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Outline of Lecture 9

 Aggregation and Disaggregation Methods

 Hierarchical Queuing Networks

 Product-form Equivalents of Non-product-form Networks

 M|G|1 Queue

 Application to ARQ Protocol Analysis 
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System characteristics that suggest aggregation:

• Models which represent systems very realistically often don’t have

exact analytical solution (e.g., product form)

Q1:  Suppose we solve from performance estimates using a less 

realistic model.  Are there any significant differences between 

the output of realistic model and less realistic model ?

Q2: What is the error introduced? … active research area.

Multiple resource holding or simultaneous resource possession:

• A customer (or a job) holds more than one resource at the same time 

that is, the customer is in more than one queue at the same time

Why Aggregation?
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• Need memory before being processed by CPU & I/O devices

• CPU & I/O are active resources and memory is a passive resource

• Active resources have service time distribution associated with them, passive resources have no such 

characteristics.

• Does not satisfy product form

• Can model it as a Markov chain. The number of states explode.                                                   

For example, if N=50, # of memory partitions=12,  and four disks, # of states=75,348  Need to
 

solve p = p where  is 75,348  75,348 matrix
T

P P 

D1

CPU

D2

1

N

Memory

Release

Memory

Obtain

Memory

Why Aggregation?
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(1) Replace CPU- I/O subsystem by a flow equivalent node (FEN) using  

MVA. If NM is the number of memory partitions and each job requires 

one memory partition, we have:

m( ),  n=1, 2, , N
( ) = 

( ),  1, ,  N

F

F

F m m

n
n

N n N









 

(2) Solve simple network with one infinite server and one state-dependent 

node

1

N

Solution Approach:

{μF(1), μF(2),.., μF(NM)}

SD FEN
μF(n)

n

Solution Approach - 1
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(3) Disaggregate to obtain measures at CPU and Disks. How? Why does 

this DECOMPOSITION work? Norton’s theorem, Decomposition 

(aggregation)  theorem.  

M-{i} i

i

M

N

M M-{i} i

k=0

M-{i) 

i

FE

G (N-k) Y (k)
Know p (k/n) = 

G (N)

Since G (N) = G (N-k) Y (k)

         G (N-k) can be considered as the capacity function of flow of equivalent node  

         Y (N-k) as far as the a



FE

n
i i i
FE n

i=1

i
M-{i} iFE

i i i

FE M-{i}

nalysis of subsystem i is concerned

Why (n) ?

(v s )
                   Y (n) = 

( )

G (n-1)Y (n-1)
v =1,  s =1, ( ) X ( ) 

Y (n) G (n)

FE

FE

l

n n





   



D1

D2

pi (k|N) ~ k at node i 

and N-k at all node 

other than inode i

Throughput of subnetwork 

with node i removed

Solution Approach - 2

For product-form networks, decomposition is exact.  

But, also works “good” for non-product-form networks
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D1

CPU

D2

1

10

0 2 3 2 3

1 2 3 0 1

2 3 1 2 3

v =(v +v ) 0.1 = 1  v + v =10

v = 0.9 (v + v ) + v   v  = 10

v = v = 0.5v   v = v = 5







Memory

3 sec

V0=1

S0=3

μ0=1

S1=1

μ1=10

V1=10

VD2=5

SD2=1

μD2=16.62

VD1=3

SD1=1

μD1=16.67

NM=4

0.1

0.9

0.5

0.5

0.1

0.9

0.5

0.9

0.5

10

2

3

0.1

Illustrative Example 1-1

Terminals CPU

D1

D2

Simultaneous Resource Possession
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1) Solve CPU-I/O subsystem for populations n=1, 2,3, 4

(1) 0.909

(2) 1.341

(3) 1.583

(4) 1.729

( ) 1.729,   n 4

F

F

F

F

F n



















 

2) Solve the smaller network

1

10

FEN

μF(n) Throughput X(10) = 1.65 

Q0= 4.23, QFEN = 5.77, 

R0=3,        RFEN=3.58 sec

Illustrative Example 1-2
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3)  Disaggregation: node i subnetwork used to get FEN

min( , )
( )

m

( )

min( , )

1

( / ) ( / ) ( / )   k=0, 1, 2,..., N

( / )  prob. of k customers at node  given  customers in the subnetwork s 

( ) ( / )

m

m

N N
s

i FE i

q k

s

i

N N

i i

k

p k N p q N p k q

p k q i q

Q N kp k N





 









We can extend this idea to any number of subnetworks

Suppose we want performance measures at CPU and disk also. 

