Lecture 9

Prof. Krishna R. Pattipati
Dept. of Electrical and Computer Engineering University of Connecticut
Contact: krishna@engr.uconn.edu (860) 486-2890

EE 336
Stochastic Models for the Analysis of Computer Systems and Communication Networks

Outline of Lecture 9

- Aggregation and Disaggregation Methods
\square Hierarchical Queuing Networks
[Product-form Equivalents of Non-product-form Networks
- M|G|1 Queue
- Application to ARQ Protocol Analysis

Why Aggregation?

System characteristics that suggest aggregation:

- Models which represent systems very realistically often don't have exact analytical solution (e.g., product form)

Q1: Suppose we solve from performance estimates using a less realistic model. Are there any significant differences between the output of realistic model and less realistic model ?

Q2: What is the error introduced? ... active research area.

- Multiple resource holding or simultaneous resource possession:
- A customer (or a job) holds more than one resource at the same time that is, the customer is in more than one queue at the same time

Why Aggregation?

- Need memory before being processed by CPU \& I/O devices
- CPU \& I/O are active resources and memory is a passive resource
- Active resources have service time distribution associated with them, passive resources have no such characteristics.
- Does not satisfy product form
- Can model it as a Markov chain. The number of states explode.

For example, if $N=50$, \# of memory partitions=12, and four disks, \# of states=75,348 \Rightarrow Need to solve $\underline{p}=P^{T} \underline{p}$ where P is $75,348 \times 75,348$ matrix

Copyright ©2004 by K. Pattipati

Solution Approach - 1

- Solution Approach:
(1) Replace CPU- I/O subsystem by a flow equivalent node (FEN) using MVA. If N_{M} is the number of memory partitions and each job requires one memory partition, we have:

$$
\mu_{F}(n)=\left\{\begin{array}{l}
\mu_{F}(n), \mathrm{n}=1,2, \ldots, \mathrm{~N}_{\mathrm{m}} \\
\mu_{F}\left(N_{m}\right), n=N_{m}+1, \ldots, \mathrm{~N}
\end{array}\right.
$$

(2) Solve simple network with one infinite server and one state-dependent node

Solution Approach - 2

(3) Disaggregate to obtain measures at CPU and Disks. How? Why does this DECOMPOSITION work? Norton's theorem, Decomposition (aggregation) theorem.

$\mathrm{p}_{\mathrm{i}}(\mathrm{k} \mid \mathrm{N}) \sim \mathrm{k}$ at node i and $\mathrm{N}-\mathrm{k}$ at all node other than i

Know $p_{i}(k / n)=\frac{G_{M-(i)}(N-k) Y_{i}(k)}{G_{M}(N)}$
Since $\mathrm{G}_{\mathrm{M}}(\mathrm{N})=\sum_{\mathrm{k}=0}^{\mathrm{N}} \mathrm{G}_{\mathrm{M}-(\mathrm{ij}}(\mathrm{N}-\mathrm{k}) \mathrm{Y}_{\mathrm{i}}(\mathrm{k})$
For product-form networks, decomposition is exact.
But, also works "good" for non-product-form networks
$\mathrm{G}_{\mathrm{M}-\mathrm{i})}(\mathrm{N}-\mathrm{k})$ can be considered as the capacity function of flow of equivalent node
$\mathrm{Y}_{\mathrm{FE}}^{\mathrm{i}}(\mathrm{N}-\mathrm{k})$ as far as the analysis of subsystem i is concerned
Why $\mu_{\mathrm{FE}}(\mathrm{n})$?

