Lecture 8

Prof. Krishna R. Pattipati

Dept. of Electrical and Computer Engineering University of Connecticut
 Contact: krishna@engr.uconn.edu (860) 486-2890

ECE 336 Stochastic Models for the Analysis of Computer Systems and Communication Networks

Outline of Lecture 8

- Summary of Lecture 7
- Multi-class Closed Queuing Networks
\square Recursive and Approximation Algorithms
Open and Mixed Networks

Why Multi-class Queuing Networks?

- Multiple customer classes arise naturally in practice:
- end-to-end flow control of packets over several virtual circuits
- multiple job types in a computer system (interactive, batch, etc.)
- multiple part types in a manufacturing system

E ~ Edit Jobs
R ~ Run Jobs

Multi-class Closed Queuing Network - 1

- Population vector $\left(N_{l}, N_{2}, \ldots N_{J}\right)$, assumed constant in the network
$\underline{N}=\left(N_{1}, N_{2}, \ldots, N_{J}\right) \quad J=$ number of customer classes
$|\underline{N}|=N_{1}+N_{2}+\ldots+N_{J} \quad$ total population in the network
■ M service centers in the network (infinite, single, multi-server, statedependent)
\square A class j customer after finishing processing will next go to node k with probability $P_{i k j}$, so that

$$
\begin{aligned}
& v_{i j}=\sum_{k=1}^{M} P_{k i j} v_{k j} \forall 1 \leq i, k \leq M ; 1 \leq j \leq J \\
& v_{i j} \sim \text { relative \# of visits to node } i \text { by a class } j \text { customer }
\end{aligned}
$$

- Performance measures of interest

$$
\begin{aligned}
& Q_{i}(\underline{N})=\text { Queue length at node } i=\sum_{j=1}^{J} Q_{i j}(\underline{N}) \\
& \left.Q_{i j} \underline{N}\right)=\text { Queue length of class } j \text { at node } i \\
& R_{i j}(\underline{N})=\text { Response time of class } j \text { at node } i \\
& X_{j}(\underline{N})=\text { Network throughput of class } j ; X_{i j}(N)=\text { Throughput of class } j \text { at node } i
\end{aligned}
$$

Service demand distribution
Exponential, class independent

$$
s_{i j}=s_{i}, \forall j=1,2, \ldots, J
$$

any differentiable service time distribution
LCFS preempt resume
"
Infinite Server
"

- State $\underline{n}_{1}, \underline{n}_{2}, \ldots, \underline{n}_{M}$ where $\underline{n}_{i}=\left(n_{i j}, n_{i 2}, \ldots, n_{i j}\right)$
\Rightarrow has product-form: see Baskett, Chandy, Muntz and Palacios, JACM,
Vol.22, April 1975, pp. 248-260 BCMP networks

Recursive MVA Equations - 1

- Recursive MVA:
$\mathrm{J}=1 \rightarrow$ Equilibrium probabilities and performance measures for population N are related to those with population $(N-1)$
$\mathrm{J}>1$ (multi-class) \rightarrow Probability distribution with \underline{N} related to $\underline{N}-\underline{e}_{j}, 1 \leq j \leq J$
- Basic MVA Equation:

$$
\begin{aligned}
& p_{i}(k \mid \underline{n})=\sum_{j=1}^{J} \frac{X_{j}(\underline{n}) v_{i j} s_{i j}}{\mu_{i}(k)} p_{i}\left(k-1 \mid \underline{n}-\underline{e}_{j}\right) ; k=1,2, \ldots,|\underline{n}| \\
& k=k_{i_{1}}+k_{i_{2}}+\ldots+k_{i_{j}}
\end{aligned}
$$

Proof:

$$
\begin{array}{ll}
p_{i}(\underline{k} \mid \underline{n})=\frac{Y_{i}(\underline{k}) G_{M-i l}(\underline{n}-\underline{k})}{G_{M}(\underline{n})} & \begin{aligned}
\underline{k} & =\left(k_{1}, k_{2}, \ldots, k_{J}\right) \\
\underline{e}_{j} & =(0 \ldots 01 \ldots 0)
\end{aligned} \\
\text { Note that } & Y_{i}(\underline{k})=\sum_{j=1}^{J} \frac{k_{i j}}{k} Y_{i}(\underline{k}) \\
& \text { since } \quad k=k_{i 1}+k_{i 2}+\ldots+k_{i J}
\end{array}
$$

Recursive MVA Equations - 2

$$
\begin{aligned}
p_{i}(\underline{k} \mid \underline{n}) & =\sum_{j=1}^{J} \frac{k_{i j}}{k} Y_{i}(\underline{k}) \frac{G_{M-\{i\}}(\underline{n}-\underline{k})}{G_{M}(\underline{n})} \\
& =\sum_{j=1}^{J} \frac{k_{i j}}{k} \frac{v_{i j} s_{i j}}{\mu_{i}(k)} \frac{k}{k_{i j}} Y_{i}\left(\underline{k}-\underline{e}_{j}\right) \frac{G_{M-\{i\}}(\underline{n}-\underline{k})}{G_{M}(\underline{n})} \quad \begin{array}{l}
\operatorname{Recall}: \\
Y_{i}(\underline{k})==\frac{k}{k_{i j}} \frac{v_{i j} s_{i j}}{\mu_{i}(k)} Y_{i}\left(\underline{k}-\underline{e}_{j}\right) \forall i \text { and } j
\end{array} \\
& =\sum_{j=1}^{J} \frac{v_{i j} s_{i j}}{\mu_{i}(k)} \frac{Y_{i}\left(\underline{k}-\underline{e}_{j}\right) G_{M-\{i\}}\left(\underline{n}-\underline{e}_{j}-\underline{k}+\underline{e}_{j}\right)}{G_{M}\left(\underline{n}-\underline{e}_{j}\right)} \frac{G_{M}\left(\underline{n}-\underline{e}_{j}\right)}{G_{M}(\underline{n})} \\
\Rightarrow p_{i}(\underline{k} \mid \underline{n}) & =\sum_{j=1}^{J} \frac{X_{j}(n) v_{i j} s_{i j}}{\mu_{i}(k)} p_{i}\left(\underline{k}-\underline{e}_{j} \mid \underline{n}-\underline{e}_{j}\right)
\end{aligned}
$$

