

Overview

- Summary of Lecture 6
- Single-class Closed Queuing Networks
- Computational Algorithms
- Convolution Algorithm
- Mean Value Analysis
- Applications
- Computer Systems
- Flow Control in Communication Networks

Single-class Closed Queuing Networks -1

- Consider a two node network

$$
n_{1}+n_{2}=N
$$

- The visit ratio equations are

$$
\left.\begin{array}{l}
v_{1}=p_{1} v_{1}+v_{2} \\
v_{2}=p_{2} v_{1}
\end{array}\right\} \text { have infinite \# of solutions } \quad v_{i} \sim \text { Relative Throughput }
$$

๑ Choices

1) $v_{1}=\frac{1}{p_{1}} \Rightarrow v_{2}=\frac{p_{2}}{p_{1}}$

visit interpretation

2) $v_{1}=\frac{\mu_{1}}{s_{1}} \Rightarrow v_{2}=\frac{\mu_{1} p_{2}}{s_{2}}$
all utilizations will be scaled by CPU utilization (i.e., node 1)
3) $v_{1}=1 \quad \Rightarrow v_{2}=p_{2} \quad \mathrm{CPU}$ is the reference node
4) $v_{1}+v_{2}=1$

Copyright $@ 2004$ by K. Pattipati
Probability interpretation

Single-class Closed Queuing Networks -2

- The probability distributions has product form
$p\left(n_{1}, n_{2}\right)=\frac{1}{G(N)} Y_{1}\left(n_{1}\right) Y_{2}\left(n_{2}\right)$
where $Y_{i}\left(n_{i}\right)=\left(\frac{v_{i} s_{i}}{\mu_{i}}\right)^{n_{i}} \quad i=1,2$
- $G(N)$ is the convolution of $Y_{1}(N)$ and $Y_{2}(N)$

$$
G(N)=\sum_{n_{1}=0}^{N} Y_{1}\left(n_{1}\right) Y_{2}\left(N-n_{1}\right)=Y_{1}(N) * Y_{2}(N)
$$

D Throughput: $X(N)=\frac{G(N-1)}{G(N)}$

- Nodal throughput: $X_{i}(n)=v_{i} X(n) \Rightarrow \frac{X_{i}(n)}{X_{j}(n)}=\frac{v_{i}}{v_{j}} \quad$ relative throughput
- Mean value analysis (MVA) equation

$$
p_{i}(n / N)=\frac{v_{i} X(N) s_{i}}{\mu_{i}} p_{i}(n-1 / N-1) \quad i=1,2 ; n=1,2, \ldots \ldots, N
$$

$p_{i}(n / N) \Rightarrow$ marginal probability that there are n customers at node i given N customers in the network
ϑ Response time equation for node $i: R_{i}(N)=\frac{v_{i} s_{i}}{\mu_{i}}\left[1+Q_{i}(N-1)\right]$

* The results are valid for general networks as well with minor changes for various node types
Copyright ©2004 by K. Pattipati

General Structure of Closed Network - 1

Know

- The number of customers in the network is a constant, N
- Since the N customers are distributed among M nodes,

$$
n_{1}+n_{2}+\ldots \ldots+n_{M}=N
$$

- The service demand at node i is exponentially distributed with mean S_{i}
- The node types can be of one of the four types
$\mu_{i}(n)=\left\{\begin{array}{cc|}\mu_{i} & \text { Single-server } \\ n \mu_{i} & \text { Infinite-server } \\ \min \left(n, m_{i}\right) \mu_{i} & \text { Multi-server } \\ \left\{\mu_{i}(1), \ldots \ldots, \mu_{i}\left(m_{i}\right)\right\} & \text { State-dependent node }\end{array}\right.$

General Structure of Closed Network - 2

- The routing of a customer is governed by a Discrete-time Markov chain
- Any work conserving queuing discipline at each node \Rightarrow when a customer is present, the server will not turn him away or become idle
- Want to determine
$Q_{i}=$ Mean number of customers at node i (queue length)
$R_{i}=$ Response time
$U_{i}=$ Utilization of node i
$X(n)=$ Network (system) throughput
$X_{i}(n)=$ Nodal throughput at node i
$p_{i}(n / N)=$ Marginal prob. that there are n customers at node i

General Structure of Closed Network - 3

- Method
- Visits computed from

$$
\begin{aligned}
& v_{i}=\sum_{j=1}^{M} P_{j i} v_{j} \quad \text { or } \quad 1=\sum_{j=1}^{M} P_{j i} \frac{v_{j}}{v_{i}} \quad \forall i=1,2, \ldots \ldots, M \\
& \text { state }\left(n_{1}, n_{2}, \ldots \ldots, n_{M}\right) \ni n_{1}+n_{2}+\ldots \ldots+n_{M}=N
\end{aligned}
$$