$$
\begin{aligned}
& \mathrm{Y}_{\mathrm{FE}}^{\mathrm{i}}(\mathrm{n})= \frac{\left(\mathrm{v}_{\mathrm{i}} \mathrm{~s}_{\mathrm{i}}\right)^{\mathrm{n}}}{\prod_{\mathrm{i}=1}^{\mathrm{n}} \mu_{F E}(l)} \\
& \mathrm{v}_{\mathrm{i}}=1, \mathrm{~s}_{\mathrm{i}}=1, \mu_{F E}(n)=\frac{\mathrm{Y}_{\mathrm{FE}}^{\mathrm{i}}(\mathrm{n}-1)}{\mathrm{Y}_{\mathrm{FE}}^{\mathrm{i}}(\mathrm{n})}=\frac{\mathrm{G}_{\mathrm{M}-[i]}(\mathrm{n}-1)}{\mathrm{G}_{\mathrm{M}-[\mathrm{ij}}(\mathrm{n})}=\mathrm{X}^{\mathrm{i}}(n) \quad \begin{array}{l}
\text { Throughput of subnetwork } \\
\text { with node } i \text { removed }
\end{array}
\end{aligned}
$$

Illustrative Example 1-1

E Simultaneous Resource Possession

$$
\begin{aligned}
& \mathrm{v}_{0}=\left(\mathrm{v}_{2}+\mathrm{v}_{3}\right) 0.1=1 \Rightarrow \mathrm{v}_{2}+\mathrm{v}_{3}=10 \\
& \mathrm{v}_{1}=0.9\left(\mathrm{v}_{2}+\mathrm{v}_{3}\right)+\mathrm{v}_{0} \Rightarrow \mathrm{v}_{1}=10 \\
& \mathrm{v}_{2}=\mathrm{v}_{3}=0.5 \mathrm{v}_{1} \Rightarrow \mathrm{v}_{2}=\mathrm{v}_{3}=5
\end{aligned}
$$

Illustrative Example 1-2

1) Solve CPU-I/O subsystem for populations $n=1,2,3,4$

$$
\begin{aligned}
& \mu_{F}(1)=0.909 \\
& \mu_{F}(2)=1.341 \\
& \mu_{F}(3)=1.583 \\
& \mu_{F}(4)=1.729 \\
& \mu_{F}(n)=1.729, \quad \mathrm{n} \geq 4 \\
& \hline
\end{aligned}
$$

2) Solve the smaller network

Throughput $\mathrm{X}(10)=1.65$

$$
\mathrm{Q}_{0}=4.23, \mathrm{Q}_{\mathrm{FEN}}=5.77,
$$

$$
\mathrm{R}_{0}=3, \quad \mathrm{R}_{\mathrm{FEN}}=3.58 \mathrm{sec}
$$

Illustrative Example 1-3

- Suppose we want performance measures at CPU and disk also.
\Rightarrow Need to disaggregate!!!

3) Disaggregation: node $i \in$ subnetwork used to get FEN

$$
\begin{aligned}
& p_{i}(k / N)=\sum_{q=k}^{\min \left(N_{n}, N\right)} p_{F E}(q / N) \cdot p_{i}^{(s)}(k / q) \quad \mathrm{k}=0,1,2, \ldots, \mathrm{~N}_{\mathrm{m}} \\
& p_{i}^{(s)}(k / q)=\text { prob. of } \mathrm{k} \text { customers at node } i \text { given } q \text { customers in the subnetwork } \mathrm{s} \\
& Q_{i}(N)=\sum_{k=1}^{\min \left(N_{n}, N\right)} k p_{i}(k / N)
\end{aligned}
$$

We can extend this idea to any number of subnetworks

Illustrative Example 2-1

Example: CDC 6600 series computer

- Solve disk subsystem $\mu_{F E}^{D}(1) \ldots \ldots \mu_{F E}^{D}\left(N_{p}\right)$
- Solve CPU-FEN ${ }^{\text {D }}$ subsystem to obtain FEN C

$$
\mu_{F E}^{c}(1) \ldots \ldots \mu_{F E}^{c}\left(N_{m}\right)
$$

- Solve Terminal-FEN ${ }^{\mathrm{C}}$ subsystem
- Disaggregate hierarchically

Multi-level Networks -1

E Multi-level networks

- Depth first node decomposition
- Aggregate
- Disaggregate

Another reason why decomposition works?
"Interactions within a subnetwork are much more frequent than interactions between subnetworks"...weakly-coupled subnetworks