- Summing over each class results in:

$$
p_{i}(k \mid \underline{n})=\sum_{j=1}^{J} \frac{X_{j}(n) v_{i j} s_{i j}}{\mu_{i}(k)} p_{i}\left(k-1 \mid \underline{n}-\underline{e}_{j}\right)
$$

$$
\begin{gathered}
\text { Also } p_{i}\left(\geq m_{i} \mid \underline{n}\right)=\sum_{\mathrm{j}=1}^{J} \frac{X_{j}(\underline{n}) v_{i j} s_{i j}}{\mu_{i}\left(m_{i}\right)} p_{i}\left(\geq m_{i}-1 \mid \underline{n}-\underline{e}_{j}\right) \\
p_{i}(0 \mid \underline{n})=1-\sum_{k=1}^{m_{i}-1} p_{i}(k \mid \underline{n})-p_{i}\left(\geq m_{i} \mid \underline{n}\right)
\end{gathered}
$$

Recursive MVA Equations - 3

- MVA equations

$$
\begin{aligned}
\text { know } & Q_{i}(\underline{n})
\end{aligned}=\sum_{j=1}^{J} Q_{i j}(\underline{n})=\sum_{j=1}^{J} X_{j}(\underline{n}) R_{i j}(\underline{n})=\sum_{k=1}^{|n|} k p_{i}(k \mid \underline{n}) ~=Q_{i}(n)=\sum_{j=1}^{|n|} k p_{i}(k \mid \underline{n})=\sum_{j=1}^{J} X_{j}(\underline{n}) v_{i j} s_{i j} \sum_{k=1}^{|n|} \frac{k}{\mu_{i}(k)} p_{i}\left(k-1 \mid \underline{n}-\underline{e}_{j}\right) .
$$

- Using a procedure similar to single class case, we have

$$
\begin{aligned}
& \left.Q_{i}(\underline{n})=\sum_{j=1}^{J} Q_{i j} \underline{n}\right)=\sum_{j=1}^{J} \frac{X_{j}(\underline{n}) v_{i j} s_{i j}}{\mu_{i}\left(m_{i}\right)}\left[1+Q_{i}\left(\underline{n}-\underline{e}_{j}\right)+\gamma_{i}\left(\underline{n}-\underline{e}_{j}\right)\right] \\
& R_{i j}(\underline{n})=\frac{v_{i j} s_{i j}}{\mu_{i}\left(m_{i}\right)}\left[1+Q_{i}\left(\underline{n}-\underline{e}_{j}\right)+\gamma_{i}\left(\underline{n}-\underline{e}_{j}\right)\right] \\
& \text { where } \quad \gamma_{i}\left(\underline{n}-\underline{e}_{j}\right)=\sum_{k=1}^{m_{i}-1} k\left[\frac{\mu_{i}\left(m_{i}\right)}{\mu_{i}(k)}-1\right] p_{i}\left(k-1 \mid \underline{n}-\underline{e}_{j}\right)
\end{aligned}
$$

- Special cases: $R_{i j}(\underline{n})=\frac{v_{i j} s_{i j}}{\mu_{i}}$ for infinite-server nodes

$$
R_{i j}(\underline{n})=\frac{v_{i j} s_{i j}}{\mu_{i}}\left[1+Q_{i}\left(\underline{n}-\underline{e}_{j}\right)\right] \text { for single-server nodes }
$$

Recursive MVA Algorithm

- Algorithm:

Initialize $Q_{i}(\underline{0})=0$ at single, multi-server and state dependent nodes

$$
\begin{aligned}
& p_{i}(0 \mid \underline{0})=1 \text { at multi-server and state dependent nodes } \\
& \text { Do }|\underline{n}|=1,2, \ldots,|\underline{N}|
\end{aligned}
$$

$$
\text { Do } n_{1}=\max \left(0,|\underline{n}|-N_{2}-N_{3}-\ldots-N_{J}\right) \text { to } \min \left(|\underline{n}|, \mathrm{N}_{1}\right)
$$

$$
\begin{aligned}
& \operatorname{Do~}_{\mathrm{n}_{\mathrm{J}-1}}=\max \left(0, \left\lvert\, \frac{|n|}{n \mid-1}-\mathrm{N}_{1}-\mathrm{N}_{2}-\ldots-\mathrm{N}_{\mathrm{J}-2}-\mathrm{N}_{\mathrm{J}}\right.\right) \text { to } \min \left(\underline{\mathrm{n}}-\mathrm{n}_{1}-\mathrm{n}_{2}-\ldots-\mathrm{n}_{\mathrm{J}-2}, \mathrm{~N}_{\mathrm{J}-1}\right) \\
& \quad n_{J}=|\underline{n}|-\sum_{j=1} n_{j}
\end{aligned}
$$