Э Number of possible states: Distribution of N objects among M Nodes

$$
\binom{N+M-1}{M-1} \underbrace{\text { Cosen }}_{\text {Homework problem }}
$$

Global and Local Balance Equations

- Global balance equations

$$
\begin{array}{ll}
& \sum_{i=1}^{M} \sum_{j=1}^{M} P_{j i} \frac{\mu_{j}\left(n_{j}+1-\delta_{i j}\right)}{s_{j}} p\left(\underline{n}+\underline{e}_{j}-\underline{e}_{i}\right)=\sum_{i=1}^{M} \frac{\mu_{i}\left(n_{i}\right)}{s_{i}} p(\underline{n}) \\
\text { (or) } & \sum_{i=1}^{M} \sum_{j=1}^{M} P_{j i}\left[\frac{\mu_{j}\left(n_{j}+1-\delta_{i j}\right)}{s_{j}} p\left(\underline{n}+\underline{e}_{j}-\underline{e}_{i}\right)-\frac{\mu_{i}\left(n_{i}\right) v_{j}}{s_{i} v_{i}} p(\underline{n})\right]=0 \quad \text { use (1) here }
\end{array}
$$

- Local balance equations

$$
\begin{gathered}
\quad \frac{\mu_{j}\left(n_{j}+1-\delta_{i j}\right)}{s_{j} v_{j}} p\left(\underline{n}+\underline{e}_{j}-\underline{e}_{i}\right)=\frac{\mu_{i}\left(n_{i}\right)}{s_{i} v_{i}} p(\underline{n}) \\
\Rightarrow p(\underline{n})=\frac{1}{G_{M}(N)} \prod_{i=1}^{M} Y_{i}\left(n_{i}\right) \Rightarrow Y_{i}\left(n_{i}\right)=\frac{\left(v_{i} s_{i}\right)^{n_{i}}}{\prod_{k=1}^{n_{i}} \mu_{i}(k)} \\
G_{M}(N) \rightarrow \text { Normalization constant }
\end{gathered}
$$

Specialization to Each Node Type

Special Cases

- Single-server nodes: $\quad Y_{i}\left(n_{i}\right)=\left(\frac{v_{i} s_{i}}{\mu_{i}}\right)^{n_{i}}$
- Infinite-server nodes: $Y_{i}\left(n_{i}\right)=\left(\frac{v_{i} s_{i}}{\mu_{i}}\right)^{n_{i}} \frac{1}{n_{i}!}$
- Multi-server case:

$$
Y_{i}\left(n_{i}\right)= \begin{cases}\left(\frac{v_{i} s_{i}}{\mu_{i}}\right)^{n_{i}} \frac{1}{n_{i}!} ; & n_{i} \leq m_{i} \\ \left(\frac{v_{i} s_{i}}{\mu_{i}}\right)^{m_{i}} \frac{1}{m_{i}!}\left(\frac{v_{i} s_{i}}{m_{i} \mu_{i}}\right)^{n_{i}-m_{i}} ; & n_{i}>m_{i}\end{cases}
$$

- State-dependent node case:

$$
Y_{i}\left(n_{i}\right)= \begin{cases}\frac{\left(v_{i} s_{i}\right)^{n_{i}}}{\frac{\prod_{i}}{n_{k}} \mu_{i}(k)} & n_{i} \leq m_{i} \\ \frac{\left(v_{i} s_{i}\right)^{n_{i}}}{\prod_{k=1}^{n_{i}} \mu_{i}(k)} \frac{1}{\left[\mu_{i}\left(m_{i}\right)\right]_{i}^{n_{i}-m_{i}} ;} & n_{i}>m_{i}\end{cases}
$$

Properties of Normalization Constant -1

Properties

$$
\begin{aligned}
G_{M}(N) & =\sum_{n_{1}=0}^{N} \sum_{n_{2}=0}^{N-n_{1}} \sum_{n_{3}=0}^{N-n_{1}-n_{2}} \cdots \cdots \cdot \sum_{n_{M-1}=0}^{N-\sum_{i=1}^{M-2} n_{i}} Y_{1}\left(n_{1}\right) Y_{2}\left(n_{2}\right) \ldots \ldots . Y_{M-1}\left(n_{M-1}\right) Y_{M}\left(N-\sum_{i=1}^{M-1} n_{i}\right) \\
& =Y_{1}(N) * Y_{2}(N) * \ldots . . * Y_{M}(N) \quad \text { Convolution of } Y_{i}{ }^{\prime} s
\end{aligned}
$$