Example: Transitions between CPU-I/O subsystems are much more frequent than transitions from CPU-I/O to terminals

Multi-level Networks -2

- Open problem:
- Error involved in aggregation as a function of coupling \exists vast literature on singular perturbation theory in control theory. See. Courtois, CACM, 18, 1975, pp. 371-377
"Decomposability: Queuing and Computer Systems Applications," Academic Press, 1977
- The aggregation technique extends naturally to multi-class networks

$$
\mu_{F j}(\underline{n})=X_{j}(\underline{n})
$$

But computational requirements explode!!
\exists Several approximation schemes, however. See References

Product-form Equivalents - 1

- Product-form equivalent of non-product form networks
"Given a general network Z. Find an equivalent product-from network Z '"

Construct Z^{\prime} ' performance measures for each i^{\prime} in Z^{\prime} are close to those of the corresponding i in Z. We call Z^{\prime}, the product-form approximation to Z.

Product-form Equivalents - 2

Premise: 1. A network with two nodes (one general represented by exponential stages i,e., $\left.f(s)=\sum_{t=1}^{t} \alpha_{e} e^{-7 s_{s}}\right)$ and the other a state-dependent FEN is tractable. Solve via Markov chain techniques. We discussed this in Lecture 5 .
2. If we have $Z \ni$ node 1 does not satisfy product-form and node 2 satisfies product from, then we can construct a Z ' $Э$ node l^{\prime} in Z ' behaves like node l in Z and l ' satisfies product-form requirements

- Procedure: Want Z ' from Z where only one node (node i) does not satisfy product form. Node i ' \ni performance statistics of i in $Z=$ performance statistics of i ' in Z^{\prime}

1) $Y_{F E}(n)=G_{M-\{i j}(n)$ and $\mu_{F E}(n)=X^{(i)}(n)=\frac{Y_{F E}(n-1)}{Y_{F E}(n)}$
2) solve 2 -queue network ($i, F E$) via Markov-chain techniques and get $p_{i}(n \mid N)$
For product from networks, know

$$
p_{i}(n \mid N)=\frac{G_{M-\{i\}}(N-n) Y_{i}(n)}{G_{M}(N)}=\frac{Y_{F E}(N-n) Y_{i}(n)}{G_{M}(N)}
$$

Product-form Equivalents - 3

$$
\begin{aligned}
& \text { Since } \\
& \quad \begin{array}{l}
p_{i^{\prime}}(n \mid N)=p_{i}(n \mid N) \\
\quad \text { of } Z^{\prime} \quad \text { of } Z \\
\quad Y_{i^{\prime}}(n)=\frac{G_{M}(N) p_{i^{\prime}}(n / N)}{Y_{F E}(N-n)}, \quad Y_{i^{\prime}}(0)=1 \\
\text { So, } \mu_{i^{\prime}}(n)=\frac{Y_{i^{\prime}}(n-1)}{Y_{i^{\prime}}(n)}=X^{(i)}(N-n+1) \cdot \frac{p_{i^{\prime}}(n-1 \mid N)}{p_{i^{\prime}}(n \mid N)}
\end{array}
\end{aligned}
$$

- So, if we have one non-product from node, the analysis is exact !!!
- What if two or more nodes do not satisfy product-form requirements?

Suppose 1 and 2 do not satisfy product-form, but (3) does satisfy. Need an iterative procedure

Step 1: Assume that $1 \& 2$ satisfy product-form (3 of course does satisfy)

$$
1^{\prime}=1,2^{\prime}=2,3^{\prime}=3 \Rightarrow \mathrm{Y}_{\mathrm{i}}(\mathrm{n})=\mathrm{Y}_{\mathrm{i}}(\mathrm{n}) \forall \mathrm{i}
$$