Compute $R_{i j}(\underline{n}) \quad \forall i$

$$
\begin{aligned}
& X_{j}(\underline{n})=\frac{n_{j}}{\sum_{i=1}^{M} R_{i j}(\underline{n})} \quad \text { Little's Law } \\
& Q_{i j}(\underline{n})=R_{i j}(\underline{n}) X_{j}(\underline{n}) ; Q_{i}(\underline{n})=\sum_{j=1}^{J} Q_{i j}(\underline{n})
\end{aligned}
$$

Evaluate $p_{i}(k \mid \underline{n})$
End Do

$$
U_{i}(\underline{N})=\left\{\begin{array}{lr}
0 & \text { Infinite-server nodes } \\
\sum_{j=1}^{J} U_{i j}(\underline{N}), & U_{i j}(\underline{N})=\frac{X_{j}(\underline{N}) v_{i j} s_{i j}}{\mu_{i}\left(m_{i}\right)} \\
\text { for all other nodes }
\end{array}\right.
$$

Need for Approximate MVA Algorithm

■ Computational load $\quad O\left(M J \prod_{j=1}^{J}\left(N_{j}+1\right) \quad\right.$...exponential
口 Storage $O\left(M \prod_{j=1}^{J}\left(N_{j}+1\right)\right)^{j=1} \ldots$ exponential \Rightarrow Need approximations

- Key Idea:

At $\underline{n}=\underline{N}$, we have

$$
R_{i j}(\underline{N})=f\left\{Q_{i}\left(\underline{N}-\underline{e}_{j}\right), p_{i}\left(k \mid \underline{N}-\underline{e}_{j}\right)\right\}
$$

What if $Q_{i}\left(\underline{N}-\underline{e}_{j}\right)$ and $p_{i}\left(k \mid \underline{N}-\underline{e}_{j}\right)$ are estimated from statistics for population vector \underline{N}, suppose

$$
\begin{aligned}
& Q_{i}\left(\underline{N}-\underline{e}_{j}\right)=g_{i j}\left[Q_{i}(\underline{N}), Q_{i j}(\underline{N}), X_{j}(\underline{N}), \ldots\right] \\
& p_{i}\left(k \mid \underline{N}-\underline{e}_{j}\right)=h_{i j}\left[Q_{i}(\underline{N}), Q_{i j}(\underline{N}), X_{j}(\underline{N}), \ldots\right]
\end{aligned}
$$

Approximate MVA Algorithm

- Then the MVA equations become:

$$
\begin{gathered}
\longrightarrow R_{i j}(\underline{N})=f\left\{g_{i j}\left(Q_{i}(\underline{N}), \ldots\right), h_{i j}\left(Q_{i}(\underline{N}), \ldots\right)\right\} \\
\\
X_{j}(\underline{N})=\frac{N_{j}}{\sum_{i=1}^{M} R_{i j}(\underline{N})} \\
\\
Q_{i j}(N)=X_{j}(\underline{N}) R_{i j}(\underline{N}) \\
\\
p_{i}(k \mid \underline{N}) \text { from MVA equation }
\end{gathered}
$$

$$
\underline{Y}=f(\underline{Y}) \quad \text { suggests the following iteration }
$$

continue \quad Start with an initial guess of performance statistics for population vector \underline{N}
until $\longrightarrow \square$ Estimate $g_{i j}(\underline{N}), h_{i j}(\underline{N})$
convergence Compute $R_{i j}, X_{j}, Q_{i j}, p_{i}(k \mid \underline{N})$

S-B and C-N MVA Approximations

- ヨTwo approximation schemes: Schweitzer-Bard (S-B) and Chandy-Neuse (C-N)
- S-B is a special case of $\mathrm{C}-\mathrm{N}$
- C-N Linearizer approximation:
know $Q_{i}\left(\underline{N}-\underline{e}_{j}\right)=\sum_{m=1}^{J} Q_{i m}\left(\underline{N}-\underline{e}_{j}\right)$

1. $Q_{i m}\left(\underline{N}-\underline{e}_{j}\right)$ is a linear function of the population of class m, N_{m}

$$
Q_{i m}\left(\underline{N}-\underline{e}_{j}\right)=\left\{\begin{array}{c}
Q_{i m}(\underline{N})+N_{m} D_{i m j} ; m \neq j \\
\frac{\mathrm{~N}_{\mathrm{j}}-1}{\mathrm{~N}_{\mathrm{j}}} Q_{i m}(\underline{N})+\left(N_{j}-1\right) D_{i j j} ; m=j
\end{array}\right.
$$

Alternatively, $\quad Q_{i m}\left(\underline{N}-\underline{e}_{j}\right)=\left(\underline{N}-\underline{e}_{j}\right)_{m}\left[F_{i m}(\underline{N})+D_{i m j}\right]$
where $F_{i m}(\underline{N})=\frac{Q_{i m}(\underline{N})}{N_{m}}$

- We find $D_{i m j}$ from
$D_{i m j}=F_{i m}\left(\underline{N}-\underline{e}_{j}\right)-F_{i m}(\underline{N})$

Note that

$$
\sum_{i=1}^{M} D_{i m j}=\sum_{i=1}^{M} \frac{Q_{i m}\left(\underline{N}-\underline{e}_{j}\right)}{\left(\underline{N}-\underline{e}_{j}\right)_{m}}-\sum_{i=1}^{M} \frac{Q_{i m}(\underline{N})}{N_{m}}=0 \quad \forall m \text { and } j
$$

