i}} \\
& Q_{i}=\frac{\rho_{i}}{1-\rho_{i}} \\
& R_{i}=\frac{v_{i} s_{i}}{\mu_{i}\left(1-\rho_{i}\right)} \text { over all visits } \\
& U_{i}=\rho_{i}
\end{aligned}
$$

Multi-server Node

Multi-server node:

$$
\left.\begin{array}{l}
p_{i}\left(n_{i}\right)=\left\{\begin{array}{l}
\left(\frac{\lambda v_{i} s_{i}}{\mu_{i}}\right)^{n_{i}} \cdot \frac{1}{n_{i}!} p_{i}(o) ; \quad n_{i} \leq m_{i} \\
\left(\frac{\lambda v_{i} s_{i}}{\mu_{i}}\right)^{m_{i}} \cdot \frac{1}{m_{i}!}\left(\frac{\lambda v_{i} s_{i}}{\mu_{i} m_{i}}\right)^{n_{i}-m_{i}} p_{i}(o) ; n_{i}>m_{i}
\end{array}\right. \\
p_{i}(o)=\left[1+\sum_{k=1}^{m_{i}-1}\left(\frac{\lambda v_{i} s_{i}}{\mu_{i}}\right)^{k} \cdot \frac{1}{k!}+\frac{\left(m_{i} \rho_{i}\right)^{m_{i}}}{m_{i}!} \cdot \frac{1}{1-\rho_{i}}\right]^{-1} ; \rho_{i}=\frac{\lambda v_{i} s_{i}}{m_{i} \mu_{i}}
\end{array}\right\} \begin{array}{ll}
p_{i}(k)= \begin{cases}\frac{\lambda v_{i} s_{i}}{k \mu_{i}} p_{i}(k-1) ; 1 \leq k \leq m_{i}-1 \\
\rho_{i} p_{i}(k-1) ; k \geq m_{i}\end{cases} \\
Q_{i}=\frac{\rho_{i}}{1-\rho_{i}}\left[1+\sum_{k=1}^{m_{i}-1}\left(m_{i}-n\right) p_{i}(k-1)\right] & \begin{array}{l}
\text { Note that we need the distribution } \\
\text { for } 0 \leq k \leq m_{i}-2 \text { only }
\end{array} \\
R_{i}=\frac{Q_{i}}{\lambda} \\
U_{i}=\sum_{k=1}^{m_{i}-1} \frac{k}{m_{i}} p_{i}(k)+\sum_{k=m_{i}}^{\infty} p_{i}(k)=\frac{\lambda v_{i} s_{i}}{m_{i} \mu_{i}}\left[\sum_{k=1}^{m_{i}-1} p_{i}(k-1)+\sum_{k=m_{i}}^{\infty} p_{i}(k-1)\right]=\frac{\lambda v_{i} s_{i}}{m_{i} \mu_{i}}=\rho_{i}
\end{array}
$$

State-dependent Node

State-dependent node: $\left\{\mu_{i}(1), \mu_{i}(2), \ldots ., \mu_{i}\left(m_{i}\right)\right\}$

$$
Q_{i}=\frac{\rho_{i}}{1-\rho_{i}}\left\{1+\sum_{k=1}^{m_{i}-1}\left[\frac{\mu_{i}\left(m_{i}\right)}{\mu_{i}(k)}-1\right] p_{i}(k-1)\right\} ; \quad \rho_{i}=\frac{\lambda v_{i} s_{i}}{\mu_{i}\left(m_{i}\right)}
$$

$$
\begin{gathered}
\text { As in multi server case, } p_{i}(k) \text { is obtained from } \\
p_{i}(o)=\left[1+\sum_{k=1}^{m_{i-1}} \frac{\left(\lambda v_{i} s_{i}\right)^{k}}{\prod_{l=1}^{k} \mu_{i}(l)}+\frac{\left(\lambda v_{i} s_{i}\right)^{m_{i}}}{\prod_{l=1}^{m_{i}} \mu_{i}(l)} \cdot \frac{1}{1-\rho_{i}}\right]^{-1} \\
p_{i}(k)=\frac{\lambda v_{i} s_{i}}{\mu_{i}(k)} p_{i}(k-1) ; \quad 1 \leq k \leq m_{i}-1 \\
p_{i}(k)=\frac{\lambda v_{i} s_{i}}{\mu_{i}\left(m_{i}\right)} p_{i}(k-1) ; \quad k \geq m_{i}
\end{gathered}
$$

$$
R_{i}=\frac{Q_{i}}{\lambda} ; U_{i}=\sum_{k=1}^{m_{i-1}} \frac{\mu_{i}(k)}{\mu_{i}\left(m_{i}\right)} p_{i}(k)+\sum_{k=m_{i}}^{\infty} p_{i}(k)=\frac{\lambda v_{i} s_{i}}{\mu_{i}\left(m_{i}\right)}
$$