Step 2: Solve Z ' by any product-form method
Step 3: To Construct a better approximation 1 '
a) 2' and 3' are aggregated to a create a FEN

$$
\mu_{\mathrm{FE}}(\mathrm{n})=\mathrm{X}^{(1)}(\mathrm{n})
$$

b) Solve original 1 and $F E N$ using Markov chain techniques to obtain $p_{I}(n / N)$
c) Construct new 1 ' that behaves like

$$
\mu_{i^{\prime}}(n)=\frac{p_{1}(n-1 / N)}{p_{1}(n / N)} \cdot X^{(1)}(N-n+1)
$$

Step 4: Construct 2' new 1', 2' and 3' from the new Z^{\prime} Solve Z^{\prime} using MVA
Step 5: Compare new Z^{\prime} with the old Z^{\prime}. If close, stop. Otherwise, continue steps 3 and 4

Product-form Equivalents - 5

- General Algorithm:

1) Start with Z, a network with M nodes
2) Assuming $Z^{\prime}=Z$, solve by product-form method
3) For each i that does not satisfy product-form, do the following

- Aggregate subnetwork M - $\{i\}$ to get $\mu_{F E}(n)=X^{(i)}(n)$
- Solve the two-queue network

(General i and $F E N$)

- Equivalent i ' will have

$$
\mu_{i}(n)=\frac{p_{i}(n-1 / N)}{p_{i}(n / N)} \cdot X_{M-(i)}(N-n+1)
$$

4) Solve Z ' using product-form analysis
5) Compare new Z ' statistics with old Z ' statistics

$$
\begin{array}{|l|}
\max _{i} \frac{\left|Q_{i}^{\text {new }}-Q_{i}^{\text {old }}\right|}{N}>\text { ToL, go to step 3. } \\
\text { Else Stop }
\end{array}
$$

References:

- R.A.Marie, IEEE T - SE, Vol.5, Sept. 1977
- D.Neuse and K.Chandy, Perf.Eval Rev., II, Fall 1982

Solving Two-Node Network -1

- A given service distribution can be approximated arbitrarily closely by a weighted sum of exponential densities Series-parallel stages

Given $f(x)$ or moments of $f(x)$, we can find α_{i}, r_{i} and M to match $f(x)$ closely \Rightarrow parameter estimation problem

Solving Two-Node Network -2

Suppose we want to solve a two node network where node 1 is represented by series parallel stages with $M=2$ and node2 is a statedependent node with service rate function $\mu_{F E}(n)$. The population is $N=2$. Then state-transition rate diagram is as follows

$\mathbf{M}|\mathbf{G}| 1$ Queue - 1

- $\mathrm{M} / \mathrm{G} / 1$ queue

- Poisson arrivals, but general service time distribution
- w/o loss of generality, assume a FCFS service discipline
- X^{i} service time of $\mathrm{i}^{\text {th }}$ arrival
($x^{1}, x^{2}, \ldots \ldots$) are i.i.d. random variables
$\left\{x^{i}\right\}^{s}$ are independent of inter-arrival times τ_{a}
- We will show that the waiting time and response times are functions of mean $\overline{\bar{x}}=\frac{1}{\mu}$ and second moment $E\left(x^{2}\right)=\overline{x^{2}}$. In particular, we show that

Average waiting time $W=\frac{\lambda \overline{X^{2}}}{2(1-\rho)}=\frac{\rho\left[1+C_{x}^{2}\right]}{2 \mu(1-\rho)} ; C_{x}=\frac{\sigma}{\bar{X}}, \quad \rho=\lambda \bar{X} ;$ Pallaczek-Khinchn(P-K) formula

Average Response time $R=W+\bar{X}=\frac{1}{\mu}+\frac{\rho\left[1+C_{x}^{2}\right]}{2 \mu(1-\rho)}$
From Little's Formula

$$
Q_{W}=\frac{\rho^{2}\left[1+C_{x}^{2}\right]}{2(1-\rho)} ; Q=\rho+\frac{\rho^{2}\left[1+C_{x}^{2}\right]}{2(1-\rho)}
$$