In z-domain

$$
G_{M}(z)=\prod_{i=1}^{M} Y_{i}(z)=G_{M-1}(z) Y_{M}(z)
$$

If we let

$$
\begin{aligned}
& G_{l}(z)=\prod_{i=1}^{l} Y_{i}(z) \\
& G_{l}(z)=G_{l-1}(z) Y_{l}(z), \quad G_{0}(z)=1, \quad G_{0}(n)=\delta_{n 0}=\left\{\begin{array}{lc}
1 & n=0 \\
0 & \text { else }
\end{array}\right. \\
& G_{l}(n)=\sum_{k=0}^{n} G_{l-1}(n-k) Y_{l}(k) \quad \begin{array}{r}
\text { Basis of convolution algorithm } \\
{\left[G_{l}(0)=1, G_{o}(0)=1\right]}
\end{array}
\end{aligned}
$$

In particular,

$$
G_{M}(n)=G_{M-\{i\}}(n) * Y_{i}(n) \quad \forall i=1,2, \ldots \ldots, M
$$

Properties of Normalization Constant -2

Special Cases

$$
\begin{aligned}
& \text { 1. Single-server case } \\
& G_{l}(n)=\sum_{k=0}^{n} G_{l-1}(n-k)\left(\frac{v_{l} s_{l}}{\mu_{l}}\right)^{k} \Rightarrow G_{l}(z)=G_{l-1}(z) Y_{l}(z) ; \quad Y_{l}(z)=\left(1-\frac{v_{l} s_{l}}{\mu_{l}} z\right)^{-1} \\
& \Rightarrow G_{l}(z)-\frac{v_{l} s_{l}}{\mu_{l}} z G_{l}(z)=G_{l-1}(z) \\
& G_{l}(n)=\sum_{k=0}^{n} G_{l-1}(n-k)\left(\frac{v_{l} s_{l}}{\mu_{l}}\right)^{k} \Rightarrow G_{l}(z)=G_{l-1}(z) Y_{l}(z) ; \quad Y_{l}(z)=\left(1-\frac{v_{l} s_{l}}{\mu_{l}} z\right)^{-1}
\end{aligned}
$$

$$
\text { (or) } G_{l}(n)=G_{l-1}(n)+\frac{v_{l} s_{l}}{\mu_{l}} G_{l}(n-1)
$$

$$
\begin{aligned}
& \text { 2. Infinite-server case }{ }_{i} \\
& \qquad Y_{i}(z)=\sum_{n_{i}=0}^{\infty}\left(\frac{v_{i} s_{i}}{\mu_{i}}\right)^{n_{i}} \frac{z^{n_{i}}}{n_{i}!}=e^{\left(\frac{v_{i} s_{i}}{\mu_{i}}\right) z}
\end{aligned}
$$

$$
G_{l+M_{l}-1}(n)=\sum_{k=0}^{n} G_{l-1}(n-k) G_{M_{l}}(k)
$$

Suppose, had M_{I} infinite server nodes. Then

$$
\begin{aligned}
& G_{M_{I}}(z)=\exp \left(\left[\sum_{i=1}^{M_{I}} \frac{v_{i} s_{i}}{\mu_{i}}\right] z\right) \\
& G_{M_{I}}(n)=\frac{1}{n_{i}!}\left(\sum_{i=1}^{M_{I}} \frac{v_{i} s_{i}}{\mu_{i}}\right)^{n_{i}} \quad(\text { or }) \quad G_{M_{I}}(n)=\frac{1}{n}\left(\sum_{i=1}^{M_{I}} \frac{v_{i} s_{i}}{\mu_{i}}\right) G_{M_{I}}(n-1) ; \quad G_{M_{I}}(0)=1
\end{aligned}
$$

Properties of Normalization Constant -3

3. Multi-server case

$$
\begin{aligned}
& G_{l}(n)=\sum_{k=0}^{n} G_{l-1}(n-k) Y_{l}(k) \\
& Y_{l}(k)=\left\{\begin{array}{l}
\left(\frac{v_{l} s_{l}}{k \mu_{l}}\right) Y_{l}(k-1) ; Y_{l}(0)=1 ; \quad k \leq m_{l} \\
\left(\frac{v_{l} s_{l}}{m_{l} \mu_{l}}\right) Y_{l}(k-1) ; \quad k>m_{l}
\end{array}\right.
\end{aligned}
$$

2. State-dependent server case

$$
\begin{aligned}
& G_{l}(n)=\sum_{k=0}^{n} G_{l-1}(n-k) Y_{l}(k) \\
& Y_{l}(k)=\left\{\begin{array}{l}
\left(\frac{v_{l} s_{l}}{\mu_{l}(k)}\right) Y_{l}(k-1) ; Y_{l}(0)=1 ; \quad k \leq m_{l} \\
\left(\frac{v_{l} s_{l}}{\mu_{l}\left(m_{l}\right)}\right) Y_{l}(k-1) ; \quad k>m_{l}
\end{array}\right.
\end{aligned}
$$