Illustrative Example

$$
\lambda=0.3 \mathrm{Jobs} / \mathrm{sec} ; s_{c p u}=50000 \mathrm{Instr} ; s_{D_{1}}=50 \text { blocks } ; s_{D_{2}}=50 \text { blocks }
$$

$$
\mu_{c p u}=10^{6} \text { Instr } / \text { sec } \quad \mu_{D_{1}}=100 \text { blocks } / \mathrm{sec} \quad \mu_{D_{2}}=200 \text { blocks } / \mathrm{sec}
$$

$$
\Rightarrow \rho_{c p u}=\frac{\lambda v_{c p u} s_{c p u}}{\mu_{c p u}}=\frac{0.3(10) 5.10^{4}}{10^{6}}=0.15 ; \rho_{D_{1}}=\frac{\lambda v_{D_{1}} s_{D_{1}}}{\mu_{D_{1}}}=\frac{0.3(4.5) 50}{100}=0.675
$$

\(\left.\begin{array}{c}v_{c p u}=1+v_{D_{1}}+v_{D_{2}}

v_{D_{1}}=0.45 v_{c p u}

v_{D_{2}}=0.45 v_{c p u}\end{array}\right\} \Rightarrow\)| $v_{c p u}=10$ |
| :--- |
| $v_{D_{1}}=4.5$ |
| $v_{D_{2}}=4.5$ |

$$
\rho_{D_{2}}=\frac{\lambda v_{D_{2}} s_{D_{2}}}{\mu_{D_{2}}}=\frac{0.3(4.5) 50}{200}=0.3375
$$

$$
Q_{c p u}=\frac{0.15}{0.85}=0.18 ; \quad Q_{D_{1}}=\frac{0.675}{0.325}=2.07 ; \quad Q_{D_{2}}=\frac{0.34}{0.62}=0.52
$$

$$
R_{c p u}=0.60 \mathrm{sec} ; \quad R_{D_{1}}=6.9 \mathrm{sec} ; \quad R_{D_{2}}=1.71 \mathrm{sec}
$$

$R=R_{c p u}+R_{D_{1}}+R_{D_{2}}=9.21 \mathrm{sec} ; \quad Q=2.77 ;$ Bottleneck node: Disk $1 ; \lambda_{\text {sat }}=\frac{\mu_{D_{1}}}{v_{D_{1}} s_{D_{1}}}=\frac{1}{2.25}=0.44 \mathrm{Jobs} / \mathrm{sec}$

Delays in Communication Networks -1

Cap. C_{1}

link1

- Packet lengths are exponentially distributed with mean s
- Inter-arrival times are independent of packet length
- First link is M/M/1 queue. Second link is not M/M/1. why?
- The service times at the two links are strongly correlated, since the same message must go through both links.
- Indeed, inter arrival times at the second link are strongly correlated with the packet lengths. To see this, consider the busy period of link 1.
$>$ Inter arrival time at link 2 between two such packets $=$ transmission time of second packet. so, long packet will wait less time at the second link, since their transmission time at the first link takes longer, thereby giving the second link more time to empty out.

No analytical solutions exist for such dependent queuing processes

[^0]
Delays in Communication Networks -2

- It is even worse for communication networks \Rightarrow need to make some assumptions
- Consider several packet streams following different paths A path p consists of a sequence of links :
$p_{1}=\{(k, i),(i, j)\}$
$p_{2}=\{(i, j),(j, 1)\}$
$p_{3}=\{(k, 1),(1, j)\}$
(links are bi-directional)
■ Link flows: $\lambda_{i j}=X_{p_{1}}+X_{p_{2}} ; \quad \lambda_{k i}=X_{p_{1}} ; \quad \lambda_{k l}=X_{p_{3}} ; \quad \lambda_{j i}=X_{p_{2}}+X_{p_{3}} \downarrow \mathrm{x}_{\mathrm{p} 2}$
- Link flows depend on input streams and routing
- In general, $\lambda_{i j}=\sum_{\substack{\text { atl p paneresing } \\ \text { luk }}} x_{p}$

