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We considered a general graph G = (V,E) where V is the set of nodes 

{1,2,…..,M} and E is the set of ordered pairs denoting directed arcs.

Arrival rate λ from the source

psi= Probability that a customer goes to 

node i on arrival 

Routing probabilities Pji=Probability {a customer departing node j

will go next to node i}; i = 1,2,…..M ; j = 1,2,…..M, d

Markov chain is irreducible and aperiodic

Product-form Networks

External arrival rate 

to node i = λpsi
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vi = average # of visits to node i by a customer 

Service demand at each node is si exponentially distributed 

Service rate functions :  μi(n) = nμi  infinite server; μi(n) = μi  single 

server; μi(n) = min(n,m) μi  multi-server; μi(n) = { μi(1)… μi(mi)} 

state-dependent node
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The steady state distribution of the number of customers at each node p(n1, 

n2, ……nM) is a product of the state probabilities at the individual nodes of 

the network 
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Jackson’s Decomposition Theorem 

We can apply our earlier results on M/M/1, M/M/m, M/M/∞ and birth-death 

processes with the following interpretations:
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If need only Qi ,Ri,  Ui,

don’t need pi(k) 
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Modified geometric

Infinite and Single Server Nodes

Infinite server nodes:

Single server nodes:

If need only Qi ,Ri,  Ui,

don’t need pi(k) 

Poisson process with rate ρi
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Multi-server Node

Note that we need the distribution 

for 0 ≤ k ≤ mi - 2 only

Multi-server node:
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State-dependent Node

      1 , 2 ,....,i i i im  

As in multi server case, pi(k) is obtained from
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State-dependent node:
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Illustrative Example
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Packet lengths are exponentially distributed with mean s

Inter-arrival times are independent of packet length

First link is M/M/1 queue. Second link is not M/M/1.  why?

• The service times at the two links are strongly correlated, since the same 
message must go through both links.

• Indeed, inter arrival times at the second link are strongly correlated with 
the packet lengths. To see this, consider the busy period of link 1. 

➢ Inter arrival time at link 2 between two such packets = transmission time of 
second packet. so, long packet will wait less time at the second link, since their 
transmission time at the first link takes longer, thereby giving the second link 
more time to empty out.

Delays in Communication Networks -1 

λ packets/sec

Cap. C1 Cap. C2

link1 link2

P1

P2

P3

link1

link2

Fast cars sees lot of empty space

slow truck

No analytical solutions exist for such dependent queuing processes
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A path p consists of a 

sequence of links :

p1 = {(k, i ),(i , j)} 

p2 = {(i , j ),(j , l)}

p3 = {(k , l ),(l , j)}

( links are bi-directional)

It is even worse for communication 

networks  need to make some 

assumptions

Consider several packet streams 

following different paths 

1 2 1 3 2 3
; ; ;ij p p ki p kl p jl p pX X X X X X        

k

i

j

l

xp1

xp3

xp2

xp1

xp3

xp2

λij

Delays in Communication Networks -2 

Link flows :

Link flows depend on input streams and routing

In general,

We have just seen that even for two link tandem queue, even if the packet 
streams are Poisson with independent packet lengths at their point of entry into 
the network, this property is lost after the first transmission line 

sin
( , )

ij p

all p traver g
link i j

x  
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Kleinrock’s independence assumption  Make it into a Jackson network

• Based on simulation results, it was found that merging of several packet 

streams on a link has an effect similar to restoring the independence of 

inter arrival times and packet lengths. Indeed, this assumption is quite 

accurate for networks with 

1. Poisson arrivals to nodes (external traffic)

2. Packet lengths are exponentially distributed 

3. Densely-connected networks

4. Moderate-to-heavy traffic loads.

Delays in Communication Networks -3 

Each link is an M/M/1 queue with arrival rate λij packets/sec, capacity of 

link μij bits/sec and packet lengths s bits/packet
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Total number of customers in the network :
( , )

ij

i j

Q Q XR 

Average response time (or delay) per packet
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Delays in Communication Networks -4 

p

p

X = total external traffic = γX = Throughput in packets/sec = p

p

X

If there is a propagation delay and processing delay of dij sec/bit
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Response time over path p is given by
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Research issues :

Independence assumption is crucial. Can we relax this?

Can we relax exponential packet length assumption? Only approximately.
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Capacity Assignment Problem - 1

Know
ij  Know routing. Want to find the best ij
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Equivalent problem :
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Append the constraint with a Lagrange multiplier β>0. At optimum, strict

equality.