- To get $D_{i m j}$, we need performance statistics for population vector \underline{N} and for population vectors $\underline{N}-\underline{e}_{j}, 1 \leq j \leq \mathrm{J}$
- If we assume $D_{i m j}=0 \forall i, m$ and j, The result is the S-B heuristic:

$$
Q_{i m}\left(\underline{N}-\underline{e}_{j}\right)=\left\{\begin{array}{c}
Q_{i m}(\underline{N}) ; j \neq m \\
\frac{N_{j}-1}{N_{j}} Q_{i j}(\underline{N}) ; j=m
\end{array}\right.
$$

- Thus, the S-B heuristic assumes that: 1) classes don't interfere with each other, and 2) queue lengths are proportional to population.
- We also need $p_{i}\left(k \mid \underline{N}-\underline{e}_{j}\right)$ to estimate $\gamma_{i}\left(\underline{N}-\underline{e}_{j}\right)$ at state-dependent nodes.
- The approximation for probability estimation is based on the following two assumptions:

1) Throughput approximation:

$$
x_{m}\left(\underline{N}-\underline{e}_{j}\right) \approx x_{m}(\underline{N}) \quad \forall m \& j
$$

2) A closed network node i behaves as an open network node with arrival rate of class $m, x_{m}\left(\underline{N}-\underline{e}_{j}\right) \approx x_{m}(\underline{N})$ with a finite waiting place of $|\underline{N}|-1$.

Let $\quad \hat{p}_{i}(k) \approx p_{i}\left(k \mid \underline{N}-\underline{e}_{j}\right)$

$$
\begin{aligned}
& \mu_{i}(k) \hat{p}_{i}(k)=\overbrace{\left(\sum_{m=1}^{J} x_{m}(\underline{N}) v_{i m} s_{i m}\right)} \hat{p}_{i}(k-1) \\
& \hat{p}_{i}(k)=\frac{\lambda_{i}}{\mu_{i}(k)} \hat{p}_{i}(k-1), \quad k=1,2, \ldots,|\underline{N}|-1
\end{aligned}
$$

Obtain $\hat{p}_{i}(0)$ from the normalization constraint: $\sum_{k=0}^{|N|-1} \hat{p}_{i}(k)=1$
This scheme is due to Krzesinski \& Greyling and Pattipati et al

C-N Linearizer Algorithm

- C-N Linearizer algorithm $Q^{\omega_{i},(\underline{N})=}=\frac{N_{j}}{M}$

CORE Algorithm

CORE algorithm:

- Population vector: $\underline{n} \quad \rightarrow \underline{N} \underline{\underline{N}}$

$$
r=0 \quad T O L=\frac{1}{4000+16|n|}
$$

Compute $Q_{i m}\left(\underline{n}-\underline{e}_{j}\right)=\left(\underline{n}-\underline{e}_{j}\right)_{m}\left[\frac{Q^{(r)}(\underline{n})}{n_{m}}+D_{i m j}\right]$

$$
Q_{i}\left(\underline{n}-\underline{e}_{j}\right)=\sum_{m=1}^{J} Q_{i m}\left(\underline{n}-\underline{e}_{j}\right)
$$

Compute $\quad p_{i}\left(k \mid \underline{n}-\underline{e}_{j}\right)$
Update $R_{i j}^{(r+1)}, \quad X_{j}^{(r+1)}, \quad Q_{i j}^{(r+1)}, \quad p_{i}^{(r+1)}(k \mid \underline{n})$ etc.
Check if $\quad \frac{\left|Q_{i j}^{(r+1)}-Q_{i j}^{(r)}\right|}{n_{j}} \leq T O L \quad$ Stop

$$
\text { else } \quad r=r+1
$$

Multi-class Network Example

- Example: $J=2$ customer classes; $M=3, N_{l}=4, N_{2}=1$
node $1 \sim$ inf. Server; node $2 \sim$ single server; node $3 \sim$ multi-server (4 servers)

$$
\begin{aligned}
& \mu_{1}=\mu_{2}=1 ; \quad \mu_{3}(k)= \begin{cases}k ; & k \leq 4 \\
4 ; & k>4\end{cases}
\end{aligned}
$$

- Exact algorithm:

$$
\left.\left[Q_{i j}\right]=\left[\begin{array}{cc}
.673 & .262 \\
1.979 & .685 \\
1.348 & .053
\end{array}\right] ; \quad \quad \quad R_{i j}\right]=\left[\begin{array}{cc}
1 & 1 \\
2.941 & 2.618 \\
2.003 & 2.020
\end{array}\right]
$$

- S-B:

$$
\begin{aligned}
& {\left[Q_{i j}\right]=\left[\begin{array}{cc}
.636 & .233 \\
2.092 & .72 \\
1.272 & .047
\end{array}\right] ; \quad\left[R_{i j}\right]=\left[\begin{array}{cc}
1 & 1 \\
3.289 & 3.081 \\
2.00 & 2.00
\end{array}\right] \quad \text { error }=12.4 \%} \\
& \text { K. Pattipati } \\
& \text { C-N Linearizer provides near-exact answers }
\end{aligned}
$$

Open Research Problems

- Open research problems:

1. Uniqueness of $\mathrm{C}-\mathrm{N}$ linearizer solutions and convergence of those algorithms for both single and multi-class networks
2. Uniqueness of S-B solution and convergence of S-B algorithms to multiclass networks for finite populations.
3. Investigation of the accuracy of probability estimation schemes
4. \exists a relationship between the approximate MVA based on S-B approximation and convex minimization: exploration of computational techniques for solving the MVA equations via optimizations techniques.
5. MVA algorithm is parallelizable. Investigation of parallel MVA algorithms.