We have just seen that even for two link tandem queue, even if the packet streams are Poisson with independent packet lengths at their point of entry into the network, this property is lost after the first transmission line

[^1]
Delays in Communication Networks -3

Kleinrock's independence assumption \Rightarrow Make it into a Jackson network

- Based on simulation results, it was found that_merging of several packet streams on a link has an effect similar to restoring the independence of inter arrival times and packet lengths. Indeed, this assumption is quite accurate for networks with

1. Poisson arrivals to nodes (external traffic)
2. Packet lengths are exponentially distributed
3. Densely-connected networks
4. Moderate-to-heavy traffic loads.

Each link is an $\mathrm{M} / \mathrm{M} / 1$ queue with arrival rate $\lambda_{i j}$ packets/sec, capacity of link $\mu_{i j}$ bits/sec and packet lengths s bits/packet

$$
\begin{aligned}
& \Rightarrow \quad \rho_{i j}=\frac{\lambda_{i j} s}{\mu_{i j}} \\
& Q_{i j}=\frac{\rho_{i j}}{1-\rho_{i j}}=\frac{\lambda_{i j} s}{\mu_{i j}-\lambda_{i j} s}
\end{aligned}
$$

Delays in Communication Networks - 4

- Total number of customers in the network : $Q=\sum_{(i, j)} Q_{i j}=X R$

$$
\mathrm{X}=\text { Throughput in packets } / \mathrm{sec}=\sum_{p} X_{p}=\text { total external traffic }=\gamma
$$

- Average response time (or delay) per packet

$$
\Rightarrow R=\frac{1}{\gamma} \sum_{(i, j)} \frac{\lambda_{i j} s}{\mu_{i j}-\lambda_{i j} s}
$$

- If there is a propagation delay and processing delay of $d_{i j} \mathrm{sec} / \mathrm{bit}$

$$
R=\frac{1}{\gamma} \sum_{(i, j)}\left[\frac{\lambda_{i j} s}{\mu_{i j}-\lambda_{i j} s}+\lambda_{i j} s d_{i j}\right]
$$

- Response time over path p is given by

$$
R_{p}=\sum_{\substack{\text { all }(i, j) \text { on } \\ \text { path } p}}\left[\frac{s}{\mu_{i j}-\lambda_{i j} s}+d_{i j} s\right]=\sum_{\substack{\text { all }(i, j) \text { on } \\ \text { path } p}}\left[\frac{s}{\mu_{i j}\left(\mu_{i j}-\lambda_{i j} s\right)}+\frac{s}{\mu_{i j}}+d_{i j} s\right]
$$

- Research issues:
- Independence assumption is crucial. Can we relax this?
- Can we relax exponential packet length assumption? Only approximately.

Capacity Assignment Problem - 1

- Problem : Optimize link capacities

Know $\lambda_{i j} \Rightarrow$ Know routing. Want to find the best $\mu_{i j}$

$$
\begin{array}{|l}
\min _{\mu_{i j}} \sum_{(i, j)} \mu_{i j} c_{i j} ; \quad c_{i j}=\cos t \text { of } \operatorname{link}(i, j) \\
\text { s.t. } \frac{1}{\gamma} \sum_{(i, j)}\left[\frac{\lambda_{i j} s}{\mu_{i j}-\lambda_{i j} s}+\lambda_{i j} s d_{i j}\right] \leq \bar{R}_{1}
\end{array}
$$

- Equivalent problem :

$$
\begin{array}{|l|}
\min _{\mu_{i j}} \sum_{(i, j)} \mu_{i j} c_{i j} \\
\text { s.t. } \frac{1}{\gamma} \sum_{(i, j)} \frac{\lambda_{i j} s}{\mu_{i j}-\lambda_{i j} s} \leq \bar{R} ; \quad \bar{R}=\bar{R}_{1}-\frac{1}{\gamma} \sum_{(i, j)} \lambda_{i j} s d_{i j}
\end{array}
$$

- Append the constraint with a Lagrange multiplier $\beta>0$. At optimum, strict equality.