Can we get a better Recursion like the way We did for $\mathrm{M}|\mathrm{M}| \mathrm{m}$ and S-D queues?.....YES

New Recursion for Multi-server and SD Nodes -1

$$
\begin{aligned}
& G_{l}(n)=\sum_{k=0}^{n} G_{l-1}(n-k) Y_{l}(k) \Rightarrow G_{l}(z)=Y_{l}(z) G_{l-1}(z)=\left[\sum_{k=0}^{\infty} Y_{l}(k) z^{k}\right] G_{l-1}(z) \\
& G_{l}(z) .\left(1-\frac{v_{l} s_{l}}{\mu_{l}\left(m_{l}\right)} z\right)=\sum_{k=0}^{\infty}\left[Y_{l}(k) z^{k}-Y_{l}(k) \frac{v_{l} s_{l}}{\mu_{l}\left(m_{l}\right)} z^{k+1}\right] G_{l-1}(z) \\
&=\left[\sum_{k=0}^{m_{l}-1} Y_{l}(k) z^{k}-\sum_{k=0}^{m_{l}-2} Y_{l}(k) \frac{v_{l} s_{l}}{\mu_{l}\left(m_{l}\right)} z^{k+1}\right] G_{l-1}(z) \\
&=G_{l-1}(z)+\sum_{k=1}^{m_{l}-1}\left[Y_{l}(k)-Y_{l}(k-1) \frac{v_{l} s_{l}}{\mu_{l}\left(m_{l}\right)}\right] z^{k} G_{l-1}(z) \\
&=G_{l-1}(z)+\sum_{k-1}^{m_{l}-1} \frac{\left(v_{l} s_{l}\right)^{k}}{\prod_{q=1}^{k-1} \mu_{l}(q)}\left[\frac{1}{\mu_{l}(k)}-\frac{1}{\mu_{l}\left(m_{i}\right)}\right] z^{k} G_{l-1}(z)
\end{aligned}
$$

$$
G_{l}(n)=G_{l-1}(n)+\frac{v_{l} s_{l}}{\mu_{l}\left(m_{l}\right)} G_{l}(n-1)+\sum_{\sum_{k=1}^{\min \left(m_{l}-1, n\right)} \frac{\left(v_{l} s_{l}\right)^{k}}{\prod_{q=1}^{k-1} \mu_{l}(q)}\left[\frac{1}{\mu_{l}(k)}-\frac{1}{\mu_{l}\left(m_{i}\right)}\right] G_{l-1}(n-k)}^{\sum_{k=1}^{\min \left(m_{i}-1, n\right)} Y_{l}(k)\left[1-\frac{\mu_{l}(k)}{\mu_{l}\left(m_{i}\right)}\right] G_{l-1}(n-k)}
$$

New Recursion for Multi-server and SD Nodes -2

1. \quad Single-server case $\left(m_{l}=1\right)$

$$
G_{l}(n)=G_{l-1}(n)+\frac{v_{l} s_{l}}{\mu_{l}\left(m_{l}\right)} G_{l}(n-1)
$$

2. Infinite-server case $\left(m_{l}=\infty\right)$

$$
G_{l}(n)=G_{l-1}(n)+\sum_{k=1}^{n} Y_{l}(k) G_{l-1}(n-k)=\sum_{k=0}^{n} Y_{l}(k) G_{l-1}(n-k) ; Y_{l}(k)=\frac{1}{k} \frac{v_{l} S_{l}}{\mu_{l}} Y_{l}(k-1) ; Y_{l}(0)=1
$$

3. Multi-server case

$$
\begin{aligned}
& G_{l}(n)=G_{l-1}(n)+\frac{v_{l} s_{l}}{\mu_{l}\left(m_{l}\right)} G_{l}(n-1)+\sum_{k=1}^{\min \left(m_{2-1}-n\right)} Y_{l}(k)\left[1-\frac{k}{m_{l}}\right] G_{l-1}(n-k) \\
& Y_{l}(k)=\left\{\begin{array}{l}
\left(\frac{v_{l} s_{l}}{k \mu_{l}}\right) Y_{l}(k-1) ; Y_{l}(0)=1 ; \quad k \leq m_{l} \\
\left(\frac{v_{l} s_{l}}{m_{l} \mu_{l}}\right) Y_{l}(k-1) ; \quad k>m_{l}
\end{array}\right.
\end{aligned}
$$