See Pattipati et al., JACM, July 1990

Multi-class Open Queuing Networks -1

Open networks: Analysis of open product-form networks is much simpler than their closed network counterparts.

$$
p(\underline{n})=p\left(\underline{n}_{1}, \underline{n}_{2}, \ldots, \underline{n}_{M}\right)=\prod_{i=1}^{M} Y_{i}\left(n_{i}\right) p_{i}(\underline{0}) ;
$$

$$
\begin{aligned}
& Y_{i}\left(\underline{n}_{i}\right)=\frac{\left|\underline{n}_{i}\right|!}{n_{i 1}!n_{i 2}!\ldots . n_{i J}!} \frac{\prod_{j=1}^{J}\left(\lambda_{j} v_{i j} s_{i j}\right)^{n_{i j}}}{\prod_{k=1}^{\left|n_{i j}\right|} \mu_{i}(k)}
\end{aligned}
$$

$\lambda_{j}=$ arrival rate of class j customers to the network

$$
\begin{aligned}
& v_{i j}=p_{s i j}+\sum_{k=1}^{M} P_{k i j} v_{k j} \\
& p_{i}\left(\underline{n}_{i}\right)=Y_{i}\left(\underline{n}_{i}\right) p_{i}(\underline{o})
\end{aligned}
$$

$$
=\sum_{\mathrm{j}=1}^{\mathrm{J}} \frac{n_{i j}}{\left|\underline{n}_{i}\right|} Y_{i}\left(\underline{n}_{i}\right) p_{i}(\underline{n})
$$

$$
=\sum_{\mathrm{j}=1}^{\mathrm{J}} \frac{\lambda_{j} v_{i j} s_{i j}}{\mu_{i}\left(\left|n_{i}\right|\right)} Y_{i}\left(\underline{n}_{i}-\underline{e}_{j}\right) p_{i}(\underline{o})
$$

$$
=\sum_{\mathrm{j}=1}^{\mathrm{J}} \frac{\lambda_{j} v_{i j} s_{i j}}{\mu_{i}\left(\left|n_{i}\right|\right)} p_{i}\left(\underline{n}_{i}-\underline{e}_{j}\right)
$$

Multi-class Open Queuing Networks -2

- Let $k=\left|\underline{n}_{i}\right|$ and sum over all customers $э\left|\underline{n}_{i}\right|=k$, then

$$
p_{i}(k)=\rho_{i}(k) p_{i}(k-1)
$$

$$
\text { where } \quad \rho_{i}(k)=\frac{\sum_{j=1}^{J} \lambda_{j} v_{i j} s_{i j}}{\mu_{i}(k)}=\frac{r_{i}}{\mu_{i}(k)}
$$

- So, each node behaves like a birth-death process: $M|M| 1, M|M| m, M|M| \infty, S D$ node. We can find performance measures via:

1) Infinite - server $M|M| \infty$ queue with multiple customer classes:

$$
\begin{aligned}
& Q_{i}=\rho_{i}=\frac{r_{i}}{\mu_{i}}=\sum_{j=1}^{J} Q_{i j} ; Q_{i j}=\rho_{i j}=\frac{\lambda_{j} v_{i j} s_{i j}}{\mu_{i}} \\
& R_{i j}=\frac{v_{i j} s_{i j}}{\mu_{i}} \\
& U_{i j}=U_{i}=0
\end{aligned}
$$

Multi-class Open Queuing Networks -3

2) Single server $M|M| 1$ queue with multiple customer classes

$$
\begin{aligned}
& Q_{i}=\frac{\rho_{i}}{1-\rho_{i}}=\sum_{j=1}^{J} Q_{i j} ; \quad Q_{i j}=\frac{\rho_{i j}}{1-\rho_{i}} \\
& R_{i j}=\frac{v_{i j} s_{i j}}{\mu_{i}\left(1-\rho_{i}\right)} \\
& U_{i}=\rho_{i}=\sum_{j=1}^{J} U_{i j} ; U_{i j}=\rho_{i j}
\end{aligned}
$$

3) Multi-server and state-dependent nodes $\left(\mu_{i}\left(m_{i}\right)=m_{i} \mu_{i}\right.$ for multi-server nodes)

$$
\begin{aligned}
& Q_{i}=\frac{\rho_{i}\left(m_{i}\right)}{1-\rho_{i}\left(m_{i}\right)}\left[1+\gamma_{i}\right] ; \quad Q_{i j}=\frac{\rho_{i j}\left(m_{i}\right)}{1-\rho_{i}\left(m_{i}\right)}\left[1+\gamma_{i}\right] ; \rho_{i}\left(m_{i}\right)=\frac{r_{i}}{\mu_{i}\left(m_{i}\right)} \\
& \gamma_{i}=\sum_{k=1}^{m_{i-1}} k\left[\frac{\mu_{i}\left(m_{i}\right)}{\mu_{i}(k)}-1\right] p_{i}(k-1) \\
& R_{i j}=\frac{v_{i j} s_{i j}}{\mu_{i}\left(m_{i}\right)\left(1-\rho_{i}\left(m_{i}\right)\right)}\left[1+\gamma_{i}\right] \\
& U_{i}=\frac{r_{i}}{\mu_{i}\left(m_{i}\right)}=\rho_{i}\left(m_{i}\right)=\sum_{j=1}^{J} U_{i j} ; U_{i j}=\frac{\lambda_{j} v_{i j} s_{i j}}{\mu_{i}\left(m_{i}\right)}
\end{aligned}
$$