Capacity Assignment Problem - 2

$$
\begin{aligned}
& L\left(\beta, \mu_{i j}\right)=\sum_{(i, j)}\left[\mu_{i j} c_{i j}+\frac{\beta}{\gamma} \cdot \frac{\lambda_{i j} s}{\mu_{i j}-\lambda_{i j} s}-\beta \bar{R}\right] \\
& \frac{\partial L}{\partial \mu_{i j}}=\mathrm{O} \Rightarrow c_{i j}-\frac{\beta}{\gamma} \cdot \frac{\lambda_{i j} s}{\left(\mu_{i j}-\lambda_{i j} s\right)^{2}}=\mathrm{o} \\
& \frac{\partial L}{\partial \beta}=\mathrm{O} \Rightarrow \frac{1}{\gamma} \sum_{(i, j)} \frac{\lambda_{i j} s}{\mu_{i j}-\lambda_{i j} s}=\bar{R}
\end{aligned}
$$

From first equation :

$$
\mu_{i j}=\lambda_{i j} s+\sqrt{\frac{\beta \lambda_{i j} s}{\gamma c_{i j}}}
$$

From second equation :

$$
\begin{aligned}
& \bar{R}=\frac{1}{\gamma} \sum_{(i, j)} \frac{\lambda_{i j} s}{\sqrt{\frac{\beta \lambda_{i j} s}{\gamma c_{i j}}}}=\sum_{(i, j)} \sqrt{\frac{c_{i j} \lambda_{i j} s}{\gamma \beta}} \\
& \text { or } \\
& \sqrt{\beta}=\frac{1}{\bar{R}} \sum_{(i, j)} \sqrt{\frac{c_{i j} \lambda_{i j} s}{\gamma}}
\end{aligned}
$$

Capacity Assignment Problem - 3

$$
\text { So, } \begin{aligned}
\mu_{i j} & =\lambda_{i j} s+\frac{1}{\bar{R}}\left(\sqrt{\frac{\lambda_{i j} s}{\gamma c_{i j}}}\right) \cdot \sum_{(m, n)} \sqrt{\frac{c_{m n} \lambda_{m n} s}{\gamma}} \\
& =\lambda_{i j} s+\frac{1}{\gamma \bar{R}}\left(\sqrt{\frac{\lambda_{i j} s}{c_{i j}}}\right) \cdot \sum_{(m, n)} \sqrt{c_{m n} \lambda_{m n} s} \\
& =\lambda_{i j} s\left[1+\frac{1}{\gamma \bar{R}} \frac{\left(\sum_{(m, n)} \sqrt{c_{m n} \lambda_{m n} s}\right)}{\sqrt{\lambda_{i j} s c_{i j}}}\right] \\
& \begin{array}{ll}
\text { Square-root channel } \\
\text { capacity assignment }
\end{array} \\
& \text { Optimal } \quad \operatorname{Cost}=\sum_{(i, j)} \lambda_{i j} s c_{i j}+\frac{1}{\gamma \bar{R}}\left[\sum_{(m, n)} \sqrt{c_{m n} \lambda_{m n} s}\right]^{2}
\end{aligned}
$$

- Research Problems :

1. Channel capacities come in discrete quantities \Rightarrow Integer programming problem
2. Want to min. w.r.t $\lambda_{i j}$ (i.e. routing) and $\mu_{i j}$
3. May want to include reliability constraints w.r.t. connectivity

Closed Queuing Networks

Central server model

- Let us consider a simple two-node closed queuing network first

Assumptions of the Model

- Lengths of successive CPU bursts are exponentially distributed random variables with mean s_{1} instructions. Instruction execution rate of the CPU is μ_{1} instructions $/ \mathrm{sec} \Rightarrow$ service time per visit $=s_{I} / \mu_{I}$
- Successive I/O bursts are also exponentially distributed with mean data transfer of s_{2} words. Transfer rate is μ_{2} words $/ \mathrm{sec} \Rightarrow$ service time per visit $=s_{2} / \mu_{2}$
- Routing : At the end of CPU bursts, a program completes execution with probability p_{1} or requires an I/O operation with probability $p_{2}=\left(1-p_{1}\right)$. As soon as a program completes execution, another statistically equivalent program enters the system so that the number in the system, termed the degree of multiprograms is constant