 Need to disaggregate!!!

Illustrative Example 1- 3


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D1

CPU

D2

1

N

Memory

Example: CDC 6600 series computer

PP Pool

• Solve disk subsystem (1) ( )
D D

FE FE p
N 

• Solve CPU-FEND subsystem to obtain FENC

(1) ( )
c c

FE FE m
N 

• Solve Terminal-FENC subsystem

• Disaggregate hierarchically

Terminals
Allocate 

memory

Release  

pp

Release 

memory

Allocate 

pp

Illustrative Example 2- 1

PP: Peripheral Processors
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Multi-level networks 

6 9

5

10 • Depth first node decomposition

• Aggregate

• Disaggregate

Another reason why decomposition works?

“Interactions within a subnetwork are 

much more frequent than interactions 

between subnetworks”…weakly-coupled 

subnetworks 

Example: Transitions between CPU-I/O 

subsystems are much more frequent than 

transitions from CPU-I/O to terminals

432

1

7 8

Multi-level Networks -1
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The aggregation technique extends naturally to multi-class networks



( ) ( )Fj jn X n 

Open problem:

• Error involved in aggregation as a function of coupling   

But computational requirements explode!!      

control theory. See. Courtois, CACM, 18, 1975, pp. 371-377   

“Decomposability: Queuing and Computer Systems         

Applications,” Academic Press, 1977

vast literature on singular perturbation theory in

Several approximation schemes, however.  See References

Multi-level Networks -2
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Product-form equivalent of non-product form networks 

“Given a general network Z. Find an equivalent product-from network Z’ ”

1

2 3

Construct Z’

2’ 3’

1’

Z Z’

the corresponding i in Z. We call Z’, the product-form approximation to Z.

 performance measures for each i’ in Z’ are close to those of

Product-form Equivalents - 1
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Procedure: Want Z’ from Z where only one node (node i) does not satisfy 

 
( )

-

( -1)
    1) ( )  ( ) and ( )  ( )  

( )

    2) solve 2-queue network ( ,  ) via Markov-chain techniques 

        and get ( | )

          For product from networks, know

          

i FE
FE FEM i

FE

i

Y n
Y n G n n X n

Y n

i FE

p n N

  

 
'

'- '
( - ) ( ) ( - ) ( )

      ( | )  
( ) ( )

iM i FE i

i
M M

G N n Y n Y N n Y n
p n N

G N G N
 

Premise:
exponentia1 stages i,e.,

1

( ) i

L
s

i

i

f s e
 



 ) and the other a

state-dependent FEN is tractable. Solve via Markov chain  

techniques.   We discussed this in Lecture 5.

1. A network with two nodes (one general represented by

2. If we have Z node 1 does not satisfy product-form and node 2
satisfies product from, then we can construct a Z’ node 1’ in
Z’ behaves like node 1 in Z and 1’ satisfies product-form 

requirements

performance statistics of i’ in Z’
product form. Node i’performance statistics of i in Z =

Product-form Equivalents - 2



Copyright ©2004 by K. Pattipati 

15

So, if we have one non-product from node, the analysis is exact !!!  

What if two or more nodes do not satisfy product-form requirements?

'

'
' '

( )' '
'

' '

Since

    ( | )  ( | )

       of Z'             of Z

( ) ( / )
    ( )  ,    (0) 1

( - )

( -1) ( -1| )
So, ( )  ( - 1)

( ) ( | )

ii

M i
i i

FE

ii i
i

i i

p n N p n N

G N p n N
Y n Y

Y N n

Y n p n N
n X N n

Y n p n N




 

   

1

2 3 2’ 3’

1’

Z Z’

Product-form Equivalents - 3
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Step 3: To Construct a better approximation 1’

a) 2’ and 3’ are aggregated to a create a FEN
μFE(n) = X (1) (n)

(1)1
'

1

( 1/ )
( ) ( 1)

( / )
i

p n N
n X N n

p n N



   

Step 4: Construct 2’ new 1’, 2’ and 3’ from the new Z’ Solve Z’

using MVA

i' i1'=1,  2'=2, 3'=3   Y (n) =Y (n) i 

Step 1: Assume that 1 & 2 satisfy product-form (3 of course does satisfy)