Copyright ©2004 by K. Pattipati

Special cases:

$$
\begin{aligned}
& M / M / 1 \Rightarrow C_{x}=1 \Rightarrow W_{E}=\frac{\rho}{\mu(1-\rho)} ; R_{E}=\frac{1}{\mu(1-\rho)} ; Q_{E}=\frac{\rho}{1-\rho} \\
& M / D / 1 \Rightarrow C_{x}=0 \Rightarrow W_{D}=\frac{\rho}{2 \mu(1-\rho)} ; R_{D}=\frac{2-\rho}{2 \mu(1-\rho)}=\frac{\left(1-\frac{\rho}{2}\right)}{\mu(1-\rho)} ; Q_{D}=\frac{\rho\left(1-\frac{\rho}{2}\right)}{(1-\rho)}=Q_{E}-\frac{\rho^{2}}{2(1-\rho)} \\
& \text { Note: 1) } W_{D}=W_{E} / 2 \\
& \text { 2) } W_{D} \leq W \\
& \text { 3) } \rho \text { small } \Rightarrow Q_{E} \sqcup Q_{D} ; \text { For large } \rho(\rho \sqcup 1), Q_{E}=2 Q_{D}
\end{aligned}
$$

- Will provide an intuitive proof of these results. Rigorous proof in Kleinrock, vol. 1, Ch. 5

Let $W^{i}=$ Waiting time in queue of the $i^{\text {th }}$ customer

$$
X^{i}=\text { Service time of } i^{\text {th }} \text { customer }
$$

Ref.: Bertsekas \& Gallagher

$Q_{W}^{i}=$ number of customer found waiting in queue by the $i^{t h}$ customer upon arrival $X_{R}^{i}=$ The residual service time as seen by the $i^{t h}$ customer. By this we mean that if customer j is already being served when i arrives X_{R}^{i} is the remaining service time until customer j 's service time is complete. If no customer is in service, then X_{R}^{i} is zero

$$
\Rightarrow \mathrm{W}^{\mathrm{i}}=\mathrm{X}_{\mathrm{R}}^{\mathrm{i}}+\sum_{j=i-Q_{w}^{i}}^{i-1} X^{j}
$$

Copyright ©2004 by K. Pattipati

M|G|1 Queue - 3

- Taking expectation and noting that X^{i} s are independent by assumption and Q_{w}^{i} and X^{j} are independent \Rightarrow

$$
E\left\{W^{i}\right\}=E\left\{X_{R}^{i}\right\}+\bar{X} E\left\{Q_{w}^{i}\right\}
$$

Take limit as $i \rightarrow \infty \quad \mathrm{~W}=\overline{\mathrm{X}_{\mathrm{R}}}+\mathrm{Q}_{\mathrm{W}} \overline{\mathrm{X}} \Rightarrow \mathrm{W}=\frac{\overline{\mathrm{X}_{\mathrm{R}}}}{1-\rho}$

$\mathbf{M}|\mathbf{G}| 1$ Queue - 4

$$
\begin{aligned}
\overline{X_{R}} & =\frac{1}{t} \int_{0}^{t} X_{R}(\tau) d \tau=\frac{1}{t} \sum_{i=1}^{M(t)} \frac{X_{i}^{2}}{2}=\frac{M(t)}{t} \frac{1}{M(t)}\left[\sum_{i=1}^{M(t)} \frac{X_{i}^{2}}{2}\right] \\
& =\frac{1}{2} \lambda \overline{X^{2}}=\frac{1}{2} \lambda\left(\bar{X}^{2}+\sigma^{2}\right) \\
\therefore W & =\frac{1}{2} \frac{\lambda \overline{X^{2}}}{1-\rho}=\frac{\rho\left(1+C_{X}^{2}\right)}{2(1-\rho)} \bar{X}=\frac{\rho\left(1+C_{X}^{2}\right)}{2 \mu(1-\rho)}
\end{aligned}
$$