Similar to M/M/1/N queue

Detailed Balance Equations -1

$$
\begin{aligned}
& \frac{\mu_{1} p_{2}}{s_{1}} p(n / N)=\frac{\mu_{2}}{s_{2}} p(n-1 / N) \Rightarrow p(n / N)=\frac{\mu_{2} s_{1}}{\mu_{1} p_{2} s_{2}} p(n-1 / N)=\rho p(n-1 / N) \\
& \rho=\frac{s_{1}}{\mu_{1} p_{1}} \cdot \frac{p_{1} \mu_{2}}{p_{2} s_{2}}=\frac{C P U \text { service time }}{\text { I/O service time }} \\
& \sum_{n=0}^{N} p(n / N)=1 \Rightarrow p(0 / N)=\frac{1}{1+\rho+\rho^{2}+\ldots .+\rho^{N}}=\frac{1-\rho}{1-\rho^{N+1}}=\frac{1}{G(N)}
\end{aligned}
$$

$$
p(0 / N)= \begin{cases}\frac{1-\rho}{1-\rho^{N+1}} & \rho<1 \\ \frac{1}{N+1} & \rho=1 \\ \frac{\rho-1}{\rho^{N+1}-1} & \rho>1\end{cases}
$$

Throughput

$$
\begin{aligned}
& \text { At } C P U: X_{1}(N)=\frac{\mu_{1}}{s_{1}} \sum_{n=1}^{N} p(n / N)=\frac{\mu_{1}}{s_{1}}(1-p(0 \mid N))=\frac{\mu_{1}}{s_{1}} \cdot \frac{\rho\left(1-\rho^{N}\right)}{1-\rho^{N+1}} \\
& \text { At Disk }: X_{2}(N)=\frac{\mu_{2}}{s_{2}} \sum_{n=1}^{N} p(N-n / N)=\frac{\mu_{2}}{s_{2}}(1-p(N \mid N))=\frac{\mu_{2}}{s_{2}} \cdot \frac{\left(1-\rho^{N}\right)}{1-\rho^{N+1}}
\end{aligned}
$$

Note : Job completion rate $: X(N)=X_{1}(N) p_{1} \Rightarrow X_{1}(N)=\frac{X(N)}{p_{1}} ; \quad X_{2}(N)=X(N) . \frac{p_{2}}{p_{1}}$

Detailed Balance Equations- 2

- Utilization :

$$
\begin{aligned}
& \mathrm{CPU}: \quad U_{1}=\frac{X_{1}(N) s_{1}}{\mu_{1}}=1-p(0 \mid N)= \begin{cases}\frac{\rho\left(1-\rho^{N}\right)}{1-\rho^{N+1}} & \rho \neq 1 \\
\frac{N}{N+1} & \rho=1\end{cases} \\
& \mathrm{I} / \mathrm{O}: \quad U_{2}=\frac{X_{2}(N) s_{2}}{\mu_{2}}=1-p(N / N)= \begin{cases}\frac{1-\rho^{N}}{1-\rho^{N+1}} & \rho \neq 1 \\
\frac{N}{N+1} & \rho=1\end{cases}
\end{aligned}
$$

- Queue Length :

$$
\begin{aligned}
& Q_{1}=\sum_{n=1}^{N} n p(n / N)=\sum_{n=0}^{N} \frac{n(1-\rho)}{1-\rho^{N+1}} \rho^{n} \\
& =\frac{(1-\rho) \rho}{1-\rho^{N+1}} \cdot \sum_{n=0}^{N} \frac{d}{d \rho}\left(\rho^{n}\right)=\frac{(1-\rho) \rho}{1-\rho^{N+1}} \cdot \frac{d}{d \rho} \frac{\rho\left(1-\rho^{N}\right)}{(1-\rho)} \\
& =\frac{(1-\rho) \rho}{1-\rho^{N+1}} \cdot\left[\frac{1-\rho^{N}}{1-\rho}+\frac{-N \rho^{N}}{1-\rho}+\frac{\rho\left(1-\rho^{N}\right)}{(1-\rho)^{2}}\right]=\left(\frac{\rho}{1-\rho}\right) \cdot\left[1-\frac{(N+1)(1-\rho) \rho^{N}}{1-\rho^{N+1}}\right] \\
& \left.=\frac{\rho}{1-\rho}[1-(N+1) p(N \mid N)] \Rightarrow \text { identical to } M|M| 1 \mid N \text { result (see Lecture } 4\right)
\end{aligned}
$$