Problem : Optimize link capacities
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From first equation :

From second equation :

Capacity Assignment Problem - 2
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So,

Research Problems :

1. Channel capacities come in discrete quantities     Integer programming problem

2. Want to min. w.r.t λij (i.e. routing) and μij

3. May want to include reliability constraints  w.r.t. connectivity

Capacity Assignment Problem - 3

Square-root channel

capacity assignment
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Closed Queuing Networks

Central server model

Let us consider a simple two-node closed queuing network first 

Paging Disk

Disk

File Disk

N jobs in the loop

2p

ip

mp

1
p

Job scheduling 

queue
N = Degree of   

multi-programming 

(DOM)

CPU

2p

1p

CPU

N jobs in the loop I/0

N-nn
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Lengths of successive CPU bursts are  exponentially distributed random 
variables with mean s1 instructions. Instruction execution rate of the CPU is μ1
instructions/sec  service time per visit = s1/μ1

Successive I/O bursts are also exponentially distributed with mean data transfer 
of s2 words. Transfer rate is μ2 words/sec  service time per visit = s2/μ2

Routing : At the end of CPU bursts, a program completes execution with 
probability p1 or requires an I/O operation with probability p2 = (1- p1). As soon 
as a program completes execution, another statistically equivalent program 
enters the system so that the number in the system, termed the degree of multi-
programs is constant

Assumptions of the Model

n1n1 20 N1N 

22 s

1n

1 2 1p s

22 s

1 2 1p s

22 s22 s 22 s

1 2 1p s 1 2 1p s 1 2 1p s

Similar to M/M/1/N queue
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Detailed Balance Equations -1
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ρ ≠ 1

ρ = 1

ρ ≠ 1

ρ = 1

Utilization :
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( 4)ult see Lecture



Detailed Balance Equations- 2

CPU :
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I/0 Bound
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Insights from the Model
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since M/M/1/N →M/M/1 queue
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queue with arrival rate 

ρ < 1 CPU service rate > I/O service rate (OR) system is I/O  bound



queue length at the I/O gets arbitrarily large.



utilization of I/O → 1 look at 1
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and service rate 



I/O device becomes a Poisson source with rate

2

2s





0; 1 ; / /1
1

Q p M M





  


1 1

1

p

s



Each additional increase in N will increase the queue length by 1 

 N/2 split in customers  Maximum Throughput

2

Balanced         gradual increase in utilization 1 



ρ > 1 CPU service rate < I/O service rate (or) system is CPU  bound as 
0 1, 0 1 ( )N p U or     CPU is always busy



CPU becomes a Poisson source with rate 1 2
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2n
1n

2

Let us look at the queuing system in a slightly different way

2p
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CPU
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1 ,1-N1,1 N 2,2 NN,0

22 s
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221 sp
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Global balance equations :

       

     

     

2 1 2 1 2 2

1 2 1 2 1 2 1 2

2 1 1 2

2 1 2

2 1

1 2 2

1 2

1    , 1, 1 1, 1 ; , 0

2    0, 1, 1

3    ,0 1,1

p p
p n n p n n p n n n n

s s s s

p
p N p N

s s

p
p N p N

s s

   

 

 

 
        

 

 

 

Global  Balance Equations
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Local balance :       2 1 2
1 2 1 2

2 1

1, 1 ,
p

p n n p n n
s s

 
  

Note that local balance equation is valid when we multiply LHS and RHS by a constant. It turns out that 

 infinite # of ways of specifying the Local balance equations.

Define  variables v1, v2 …… Known as “visit ratios” (or)  “relative throughput”

2
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substitute in local balance equation :

Facts ● infinite # of solutions to the equation Tv P v

● can pick v1 or v2 arbitrarily

Can prove that  
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Yes !!

Product form
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Although vi can be specified in an infinite # of ways,  four popular choices.

Product Form
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Choices for vi :
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independent of how we select vi

Choice of Visit Ratios - 1
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Indeed, the performance measures are independent of how we choose vi’s ; choice of vi

affects only the normalization constant G(N).
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Some observations :
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Basis of MVA

MVA equation

Choice of Visit Ratios - 2
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      all utilization will be scaled by CPU utilization.   

2 2

2

1v s

 


Choice 3 :     v1 = 1, v2 = p2  CPU is the reference node with 1 visit. Lavenberg’s book  uses this.

Choice 4 :    v1+ v2 = 1, v2 = p2 v1 …...  Probability interpretation less common

Prove that all the choices lead to same utilization, throughput, etc.      

Homework : 

Choice 2 :

Choice of Visit Ratios - 3
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Jackson Networks

Applications of Jackson Networks

Computer Systems

Delay Analysis in Communication Networks

Capacity Assignment Problem

Single-class Closed Queuing Networks 

Local and Global Balance Equations

Analysis via a two node network (equivalence to M|M|1|N 

network)

Insights from the Model

Summary