Computation of Normalization Constant

- Algorithm

$$
\begin{aligned}
& G_{0}(0)=1 \\
& G_{l}(0)=1 \quad \forall l=1,2, \ldots \ldots, M \\
& \text { Do } n=1,2, \ldots \ldots, N \\
& \quad \text { Do } l=1,2, \ldots \ldots, M
\end{aligned}
$$

Evaluate Convolution Sum
End Do
End Do

Key: It turns out that all performance measures $Q_{i}, U_{i}, R_{i,}$ etc. are functions of $G(N)$

Performance Measures from $G(N)-1$

1. Marginal Probabilities at each node i
k at node $i \Rightarrow N-k$ at all other nodes
Know

$$
\begin{aligned}
& G_{M}(N)=\sum_{k=0}^{N} G_{M-\{i\}}(N-k) Y_{i}(k) \\
& 1=\sum_{k=0}^{N} \frac{G_{M-\{i\}}(N-k) Y_{i}(k)}{G_{M}(N)}=\sum_{k=0}^{N} p_{i}(k / N) \\
& \Rightarrow p_{i}(k / N)=\frac{G_{M-\{i\}}(N-k) Y_{i}(k)}{G_{M}(N)}
\end{aligned}
$$

For single-server nodes the result simplifies to:

$$
p_{i}(k / N)=\left[\frac{G_{M}(N-k)-\frac{v_{i} s_{i}}{\mu_{i}} G_{M}(N-k-1)}{G_{M}(N)}\right]\left(\frac{v_{i} s_{i}}{\mu_{i}}\right)^{k}
$$

Performance Measures from $G(N)-2$

2. Throughput of node i

$$
\begin{aligned}
X_{i}(N) & =\sum_{k=1}^{N} p_{i}(k / N) \frac{\mu_{i}(k)}{s_{i}} \\
& =\sum_{k=1}^{N} \frac{G_{M-\{i\}}(N-k) Y_{i}(k)}{G_{M}(N)} \frac{\mu_{i}(k)}{s_{i}} \\
& =v_{i} \sum_{k=1}^{N} \frac{G_{M-\{i\}}(N-k) Y_{i}(k-1)}{G_{M}(N)}=v_{i} \frac{\sum_{n=0}^{N-1} G_{M-\{i\}}(N-1-n) Y_{i}(n)}{G_{M}(N)} \\
& =v_{i} \frac{G_{M}(N-1)}{G_{M}(N)} \\
& =v_{i} \underbrace{}_{X(N)}
\end{aligned}
$$

Performance Measures from $G(N)-3$

3. Queue length

$$
Q_{i}(N)=\sum_{k=1}^{N} k p_{i}(k / N)
$$

For single-server nodes

$$
\begin{aligned}
Q_{i}(N) & =\sum_{k=1}^{N} k p_{i}(k / N)=\sum_{k=1}^{N} k\left[\frac{G_{M}(N-k) Y_{i}(k)-G_{M}(N-k-1) Y_{i}(k+1)}{G_{M}(N)}\right] \\
& =\sum_{k=1}^{N} \frac{G_{M}(N-k) Y_{i}(k)}{G_{M}(N)} \\
& =\sum_{k=1}^{N}\left[\left(\prod_{l=1}^{k} \frac{G_{M}(N-l)}{G_{M}(N-l+1)}\right) \frac{v_{i} s_{i}}{\mu_{i}}\right]=\sum_{k=1}^{N} \prod_{l=0}^{k-1}\left(X(N-l) \frac{v_{i} s_{i}}{\mu_{i}}\right) \\
& =\sum_{k=1}^{N}\left[\prod_{l=0}^{k-1} U_{i}(N-l)\right]=\sum_{k=1}^{N} \prod_{l=k}^{N} U_{i}(l)
\end{aligned}
$$

As $N \rightarrow \infty$
Response time $Q_{i}(N) \rightarrow \frac{U_{i}}{1-U_{i}} \quad$ Like in M/M/1 queue
4. Response time

$$
R_{i}(N)=\frac{Q_{i}(n)}{X(n)} \quad \text { Over all visits }
$$

Mean Value Analysis Recursion

Marginal probabilities, $p_{i}(k / N)=\frac{G_{M-\{i\}}(N-k) Y_{i}(k)}{G_{M}(N)}$

$$
\begin{aligned}
& p_{i}(k-1 / N-1)=\frac{G_{M-\{i\}}(N-k) Y_{i}(k-1)}{G_{M}(N-1)} \\
\Rightarrow & p_{i}(k / N)=\frac{Y_{i}(k)}{Y_{i}(k-1)} \frac{G_{M}(N-1)}{G_{M}(N)} p_{i}(k-1 / N-1) \\
\Rightarrow & p_{i}(k / N)=\frac{X(N) v_{i} s_{i}}{\mu_{i}(k)} p_{i}(k-1 / N-1) \quad k=0,1,2, \ldots \ldots, N
\end{aligned}
$$