Insights from the Model

$$
\rho<1 \quad \text { As } N \rightarrow \infty, p_{0}=1-\rho, U_{1}=\rho, Q_{1}=\frac{\rho}{1-\rho} \quad \text { since } \mathrm{M} / \mathrm{M} / 1 / \mathrm{N} \rightarrow \mathrm{M} / \mathrm{M} / 1 \text { queue } U_{2}=1, Q_{2}=N-\frac{\rho}{1-\rho}
$$

$$
\rho<1 \Rightarrow \text { CPU service rate }>\mathrm{I} / \mathrm{O} \text { service rate }(\mathrm{OR}) \text { system is I/O bound }
$$

\Rightarrow queue length at the I/O gets arbitrarily large.
\Rightarrow utilization of I/O $\rightarrow 1$ look at $\frac{1-\rho^{N}}{1-\rho^{N+1}} \rightarrow 1$ as $\mathrm{N} \rightarrow \infty$
$\Rightarrow \mathrm{I} / \mathrm{O}$ device becomes a Poisson source with rate $\frac{\mu_{2}}{s_{2}}$
$\Rightarrow Q=\frac{\rho}{1-\rho} ; p_{0}=1-\rho ; M / M / 1$ queue with arrival rate $\frac{\mu_{2}}{s_{2}}$ and service rate $\frac{\mu_{1} p_{1}}{s_{1}}$

$\rho>1$	\Rightarrow CPU service rate < I/O service rate (or) system is CPU bound as $N \rightarrow \infty, p_{0} \rightarrow 0 \Rightarrow U_{1}=1$ (or) CPU is always busy
	\Rightarrow CPU becomes a Poisson source with rate $\frac{\mu_{1} p_{2}}{s_{1}}$
	\Rightarrow Each additional increase in N will increase the queue length by $1 \Rightarrow \frac{d Q_{1}}{d N}=1$
$\rho=1$	\Rightarrow Balanced \Rightarrow gradual increase in utilization $\Rightarrow \mathrm{N} / 2$ split in customers \Rightarrow Maximum Throughput

Global Balance Equations

- Let us look at the queuing system in a slightly different way

Global balance equations :
(1) $\left[\frac{\mu_{2}}{s_{2}}+\frac{\mu_{1} p_{2}}{s_{1}}\right] p\left(n_{1}, n_{2}\right)=\frac{\mu_{1} p_{2}}{s_{1}} p\left(n_{1}+1, n_{2}-1\right)+\frac{\mu_{2}}{s_{2}} p\left(n_{1}-1, n_{2}+1\right) ; n_{1}, n_{2}>0$
(2) $\frac{\mu_{2}}{s_{2}} p(0, N)=\frac{\mu_{1} p_{2}}{s_{1}} p(1, N-1)$
(3) $\frac{\mu_{1} p_{2}}{s_{1}} p(N, 0)=\frac{\mu_{2}}{s_{2}} p(N-1,1)$

Product Form

Local balance: $\frac{\mu_{2}}{s_{2}} p\left(n_{1}-1, n_{2}+1\right)=\frac{\mu_{1} p_{2}}{s_{1}} p\left(n_{1}, n_{2}\right)$
Note that local balance equation is valid when we multiply LHS and RHS by a constant. It turns out that \exists infinite \# of ways of specifying the Local balance equations.

Define variables $v_{1}, v_{2} \ldots \ldots$ Known as "visit ratios" (or)"relative throughput"

$$
\begin{aligned}
& \Rightarrow v_{1}=p_{1} v_{1}+v_{2} \\
& v_{2}=p_{2} v_{1} \\
& =\left(1-p_{1}\right) v_{1} \\
& \binom{v_{1}}{v_{2}}=\left(\begin{array}{cc}
p_{1} & 1 \\
1-p_{1} & 0
\end{array}\right) \cdot\binom{v_{1}}{v_{2}} \Rightarrow \underline{v}=P^{T} \underline{v}
\end{aligned}
$$

Facts

- \exists infinite \# of solutions to the equation $\underline{v}=P^{T} \underline{v}$
- can pick v_{1} or v_{2} arbitrarily