Step 2: Solve Z’ by any product-form method

Suppose 1 and 2 do not satisfy product-form, but (3) does satisfy.  Need   

an iterative procedure

Step 5: Compare new Z’ with the old Z’. If close, stop. Otherwise, 

continue steps 3 and 4

c) Construct new 1’ that behaves like 

b) Solve original 1 and FEN using Markov chain techniques to

obtain   p1(n/N)

Product-form Equivalents - 4



Copyright ©2004 by K. Pattipati 

17

General Algorithm: 

1) Start with Z, a network with M nodes

2) Assuming Z’=Z, solve by product-form method

3) For each i that does not satisfy product-form, do the following 

' { }

( 1/ )
( ) ( 1)

( / )

i
i M i

i

p n N
n X N n

p n N
 


   

• Aggregate subnetwork M-{i} to get μFE(n)=X(i)(n)

• Solve the two-queue network  

(General i and FEN)

• Equivalent i’ will have

4) Solve Z’ using product-form analysis

5) Compare new Z’ statistics with old Z’ statistics
new old

i i

i

Q -Q
max >ToL , go to step 3.

N

    Else Stop   

Product-form Equivalents - 5

References:

• R.A.Marie, IEEE T - SE, Vol.5, Sept. 1977 

• D.Neuse and K.Chandy, Perf.Eval Rev., II, Fall 1982
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r1μ1

riμi

rMμM

riμi

rMμM

r1μ1
…

…

… rMμM

riμi

r1μ1

1

1

( )
( )

1!

i i ir r xM
i i i i

i

i i

r r e
f x

r

 


 








Given f(x) or moments of f(x), we can find αi, ri and M to match 

f(x) closely   parameter estimation problem

αi

α1

αM
21

1

1

2

2 r1

ri

rM

Solving Two-Node Network -1

A given service distribution can be approximated arbitrarily closely by a

weighted sum of exponential densities ….. Series-parallel stages

Recall Coxian 

Representation
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Suppose we want to solve a two node network where node 1 is 

represented by series parallel stages with M=2 and node2 is a state-

dependent node with service rate function μFE(n). The population is 

N=2.  Then state-transition rate diagram is as follows

i= # of cust. at node 1
Where (i, j, k)  j= parallel state

k= # series states left

0

1,2,1

1,1,1 1,1,2 1,1,r1 2,1,1 2,1,2 1,2,r2

1,2,2 1,2,r2 2,2,1 2,2,r2
2,2,2

r1μ1 r1μ1
r1μ1 α1r1μ1

α1r1μ1
α1r2μ2

r2μ2

r2μ2

r2μ2
α2r2μ2

μFE(2)α2

μFE(2)α1

μFE(1)
μFE(1)

μFE(1)

Solving Two-Node Network -2
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M/G/1 queue

• Poisson arrivals, but general service time distribution

(x1, x2, ……) are i.i.d. random variables

{ xi }s are independent of inter-arrival times τa

We will show that the waiting time and response times are functions of
1

X




___
22

2

[1 ]
Average waiting time ; ,      ;  Pallaczek-Khinchn(P-K) formula

2(1 ) 2 (1 )

                   

[1 ]1
Average Response time    

2 (1 )

From Little's Formula

            

x
x

x

CX
W C X

X

C
R W X

 
 

  



  


   

 


   



2 2 2 2[1 ] [1 ]
       ;      

2(1 ) 2(1 )

x x
W

C C
Q Q

 


 

 
  

 

λ

General Service Time

• w/o loss of generality, assume a FCFS service discipline

• Xi service time of ith arrival

In particular, we show thatand second moment 2 2( ) .E x xmean

M|G|1 Queue - 1

Server
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Special cases:

2

1
/ /1   1  = ; = ;  =

(1- ) (1- ) 1-

(1 ) (1 )
2 2 2/ /1   0   ;  ;  = -     

2 (1- ) 2 (1- ) (1- ) (1- ) 2(1- )

                                 Note: 1)   / 2

          

x E E E

x D D D E

D E

M M C W R Q

M D C W R Q Q

W W

 

    

 


  

       

  

 


      



                                 2)   

                                           3)  small ; For large ( 1),  2

D

E D E D

W W

Q Q Q Q  



 

Let   = Waiting time in queue of the  customer

         = Service time of  customer

         number of customer found waiting in queue by the  customer upon arrival

         The resi

i th

i th

i th

W

i

R

W i

X i

Q i

X



 dual service time as seen by the  customer.  By this we mean 

                   that if customer  is already being served when  arrives is the remaining 

                   service time until c

th

i

R

i

j i X

ustomer 's service time is complete.  If no customer is in 

                   service , then  is zeroi

R

j

X

Will provide an intuitive proof of these results. Rigorous proof in Kleinrock, vol. 1,  Ch.5