$>$ Probability distribution at node i with N customers is related to the probability distribution at the same node with ($N-1$) customers

- More Generally,

$$
p_{i}(k / n)=\frac{X(n) v_{i} s_{i}}{\mu_{i}(k)} p_{i}(k-1 / n-1) ; \quad \begin{gathered}
k=0,1,2, \ldots \ldots, n \\
n=0,1,2, \ldots \ldots, N \\
p_{i}(0 / 0)=1
\end{gathered}
$$

$$
p_{i}(0 / n)=1-\sum_{k=1}^{n} p_{i}(k / n) \longrightarrow
$$

Often results in negative probabilities

MVA Equations for Response Time - 1

$$
\begin{aligned}
Q_{i}(n) & =\sum_{k=1}^{n} k p_{i}(k / n) \\
& =\sum_{k=1}^{n} \frac{k v_{i} s_{i}}{\mu_{i}(k)} X(n) p_{i}(k-1 / n-1)
\end{aligned}
$$

$$
=v_{i} s_{i} X(n)\left[\sum_{k=1}^{m_{i}-1} \frac{k}{\mu_{i}(k)} p_{i}(k-1 / n-1)+\sum_{k=m_{i}}^{n} \frac{k}{\mu_{i}\left(m_{i}\right)} p_{i}(k-1 / n-1)\right]
$$

$$
=\frac{v_{i} s_{i} X(n)}{\mu_{i}\left(m_{i}\right)}\left[\sum_{k=1}^{m_{i}-1} k\left[\frac{\mu_{i}\left(m_{i}\right)}{\mu_{i}(k)}-1\right] p_{i}(k-1 / n-1)+1+Q_{i}(n-1)\right]
$$

$$
\gamma_{i}(n-1)
$$

$$
\frac{\mu_{i}\left(m_{i}\right)}{\mu_{i}(k)}=\frac{m_{i}}{k} \text { for multi-server node }
$$

$$
Q_{i}(n)=\frac{v_{i} s_{i} X(n)}{\mu_{i}\left(m_{i}\right)}\left[1+\gamma_{i}(n-1)+Q_{i}(n-1)\right]
$$

Note: $Q_{i}(0)=0$

$$
\text { (or) } \quad R_{i}(n)=\frac{v_{i} s_{i}}{\mu_{i}\left(m_{i}\right)}\left[1+\gamma_{i}(n-1)+Q_{i}(n-1)\right]
$$

MVA Equations for Response Time -2

- Special cases

1. Single-server case

$$
R_{i}(n)=\frac{v_{i} s_{i}}{\mu_{i}}\left[1+Q_{i}(n-1)\right]
$$

2. Infinite-server case

$$
\begin{aligned}
R_{i}(n) & =\lim _{m_{i} \rightarrow \infty} \frac{v_{i} s_{i}}{\mu_{i}}\left[\sum_{k=1}^{m_{i}-1}\left(1-\frac{k}{m_{i}}\right) p_{i}(k-1 / n-1)+\frac{1}{m_{i}}+\frac{Q_{i}(n-1)}{m_{i}}\right] \\
& =\frac{v_{i} s_{i}}{\mu_{i}}
\end{aligned}
$$

- Expected network response time: $\sum_{i=1}^{M} R_{i}(n)=R(n)$
- Throughput: $\frac{n}{R(n)}=X(n)$

■ Queue length: $Q_{i}(n)=X(n) R_{i}(n)$

MVA Equations for Response Time -3

- Probability distribution at state-dependent nodes

$$
\begin{aligned}
& p_{i}(k / n)=\frac{v_{i} s_{i} X(n)}{\mu_{i}(k)} p_{i}(k-1 / n-1) ; \quad k=1,2, \ldots \ldots, n_{i} ; \quad n_{i}=\min \left(m_{i}-1, n\right) \\
& p_{i}\left(\geq m_{i} / n\right)=\frac{v_{i} s_{i} X(n)}{\mu_{i}\left(m_{i}\right)} p_{i}\left(\geq m_{i}-1 / n-1\right) \\
& p_{i}(0 / n)=1-\sum_{k=1}^{m_{i}-1} p_{i}(k / n)-p_{i}\left(\geq m_{i} / n\right)
\end{aligned}
$$

- Utilization of each node (needs to be computed for final population only)

$$
\left.\begin{array}{ll}
U_{i}(N)=0 & \text { Infinite-server nodes } \\
U_{i}(N)=\frac{X(N) v_{i} s_{i}}{\mu_{i}} & \text { Single-server nodes } \\
U_{i}(N)=\frac{X(N) v_{i} s_{i}}{\mu_{i}\left(m_{i}\right)} & \text { Multi-server \& state-dependent nodes }
\end{array}\right\}
$$