Mixed Queuing Networks -1

- Mixed Networks: Idea is to convert into an equivalent closed network

$$
\begin{aligned}
& v_{i j}=p_{s i j}+\sum_{k=1}^{M} P_{k i j} v_{k j} \\
& P_{s i j} \rightarrow 0 \Rightarrow \text { closed class } \\
& \rightarrow 0 \Rightarrow \text { open class }
\end{aligned}
$$

- We will consider only two class network for simplicity. Extension to multi-class networks is straightforward.
- State at each node: $\left(n_{0} n_{1}\right)_{i}=n_{i} \quad n_{0} \sim$ open
$n_{1} \sim$ closed

$$
p\left(\underline{n}_{1}, \underline{n}_{2}, \underline{n}_{M} \mid N\right)=\frac{\prod_{i=1}^{M} Y_{i}\left(\underline{n}_{i}\right)}{G_{M}(N)}
$$

$$
\text { where } Y_{i}\left(\underline{n}_{i}\right)=\frac{\left(n_{i 0}+n_{i 1}\right)!}{n_{i 0}!n_{i 1}!} \frac{\left(\lambda v_{i 0} s_{i 0}\right)^{n_{i 0}}\left(v_{i 1} s_{i 1}\right)^{n_{i 1}}}{\prod_{k=1}^{n_{i 0}+n_{i 1}} \mu_{i}(k)}
$$

Mixed Queuing Networks - 2

- Marginal probabilities are given by

$$
p_{i}\left(n_{0}, n_{1} \mid N\right)=\frac{\left(n_{0}+n_{1}\right)!}{n_{0}!n_{1}!} \frac{\left(\lambda v_{i v_{i 0}} s_{i 0}\right)^{n_{0}}\left(v_{i 1} s_{i 1}\right)^{n_{1}}}{\prod_{k=1}^{n_{i n}+n_{i}} \mu_{i}(k)} \cdot \frac{G_{M-i(i)}\left(N-n_{1}\right)}{G_{M}(N)}
$$

since $\quad \sum_{n_{0}=0}^{\infty} \sum_{n_{1}=0}^{N} p_{i}\left(n_{0}, n_{1}\right)=1$

$$
G_{M}(N)=\sum_{n_{0}=0}^{\infty} \sum_{n_{1}=0}^{N} \frac{\left(n_{0}+n_{1}\right)!}{n_{0}!n_{1}!} \frac{\left(\lambda v_{i 0} s_{i 0}\right)^{n_{0}}\left(v_{i 1} s_{i 1}\right)^{n_{1}}}{\prod_{k=1}^{n_{0}+n_{1}} \mu_{i}(k)} G_{M-\{i\}}\left(N-n_{1}\right)
$$

Letting

$$
\begin{aligned}
& \tilde{Y}_{i}\left(n_{1}\right)=\sum_{n_{0}=0}^{\infty} \frac{\left(n_{0}+n_{1}\right)!}{n_{0}!n_{1}!} \frac{\left(\lambda v_{i 0} s_{i 0}\right)^{n_{0}}\left(v_{i 1} s_{i 1}\right)^{n_{1}}}{\prod_{k=1}^{n_{0}+n_{1}} \mu_{i}(k)} \\
& G_{M}(N)=\sum_{n_{1}=0}^{N} \tilde{Y}_{i}\left(n_{1}\right) G_{M-\{i\}}\left(N-n_{i}\right) \Rightarrow \quad \begin{array}{r}
\tilde{Y}_{i}\left(n_{1}\right) \text { is the equivalent closed } \\
\text { network capacity function }
\end{array}
\end{aligned}
$$

Mixed Queuing Networks - 3

- Let us look at $\tilde{Y}_{i}\left(n_{1}\right)$ closely:

$$
\begin{gathered}
\tilde{Y}_{i}\left(n_{1}\right)=\frac{\left(v_{i 1} s_{i 1}\right)^{n_{1}}}{\prod_{k=1}^{n_{1}} \mu_{i}(k)} \cdot \underbrace{\sum_{n_{0}=0}^{\infty} \frac{\left(n_{0}+n_{1}\right)!}{n_{0}!n_{1}!} \frac{\left(\lambda v_{i 0} s_{i 0}\right)^{n_{0}}}{\left[\prod_{1+1}^{n_{1}+n_{0}} \mu_{i}(k)\right]}}_{\alpha_{i}\left(n_{1}\right)} \\
=\frac{\left(v_{i 1} s_{i 1}\right)^{n_{1}}}{\prod_{k=1}^{n_{1}} \mu_{i}(k)} \cdot \alpha_{i}\left(n_{1}\right)=\frac{\left(v_{i 1} s_{i 1}\right)^{n_{1}}}{\prod_{k=1}^{n_{1}} \mu_{e q i}(k)} \\
\Rightarrow \quad \mu_{e q i}\left(n_{1}\right)=\frac{\tilde{Y}_{i}\left(n_{1}-1\right)}{\tilde{Y}_{i}\left(n_{1}\right)} v_{i 1} s_{i 1}=\frac{\mu_{i}\left(n_{1}\right) \cdot \alpha_{i}\left(n_{1}-1\right)}{\alpha_{i}\left(n_{1}\right)} \\
\hline
\end{gathered}
$$

where:

$$
\alpha_{i}\left(n_{1}\right)=\sum_{n_{0}=0}^{\infty} \frac{\left(n_{0}+n_{1}\right)!}{n_{0}!n_{1}!} \frac{\left(\lambda v_{i 0} s_{i 0}\right)^{n_{0}}}{\prod_{k=n_{1}+1}^{n_{1}+n_{0}} \mu_{i}(k)}
$$