1
i i

R W  = X
i
W

i
j

j i Q

X


 

  

i

Rx

e

jt d

jt

Customer j

enters service

i arrives Customer j 

leaves service

M|G|1 Queue - 2

Ref.: Bertsekas & Gallagher
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Taking expectation and noting that Xis are independent by assumption

and
i

W
Q

         i i i

R WE W E X X E Q 

R
R W

X
W=X +Q X  W = 

1 




and Xj are independent  

Take limit as i → ∞

Note: For M/M/1,       
1

RX X W X





   


1

1

1

1

1

1

1

11

1

( )RX 

X 1 t

M|G|1 Queue - 3

M(t) = # of service completions

X 2

X M(t)
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2 2( ) ( )

0
1 1

22 2

2 22

1 1 ( ) 1
 ( ) [ ]

2 ( ) 2

1 1
      ( )

2 2

(1 ) (1 )1
  

2 1 2(1 ) 2 (1 )

M t M t
t

i i
R R

i i

X X

X XM t
X X d

t t t M t

X X

C CX
W X

 

  

 

   

 

  

  

 
   

  

 

X


 Note: 1) W can be ∞ even if ρ<1 e.g.,

2) P-K formula is valid for any queuing discipline, as long as the 

order of service is independent of service time 

0

10 2
W=5

2 10
W=1

 W is reduced by serving shorter service time customer

If the service discipline does depend on the service time P-K formula does not hold!

M|G|1 Queue - 4

Can get this via renewal theory:

2 2

0

( ) . . (1 )

( ) 1 ( )
. .

2

1 ( )
( ) (1 )

( )
|

2 2

R

R

R

X X

X

X

X

R s

x w p

f x F x
w p

X

L s
L s

sX

dL s X X
X

ds X

 



 









  



   

    
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Delay analysis of an Automatic Repeat Request (ARQ) system 

1 n+1 n+3 421n2 …432

Eff service time of packet1 Eff service time of packet2 Eff service time of packet4

Error
Correct

Error
ErrorError

Packets transmitted

• Packets are transmitted in frames that are one time unit long

• There is a maximum wait for an acknowledgement of (n-1) frames 

before a packet is retransmitted.

Delay Analysis of ARQ System - 1

Final 

transmission 

of packet 1
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Packet retransmissions are due to:

a)  A given packet transmitted in frame i may be rejected at the   

receiver due to errors, in which case the transmitter will transmit 

packets in frames (i+1) (i+2)…(i+n-1) and then go back to 

retransmit the packet in frame (i+n)       

b) A packet transmitted in frame i might be accepted at the receiver, but

the corresponding acknowledgement may not arrive at the transmitter

by the time packet (i+n-1) is completed.  This can happen due to 

errors in the return channel, large propagation delays, etc.

Delay Analysis of ARQ System - 2

We will assume that retransmissions occur only due to (a). 

Suppose a packet is rejected at the receiver with probability p

λ

transmitter

Delay

n-1

1-p

p
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Prob { k retransmissions following the last transmission of the previous packet} 

= (1-p)       pk

Prob { X= 1+kn } = (1-p) pk   k=0, 1, 2

Like an M/G/1 queue

0

2

2 2
2 2 2

2
0

2 2

2

(1- ) (1 )

1
     (1- ) 1

(1- ) (1- ) (1- )

2 ( )
(1- ) (1 2 ) 1

(1- ) (1- )

2 ( )
1

(1- ) (1- )
 ;  ;

2 1- -
1-

k

k

k

k

X p p kn

np np
p

p p p

np n p p
X p p kn k n

p p

np n p p

p p
W R W X Q R

np

p
















 

 
    

 


     

 
  

 
   

 
 
 





      

1
 ,    

1
1-

arg   and arg       

As p W and as n W

in addition for stability
np

p

L er n l er p arrival rate should be small



   







Occurs after k retransmissionsSuccess 

first time

Delay Analysis of ARQ System - 3
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Summary

 Aggregation and Disaggregation Methods

 Hierarchical Queuing Networks

 Product-form Equivalents of Non-product-form Networks

 M|G|1 Queue

 Application to ARQ Protocol Analysis 