MVA Equations for Response Time - 4

- Computation of queue length and utilization at each node
- Algorithm

$$
Q_{i}(0)=0
$$

$$
p_{i}(0 / 0)=1
$$

Do $n=1,2, \ldots \ldots, N$
Do $i=1,2, \ldots \ldots, M$
Update response time $R_{i}(n)$
End Do
$X(n)=n / \sum_{i=1}^{M} R_{i}(n)$
Do $i=1,2, \ldots \ldots, M$
Compute $Q_{i}(n)$
End Do
Compute $p_{i}(k / n)$ at multi-server \& state-dependent nodes End Do
Compute $U_{i}(N) \quad i=1,2, \ldots \ldots, M$

Application Example: "what if studies" - 2

2 Given that 150 file drum accesses \& 250 file disk accesses $: v_{3}=150, v_{4}=250$
จ To get v_{2}, following information is given

- Limited main memory of 30000 pages, divided equally among N jobs

Per job we have $30000 / \mathrm{N}$ pages
Larger the \# of jobs \Rightarrow Smaller memory partition per job
\Rightarrow More often CPU has to interrupt to get the next segment of the program from the page drum

If $N=3 \Rightarrow$ Allotted 10000 pages per program

Average time between page faults $=13 \mathrm{msec}$
\# of page faults $=$ \# of visits to page drum, $v_{2}=\frac{3}{13} \times 10^{3} \cong 230$ visits
y K. Pattipati

Application Example: "what if studies" - 3

- Paging drum has revolution speed of $3600 \mathrm{rpm}=60 \mathrm{rps}$

Transfers at $4 \mu s /$ word (each page size is 1024 words)

$$
\begin{aligned}
\Rightarrow s_{2} & =1, \quad \mu_{2}=\left(\frac{1}{2 \times 60}+1024 \times 4 \times 10^{-6}\right)^{-1}=80 \mathrm{pages} / \mathrm{sec} \\
v_{2} & =230 \\
v_{1} & =v_{2}+v_{3}+v_{4}+1=1+230+150+250=631
\end{aligned}
$$

- File drum

$$
s_{3}=1, \quad \mu_{2}=80 \text { pages } / \mathrm{sec}, v_{3}=150
$$

- File disk: $2400 \mathrm{rpm}, t_{\text {seek }}=11 \mathrm{~ms}$, transfer time $=6 \mu \mathrm{~s}$

$$
s_{4}=1, \quad \mu_{4}=\left(\frac{1}{2 \times 40}+t_{\text {seek }}+1024 \times 6 \times 10^{-6}\right)^{-1}=33.7 \text { pages } / \mathrm{sec}, \quad v_{4}=250
$$

- $\quad \mathrm{CPU} \quad \frac{v_{1} s_{1}}{\mu_{1}}=3 \Rightarrow s_{1}=\frac{2.1 \times 10^{9}}{631} ; \quad v_{1}=630, \quad \mu_{1}=7 \times 10^{8} \mathrm{Ins} / \mathrm{sec}$

	CPU (1)	Paging Drum (2)	File Drum (3)	File Disk (4)
v_{i}	631	230	150	250
s_{i}	3.17×10^{6}	1 page	1 page	1 page
μ_{i}	$7 \times 10^{8} \mathrm{Ins} / \mathrm{sec}$	80 pages $/ \mathrm{sec}$	$80 \mathrm{pages} / \mathrm{sec}$	33.7 pages $/ \mathrm{sec}$
$v_{i} s_{i} / \mu_{i}$	3	2.86	1.86	7.5

Application Example: "what if studies" - 4

- Using MVA or convolution algorithm, one can explore, for example, the following

1. Performance measures
2. What if CPU is replaced by one that is 25% faster?
3. Replace file drum with one having 4500 rpm
4. Faster paging drum 4500 rpm
5. Balance utilization to file and disk drums

$$
\Rightarrow \frac{v_{3} s_{3}}{\mu_{3}}=\frac{v_{4} s_{4}}{\mu_{4}} \ni v_{3}+v_{4}=400
$$

6. Increase memory size from 30000-40000 pages
\Rightarrow time per page fault $=15 \mathrm{~ms}$

Application Example: "sliding window flow control" - 1

- Norton's theorem (or) Chandy-Herzog-Woo's theorem

[^0]
Application Example: "sliding window flow control" - 2

Know

$$
\begin{aligned}
& p_{1}(k / N)=\frac{G_{M-\{1\}}(N-k) Y_{1}(k)}{G_{M}(N)} \\
& G_{M}(N)=\sum_{k=0}^{N} G_{M-\{1\}}(N-k) Y_{1}(k)
\end{aligned}
$$