Mixed Queuing Networks - 4

- For single server nodes:

$$
\alpha_{i}\left(n_{1}\right)=\sum_{n_{0}=0}^{\infty} \frac{\left(n_{0}+n_{1}\right)!}{n_{0}!n_{1}!} \rho_{i}^{n_{0}}
$$

$$
\rho_{i}=\frac{\lambda v_{i 0} s_{i 0}}{\mu_{i}} \Leftarrow \text { due to open classes only }
$$

$$
n_{1}=0 \quad \Rightarrow \quad \alpha_{i}(0)=\frac{1}{1-\rho_{i}}
$$

$$
n_{1}=1 \quad \Rightarrow \quad \alpha_{i}(1)=\frac{1}{\left(1-\rho_{i}\right)^{2}} \text { etc. }
$$

$$
\text { so, } \quad \alpha_{i}\left(n_{1}\right)=\frac{1}{\left(1-\rho_{i}\right)^{n_{n+1}}}
$$

- So, $\mu_{e q i}(k)=\frac{\mu_{i} \alpha_{i}(k-1)}{\alpha_{i}(k)}=\left(1-\rho_{i}\right) \mu_{i}$
\rightarrow Open class has a localized effect of changing the service rate of a node.

Mixed Queuing Networks - 5

- Infinite server node:

$$
\alpha_{i}\left(n_{i}\right)=\sum_{n_{0}=0}^{\infty} \frac{\rho_{i}^{n_{0}}}{n_{0}!}=e^{\rho_{i}}
$$

$$
\Rightarrow \quad \mu_{e q}\left(n_{i}\right)=\mu\left(n_{i}\right) \text { as we should expect!! }
$$

- State-dependent node:
- For $n_{1} \geq m_{i}, \alpha_{i}\left(n_{1}\right)=\frac{1}{\left[1-\rho_{i}\left(m_{i}\right)\right]^{n_{1}+1}} \quad \Rightarrow \mu_{e q i}\left(n_{1}\right)=\left[1-\rho_{i}\left(m_{i}\right)\right] \mu_{i}\left(m_{i}\right)$
- For $0 \leq n_{1} \leq m_{i}-1$, slightly more complex

$$
\begin{aligned}
\alpha_{i}\left(n_{1}\right) & =\sum_{n_{0}=0}^{\infty} \frac{\left(n_{0}+n_{1}\right)!}{n_{0}!n_{1}!} \frac{\left(\lambda v_{i 0} s_{i 0}\right)^{n_{0}}}{\prod_{k=n_{1}+1}^{n_{1}+n_{0}} \mu_{i}(k)} \\
& =\sum_{n_{0}=0}^{m_{i}-n_{1}-1}\binom{n_{0}+n_{1}}{n_{0}}\left[\rho_{i}\left(m_{i}\right)\right]^{n_{0}}\left[\sum_{k=n_{1}+1}^{n_{1}+n_{0}} \frac{\mu_{i}\left(m_{i}\right)}{\mu_{i}(k)}-1\right]+\frac{1}{\left[1-\rho_{i}\left(m_{i}\right)\right]^{n_{1}+1}}
\end{aligned}
$$

Mixed Queuing Networks - 6

- So,

$$
\mu_{e q i}\left(n_{1}\right)=\mu_{i}\left(n_{1}\right)\left[1-\rho_{i}\left(m_{i}\right)\right]\left[\frac{1+\Phi\left(n_{1}-1\right) \cdot\left[1-\rho_{i}\left(m_{i}\right)\right]^{n_{1}}}{1+\Phi\left(n_{1}\right) \cdot\left[1-\rho_{i}\left(m_{i}\right)\right]^{n_{1}+1}}\right]
$$

where

$$
\Phi\left(n_{1}\right)=\sum_{n_{0}=0}^{m_{i}^{m-n-1}}\binom{n_{0}+n_{1}}{n_{0}}\left[\rho_{i}\left(m_{i}\right)\right]^{n_{0}}\left[\prod_{k=n_{i}+1}^{n_{1}+n_{i}} \frac{\rho_{i}\left(m_{i}\right)}{\rho_{i}(k)}-1\right]
$$

- So, to solve for performance measures of a mixed network
- Compute ρ_{i} due to open classes
- Compute effective service rates for closed classes
- Solve closed queuing network via MVA for closed network statistics

Mixed Queuing Networks - 7

- Compute statistics of open classes
- Statistics of open classes:

$$
\begin{aligned}
p_{i}\left(n_{0} \mid N\right) & =\sum_{n_{1}=0}^{N} p_{i}\left(n_{0}, n_{1} \mid N\right) \\
& =\sum_{n_{1}=0}^{N} \frac{\left(n_{1}+n_{0}\right)!}{n_{1}!n_{0}!} \frac{\left(\lambda v_{i 0} s_{0}\right)^{n_{0}}\left(v_{i \mid} s_{i 1}\right)^{n_{1}}}{\prod_{k=1}^{n_{i n}+n_{0}} \mu_{i}(k)} \frac{G_{M-i j}\left(N-n_{1}\right)}{G_{M}(N)}
\end{aligned}
$$

$$
\begin{aligned}
Q_{i}^{o p}(N)= & \sum_{n_{0}=1}^{\infty} p_{i}\left(n_{0} \mid N\right) n_{0} \\
& =\sum_{n_{0}=1}^{\infty} \sum_{n_{1}=0}^{N}\left(n_{1}+n_{0}\right) \frac{\lambda v_{i 0} s_{i 0}}{\mu_{i}\left(n_{1}+n_{0}\right)} p_{i}\left(n_{0}-1, n_{1} \mid N\right)
\end{aligned}
$$