Can get this via renewal theory:
$f_{X_{R}}(x)=\left\{\begin{array}{l}\delta(x) \text { w.p. }(1-\rho) \\ \frac{1-F_{X}(x)}{2 \bar{X}} \text { w.p. } \rho\end{array}\right.$
$\Rightarrow L_{X_{n}}(s)=(1-\rho)+\rho \frac{1-L_{X}(s)}{s \bar{X}}$
$\Rightarrow \bar{X}_{R}=-\left.\frac{d L_{X_{R}}(s)}{d s}\right|_{s=0}=\rho \frac{\overline{X^{2}}}{2 \bar{X}}=\frac{\lambda \overline{X^{2}}}{2}$

- Note: 1) W can be ∞ even if $\rho<1$
e.g., $\frac{\sigma}{\bar{X}}=\infty$

2) P-K formula is valid for any queuing discipline, as long as the order of service is independent of service time

If the service discipline does depend on the service time P-K formula does not hold!

$\Rightarrow \mathrm{W}$ is reduced by serving shorter service time customer

Delay Analysis of ARQ System - 1

- Delay analysis of an Automatic Repeat Request (ARQ) system

Packets transmitted

- Packets are transmitted in frames that are one time unit long
- There is a maximum wait for an acknowledgement of $(\mathrm{n}-1)$ frames before a packet is retransmitted.

Delay Analysis of ARQ System - 2

Packet retransmissions are due to:
a) A given packet transmitted in frame i may be rejected at the receiver due to errors, in which case the transmitter will transmit packets in frames $(i+1)(i+2) \ldots(i+n-1)$ and then go back to retransmit the packet in frame $(i+n)$
b) A packet transmitted in frame i might be accepted at the receiver, but the corresponding acknowledgement may not arrive at the transmitter by the time packet $(i+n-1)$ is completed. This can happen due to errors in the return channel, large propagation delays, etc.

> We will assume that retransmissions occur only due to (a). Suppose a packet is rejected at the receiver with probability p

Delay Analysis of ARQ System - 3

- Prob $\{k$ retransmissions following the last transmission of the previous packet $\}$

$=\underbrace{(1-\mathrm{p})}_{$| Success |
| :---: |
| first time |$} \underbrace{\mathrm{p}^{\mathrm{k}}}_{\text {Occurs after k retransmissions }}$

- $\operatorname{Prob}\{\mathrm{X}=1+\mathrm{kn}\}=(1-\mathrm{p}) \mathrm{p}^{\mathrm{k}} \quad \mathrm{k}=0,1,2$
- Like an M/G/1 queue

> As $p \uparrow W \uparrow$ and as $n \uparrow W \uparrow$
> in addition, $\lambda<\frac{1}{1+\frac{n p}{1-p}}$ for stability

Larg er n and $l \arg$ er $p \Rightarrow$ arrival rate should be small

$$
\begin{aligned}
\bar{X} & =\sum_{k=0}^{\infty}(1-p) p^{k}(1+k n) \\
& =(1-p)\left[\frac{1}{(1-p)}+\frac{n p}{(1-p)^{2}}\right]=1+\frac{n p}{(1-p)} \\
\overline{X^{2}} & \left.=\sum_{k=0}^{\infty}(1-p) p^{k}\left(1+2 k n+k^{2} n^{2}\right)=1+\frac{2 n p}{(1-p)}+\frac{n^{2}\left(p+p^{2}\right)}{(1-p)^{2}}\right) \\
W & =\frac{\lambda\left[1+\frac{2 n p}{(1-p)}+\frac{n^{2}\left(p+p^{2}\right)}{(1-p)^{2}}\right]}{2\left[1-\lambda-\frac{n p \lambda}{1-p}\right]} ; R=W+\bar{X} ; Q=\lambda R
\end{aligned}
$$

Summary

- Aggregation and Disaggregation Methods
\square Hierarchical Queuing Networks
[Product-form Equivalents of Non-product-form Networks
- M|G|1 Queue
- Application to ARQ Protocol Analysis