- The network is equivalent to a 'two node network', if

$$
G_{M-\{1\}}(n)=Y_{e q}(n)=\left(\prod_{k=1}^{n} \mu_{e q}(k)\right)^{-1} s_{e q}=1, \quad v_{e q=1}
$$

- Know

$$
X_{e q}(n)=\frac{G_{M-\{1\}}(n-1)}{G_{M-\{1\}}(n)}=\frac{Y_{e q}(n-1)}{Y_{e q}(n)}=\mu_{e q}(n)
$$

The service rate of flow eqv. node= Throughput of the boxed network

- $X_{e q}(n)$ can be found by "shorting" node 1
$>$ This is similar to Norton's theorem of electrical circuits

Application Example: "sliding window flow control" - 3

- Norton's theorem: Replace all sources by an equivalent current source and equivalent resistance (or impedance)

- Similarly, we short node 1 (subsystem of interest)
- Found throughput of the remaining network for all $n=1,2, \ldots \ldots, N$
- Set service rate of flow equivalent node $=\mu_{\text {eq }}(n), \quad n=1,2, \ldots \ldots, N$
- For the sliding window flow control problem:
- Short node $M+1$, all nodes have same service rate
- Know $v=1, s=1$

$$
R_{i}(n)=\frac{1}{\mu}\left[1+Q_{i}(n-1)\right]
$$

Since the network is balanced,

Copyright ©2004 by K. Pattipati

$$
\underset{i}{Q_{i}(n-1)}=\frac{n-1}{M} \quad i=1,2, \ldots \ldots, M
$$

Application Example: "sliding window flow control" - 4

$$
\begin{aligned}
\Rightarrow & R_{i}(n)=\frac{1}{\mu}\left[\frac{n+M-1}{M}\right] \\
& R(n)=\sum_{i=1}^{M} R_{i}(n)=\frac{n+M-1}{\mu} \\
& X_{e q}(n)=\frac{n \mu}{n+M-1}=\mu_{e q}(n)
\end{aligned}
$$

So, the equivalent network is $\| \square$

* Yes, can solve via MVA!!
- Special Cases
- Case 1

As $\lambda \rightarrow \infty$, all N packets will be at the equivalent network

$$
\begin{aligned}
& \text { Throughput }=X_{e q}(N)=\frac{N \mu}{N+M-1} \\
& \qquad \& \quad R(N)=\left[\frac{N+M-1}{\mu}\right]=\frac{M-1}{\mu-X_{e q}(N)} \text { because } \mu-X_{e q}(N)=\mu \frac{M-1}{N+M-1}
\end{aligned}
$$

Application Example: "sliding window flow control" - 5

Case 2:

$$
\begin{aligned}
& \lambda=\mu \Rightarrow X_{e q}(N)=\frac{N \mu}{(N+M)}, \quad R_{e q}(N)=\frac{N+M}{\mu} \frac{M}{M+1} \quad \text { "Maxwell } \\
& \text { - What should we choose as } N \text {, the window length? } N \approx M \text { Demon" } \\
& \begin{array}{l}
\begin{array}{l}
\text { "Bang } \\
\text { Bang } \\
\text { Control" }
\end{array} \\
\\
\text { Power } \rightarrow \begin{array}{ll}
R(N)=\frac{M-1}{\mu-X_{e q}} & \text { as } \lambda \rightarrow \infty \\
\frac{X_{e q}}{R(N)}=\frac{X_{e q}\left(\mu-X_{e q}\right)}{M-1} \quad \Rightarrow \max \text { at } X_{e q}=\mu / 2 & N=M-1 \\
\text { at } X_{e q}=0, & R(N)=\frac{M-1}{\mu}
\end{array} \\
\end{array}
\end{aligned}
$$

Application Example: "sliding window flow control" - 6

$$
\begin{aligned}
& R(N)=\frac{M-1}{\mu-X_{e q}} \quad \text { as } \lambda \rightarrow \infty \\
& \mu R(N)=\frac{M-1}{1-\frac{X_{e q}}{\mu}} \Rightarrow \text { Normalized Delay }=\frac{M-1}{1-\text { Normalized Throughput }} \\
& \text { Find } X_{e q} \ni \mu R(N)=\frac{d(\mu R(N))}{X_{e q}} X_{e q} \\
& \Rightarrow X_{e q}=\frac{\mu}{2} \Rightarrow N=M-1 \& \mu R(N)=2(M-1)
\end{aligned}
$$

Summary

- Single-class Closed Queuing Networks
- Computational Algorithms
- Convolution Algorithm
- Mean Value Analysis
- Applications
- Computer Systems
- Flow Control in Communication Networks

[^0]: Copyright ©2004 by K. Pattipati