- Infinite-server node:

$$
Q_{i}^{o P}(N)=\frac{\lambda v_{i 0} s_{i 0}}{\mu_{i}}=\rho_{i}
$$

- Single-server node:

$$
\begin{aligned}
& Q_{i}^{o p}(N)=\rho_{i}\left[Q_{i}^{C L}(N)+1+Q_{i}^{o P}(N)\right] \\
& \Rightarrow Q_{i}^{o p}(N)=\frac{\rho_{i}}{1-\rho_{i}}\left[1+Q_{i}^{C L}(N)\right]
\end{aligned}
$$

Mixed Queuing Networks - 8

- State-dependent node

$$
\begin{aligned}
Q_{i}^{O P}(N)= & \sum_{n_{0}=0}^{\infty} n_{0} p_{i}\left(n_{0} \mid N\right)=\sum_{n_{0}=1}^{\infty} \sum_{n_{1}=0}^{N} n_{0} p_{i}\left(n_{0}, n_{1} \mid N\right) \\
& =\sum_{n_{1}=0}^{N} \sum_{n_{0}=1}^{\infty} \frac{\left(n_{1}+n_{0}\right)!}{\left(n_{0}-1\right)!n_{1}!} \frac{\left(\lambda v_{i 0} s_{i 0}\right)^{n_{0}}}{\prod_{k=1}^{n_{0}+n_{1}} \mu_{i}(k)}\left(v_{i 1} s_{i 1}\right)^{n_{1}} \frac{G_{M-(i\}}\left(N-n_{1}\right)}{G_{M}(N)} \\
& =\lambda v_{i 0} s_{i 0} \sum_{n_{1}=0}^{N}\left(n_{1}+1\right) \sum_{n_{0}=0}^{\infty} \frac{\left(n_{1}+n_{0}+1\right)!}{n_{0}!\left(n_{1}+1\right)!} \frac{\left(\lambda v_{i 0} s_{i 0}\right)^{n_{0}}}{\prod_{k=1}^{n_{0}+n_{n}+1} \mu_{i}(k)}\left(v_{i 1} s_{i 1}\right)^{n_{1}} \frac{G_{M-(i)}\left(N-n_{1}\right)}{G_{M}(N)}
\end{aligned}
$$

using

$$
\tilde{Y}_{i}\left(n_{1}\right) v_{i 1} s_{i 1}=\tilde{Y}_{i}\left(n_{1}+1\right) \mu_{e q i}\left(n_{1}+1\right) \Rightarrow \frac{\tilde{Y}_{i}\left(n_{1}+1\right)}{v_{i 1} s_{i 1}}=\frac{\tilde{Y}_{i}\left(n_{1}\right)}{\mu_{e q i}\left(n_{1}+1\right)}
$$

Mixed Queuing Networks - 9

$$
\begin{aligned}
& Q_{i}^{o P}(N)=\lambda v_{i 0} s_{i 0} \sum_{m_{1}=0}^{N} \frac{n_{1}+1}{\mu_{e q i}\left(n_{1}+1\right)} p_{i}^{C L}\left(n_{1} \mid N\right) \\
& =\lambda v_{i 0} s_{i 0} \sum_{k=1}^{N+1} \frac{k}{\mu_{e q i}(k)} p_{i}^{C L}(k-1 \mid N) \\
& =\frac{\lambda v_{i 0} s_{i 0}}{\mu_{e q i}\left(m_{i}\right)} \sum_{k=1}^{N+1} \frac{(k-1+1) \mu_{e q i}\left(m_{i}\right)}{\mu_{e q i}(k)} p_{i}^{C L}(k-1 \mid N) \\
& =\frac{\rho_{i}\left(m_{i}\right)}{1-\rho_{i}\left(m_{i}\right)}\left\{\sum_{k=1}^{m_{i-1}}\left[\frac{\mu_{e q i}\left(m_{i}\right)}{\mu_{e q i}(k)}-1\right] k p_{i}^{C L}(k-1 \mid N)+Q_{i}^{C L}(N)+1\right\} \\
& =\frac{\rho_{i}\left(m_{i}\right)}{1-\rho_{i}\left(m_{i}\right)}\left[1+\gamma_{i}^{\text {mied }}+Q_{i}^{C L}(N)\right]
\end{aligned}
$$

$$
p_{i}^{C L}\left(n_{1} \mid N\right)=\frac{\tilde{Y}_{i}\left(n_{1}\right) G_{M-i j\}}\left(N-n_{1}\right)}{G_{M}(N)}
$$

where

$$
\gamma_{i}^{\text {mixed }}=\sum_{k=1}^{m_{i}-1} k\left[\frac{\mu_{e q i}\left(m_{i}\right)}{\mu_{e q i}(k)}-1\right] p_{i}^{C L}(k-1 \mid N)
$$

Note the similarity to open \& closed network measures.

Summary

\square Multi-class Closed Queuing Networks
\square Recursive and Approximation Algorithms
Open and Mixed Networks

> Reference: Lavenberg's Handbook