Can prove that $\quad p\left(n_{1}, n_{2}\right)=\frac{1}{G(N)} \cdot\left(\frac{v_{1} s_{1}}{\mu_{1}}\right)^{n_{1}} \cdot\left(\frac{v_{2} s_{2}}{\mu_{2}}\right)^{n_{2}}$
Product form
substitute in local balance equation :

$$
\begin{aligned}
& \frac{\mu_{2}}{s_{2}} \cdot \frac{1}{G(N)} \cdot\left(\frac{v_{1} s_{1}}{\mu_{1}}\right)^{n_{1}-1} \cdot\left(\frac{v_{2} s_{2}}{\mu_{2}}\right)^{n_{2}+1} \frac{P}{\square} \frac{\mu_{1} p_{2}}{s_{1}} \cdot \frac{1}{G(N)} \cdot\left(\frac{v_{1} s_{1}}{\mu_{1}}\right)^{n_{1}} \cdot\left(\frac{v_{2} s_{2}}{\mu_{2}}\right)^{n_{2}} \\
& \frac{\mu_{2}}{s_{2}} \cdot \frac{v_{1} s_{1}}{\mu_{1}} \cdot \frac{v_{2} s_{2}}{\mu_{2}}=\frac{?}{\mu_{1} p_{2}} s_{1} \Rightarrow \frac{v_{2}}{v_{1}}=p_{2}
\end{aligned}
$$

Although v_{i} can be specified in an infinite \# of ways, \exists four popular choices.

Choice of Visit Ratios - 1

- Choices for v_{i} :

(1) $v_{1}=\frac{1}{p_{1}}=\#$ of visits to CPU/Job

$$
\begin{aligned}
& p_{1} p_{2}+p_{2}{ }^{2}+\ldots . .=\frac{1}{1-p_{2}}=\frac{1}{p_{1}} \\
= & 1+p_{2} \\
y_{2} & =p_{2} v_{1}=\frac{p_{2}}{p_{1}}
\end{aligned} \Rightarrow \quad \begin{aligned}
& \frac{v_{1} s_{1}}{\mu_{1}}=\text { relative service time per job at the } \mathrm{CPU} \\
& \frac{v_{2} s_{2}}{\mu_{2}}=\text { relative service time per job at the I/0 }
\end{aligned}
$$

$$
p\left(n_{1}, n_{2}\right)=\frac{1}{G_{1}(N)} \cdot\left(\frac{s_{1}}{p_{1} \mu_{1}}\right)^{n_{1}} \cdot\left(\frac{s_{2} p_{2}}{p_{1} \mu_{2}}\right)^{n_{2}}=\frac{1}{G_{1}(N)} \cdot\left(\frac{s_{1}}{p_{1} \mu_{1}}\right)^{n_{1}} \cdot\left(\frac{s_{2} p_{2}}{p_{1} \mu_{2}}\right)^{N-n_{1}}
$$

$$
=\frac{1}{G_{1}(N)} \cdot\left(\frac{s_{2} p_{2}}{p_{1} \mu_{2}}\right)^{N} \cdot\left(\frac{\mu_{2} s_{1}}{\mu_{1} s_{2} p_{2}}\right)^{n_{1}}
$$

$$
\sum_{n_{1}=0}^{N} p\left(n_{1}\right)=1 \Rightarrow 1=\frac{1-\left(\frac{\mu_{2} s_{1}}{\mu_{1} s_{2} p_{2}}\right)^{N+1}}{G_{1}(N) \cdot\left(1-\frac{\mu_{2} s_{1}}{\mu_{1} s_{2} p_{2}}\right.}\left(\frac{s_{2} p_{2}}{p_{1} \mu_{2}}\right)^{N}
$$

$$
\therefore G_{1}(N)=\frac{1-\rho^{N+1}}{1-\rho} \cdot\left(\frac{s_{2} p_{2}}{p_{1} \mu_{2}}\right)^{N} ; \rho=\frac{\underline{\mu_{2}}}{\underline{s_{1} p_{2}}}
$$

$$
s_{1}
$$

$\therefore p\left(n_{1}\right)=\frac{1-\rho}{1-\rho^{N+1}} \cdot \rho^{n_{1}} \quad$ independent of how we select v_{i}

Choice of Visit Ratios - 2

Indeed, the performance measures are independent of how we choose v_{i} 's ; choice of v_{i} affects only the normalization constant $G(N)$.

$$
\begin{aligned}
& U_{1}=U_{\text {cpu }}=1-p(0)=\frac{\rho\left(1-\rho^{N}\right)}{1-\rho^{N+1}} \\
& \text { Similarly, } U_{2}=\frac{\left(1-\rho^{N}\right)}{1-\rho^{N+1}}
\end{aligned}
$$

- Some observations :
(i) $U_{1}=\frac{\rho\left(1-\rho^{N}\right)}{1-\rho^{N+1}}=\frac{\mu_{2} s_{1}}{\mu_{1} s_{2} p_{2}} \cdot \frac{\left(1-\rho^{N}\right)}{1-\rho^{N+1}}=\frac{s_{1}}{p_{1} \mu_{1}} \cdot \frac{\mu_{2} p_{1}}{s_{2} p_{2}} \cdot \frac{\left(1-\rho^{N}\right)}{1-\rho^{N+1}}=\left(\frac{v_{1} s_{1}}{\mu_{1}}\right) \frac{G_{1}(N-1)}{G_{1}(N)}$

$$
X(N)=\frac{G_{1}(N-1)}{G_{1}(N)} \quad \text { Throughput }=\frac{\text { normalization constant with }(N-1) \text { customers }}{\text { normalization constant with } N \text { customers }}
$$

(ii)

$$
\begin{aligned}
& p\left(n_{1}\right)=\frac{1-\rho}{1-\rho^{N+1}} \rho^{n_{1}} \square p\left(n_{1} / N\right) \\
& p\left(n_{1}-1 / N-1\right)=\frac{1-\rho}{1-\rho^{N}} \rho^{n_{1}-1} \\
& \frac{p\left(n_{1} / N\right)}{p\left(n_{1}-1 / N-1\right)}=\frac{1-\rho^{N}}{1-\rho^{N+1}} \rho=U_{1} \\
& =\frac{v_{1} s_{1}}{\mu_{1}} X(N)
\end{aligned}
$$

$$
\begin{aligned}
\therefore & p\left(n_{1} / N\right)=\frac{v_{1} s_{1}}{\mu_{1}} X(N) p\left(n_{1}-1 / N-1\right) \quad \Leftarrow \text { Basis of MVA } \\
& Q_{1}(N)=\sum_{n_{1}=1}^{N} n_{1} p\left(n_{1} / N\right) ; R_{1}(N)=\frac{Q_{1}(N)}{X(N)}, \quad \text { we have } \\
& R_{1}(N)=\frac{v_{1} s_{1}}{\mu_{1}}\left[1+Q_{1}(N-1)\right] \quad \text { MVA equation }
\end{aligned}
$$

Choice of Visit Ratios - 3

(iii) $\quad G_{1}(N)=\sum_{n_{1}=0}^{N}\left(\frac{v_{1} s_{1}}{\mu_{1}}\right)^{n_{1}}\left(\frac{v_{2} s_{2}}{\mu_{2}}\right)^{N-n_{1}}$
$G_{1}^{(2)}\left(N-n_{1}\right)=G_{1}^{(2)}\left(n_{2}\right)=\left(\frac{V_{2} s_{2}}{\mu_{2}}\right)^{N-n_{1}}=\left(\frac{V_{2} s_{2}}{\mu_{2}}\right)^{n_{2}}$
\Rightarrow Normalization cons $\tan t$ with node 1 removed and $\left(N-n_{1}\right)$ customers

$$
G_{1}(N)=G_{1}^{(1)}(N) * G_{1}^{(2)}(N)
$$

- Homework:

Choice 2: $\quad v_{1}=\frac{\mu_{1}}{s_{1}} \Rightarrow v_{2}=\frac{\mu_{1}}{s_{1}} p_{2} \Rightarrow \frac{v_{1} s_{1}}{\mu_{1}}=1 \Rightarrow$ all utilization will be scaled by CPU utilization. $\frac{v_{2} s_{2}}{\mu_{2}}=\frac{1}{\rho}$
Choice 3: $v_{1}=1, v_{2}=p_{2} \quad \rightarrow \mathrm{CPU}$ is the reference node with 1 visit. Lavenberg's book uses this.
Choice 4: $v_{1}+v_{2}=1, v_{2}=p_{2} v_{1} \ldots \ldots$. Probability interpretation less common
Prove that all the choices lead to same utilization, throughput, etc.

[^0]: Copyright ©2004 by K. Pattipati

[^1]: Copyright ©2004 by K. Pattipati

