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Lecture 1: Introduction, Necessary and Sufficient
Conditions for Minima & Convex Analysis
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.
ew < Contact Information
:  Room number: ITE 350
 Tel/Fax: (860) 486-2890/5585
» E-mail: krishna@engr.uconn.edu
 Office Hours: Tuesday — Thursday: 11:00-12:00 Noon
d Mission or goal
 Provide systems analysis with central concepts of widely
used optimization techniques
 Requires skills from both Mathematics and CS 1
* Need a strong background in multivariable calculus and |5 3
linear algebra a s
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(l Ouitline of Lecture 1 |

Three Recurrent Themes

*  Problem, Algorithms, Convergence Analysis
Optimization Applications

What is an Optimization Problem?
Classification of Optimization Problems

Three Basic Questions of Optimization
e  Optimality conditions, algorithm, convergence

Optimality Conditions for single variable and Multi-

variable Functions

kL
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Elementary Convexity Theory
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Three Recurrent Themes
—

Algorithmic
Techniques

O Need to mathematically understand the
optimization problem to be solved

O Design an algorithm to solve the problem, ECEQA

that is, a step-by-step procedure for
. Computational
solving the problem e

Optimization

OptimizQ\

Problem

(Application-
specific)

Convergb\

Analysis }
(Complexity) //

O Convergence Analysis
» How fast does the algorithm converge?
» What is the relationship between rate of
convergence and the size of the
problem?

I
f

[
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Applications of Optimization

d Sample Applications
«  Scheduling in Manufacturing systems

FFF oL L

« Scheduling of police patrol officers in a city

« Reducing fuel costs in Electric power industry (unit commitment)

« Gasoline blending in TEXACO

«  Scheduling trucks at North American Van Lines

«  Advertisement to meet certain % of each income group

« Investment portfolio to maximize expected returns, subject to
constrains on risk

(1 Technical Areas

« Operations Research, Systems theory (Optimal Control),
Statistics (Design of Experiments), Computer Science, Chemical

[

and Civil Engineering, Economics, Medicine, Physics, Math,....
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What is an Optimization Problem?

L Three Attributes:
1. A set of independent variables or parameters (X1 Xy yeees xn)

% X e R" continuous
X
X = :2 nvector xeZ" (..,-2,-10,12,...) integers
X, {x|% =0,1} binary

2. Conditions or restrictions on the acceptable values of the variables
— constraints of the optimization problem, Q (e.g..x=0)

3. Asingle measure of goodness, termed the objective (utility) function
or cost function or goal, which depends on X, Xy, X, f Xys Xg e X )

od o

f:R" >R ; iffez 2" >Z a3

z" —(0,1) o

|
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N5 (| Abstract Formulation l

' Abstract Formulation: “Minimize f (x) subjectto X € 2™

Q) = Feasible set, closed and bounded

» Such problems have been investigated at least since 825 A.D. Persian
author Abu Ja'far Muhammad ibn Musa Al-Khwarizmi who wrote the
first book on Mathematics

 Since 1950’s, a hierarchy of optimization problems have emerged under
the general heading ‘“Mathematical Programming”. The solution
approach is algorithmic in nature, i.e., construct a sequence

X, —> X% —>...X , Where X" minimizes f (x)

[
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A classification of Mathematical

o | N A i —
. .
” programming problems
d
'Il "
o Xe R
: Nonlinear programming problems
xeZ’ NLP
(COI’]t ) x e R" Separable
V= Resource allocation
problems —(Discrete) x € Z"
Convex
Programs
Assignment
problems NP —hard
problems
Programming h 14
ECE 6437 AN Researc 13
ECE 6108 (Nocourse yet) 4 4
< 'd
=
|
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Computational Methods in Optimization
ECE 6437

O Unconstrained NLP: Q= R" = no constraints on X
 Steepest descent (gradient) method

« Conjugate gradient method
« Newton, Gauss-Newton methods & variations
* Quasi-Newton (or) variable metric methods

O Constrained NLP: €2 defined by
h(x)=0,i=12,..,m<n Equality constraints

0,(x)>0,i=12,..., p Inequality constraints

X <x <x*,i=12,...,n Simple bound constraints

Penalty methods

« Multiplier or Augmented Lagrangian methods 4’3

« Reduced gradient method j :
 Recursive guadratic programming a

o

L

Copyright ©1991-2009 by K. Pattipati ‘ ‘ ‘ ‘ . ‘



Computational Methods in Optimization:
ECE 6437 (Cont’d

4 Special Case 1: Convex programming problem (CPP)

&
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. Convex cost function with convex constraints
f (X)is convex (defined later).
g:(Xx) is concave (or) —g.(x) is convex.

h(x)linear =Ax=b=)>ax=beR"
i=1

Local minimum = Global minimum

kL
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Linear Programming and Network Flows -

4 R oY
4 ECE 6108
: L Special Casel.l: Linear Programming (LP) Problem
a « f(x)islinear = f(X)=c¢X +C% +...+CX, =¢' X
: * 0;(x) linear —a, x=b;i=12,..., p
e X 20;i=12,..,n; Ax=Db; Aism by n matrix
» A striking feature of this problem is that the number of feasible solutions is
finite: :[n+ pj
N
m+p
« Efficient algorithms exist for this problem
— Revised simplex
— Interior Point algorithms (application of specialized NLP to LP)
* One of the most widely used models in production planning.
O Special cases 1.1.x :
» Network Flows (LP on networks, i.e., graphs with weights)
« Shortest paths e
* Maximum flow problem a'a
« Transportation problem 4 :
o A Oment DrooIer|| L
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Integer Programming

Integer Programming (combinatorial optimization) has hard intractable
problems with exponential computational complexity

» Traveling salesperson problem

« VLSI routing

 Testing

» Multi-processor scheduling to minimize make span

* bin-packing

» Knapsack problem

PSSO L
U

O In ECE 6437, our focus will be on the following problems:
« Unconstrained NLP
» Constrained NLP
« Convex Programming

kL
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oYe Three Basic Questions of Optimization

1. Static Question: How can one determine whether a given point ¥
IS @ minimum — Provides theory, stopping criteria, etc.

2. Dynamic Question: If a given pointX is not a minimum, then how
does one go about finding a solution that [s a minimum? — Algorithm
Xo 2> X =X, >...=>X
3. Convergence Analysis:
* Does the algorithm in 2 converge?
* If so, how fast?

How does X, —>_<*H or H f(x,)— f (>_<*)H behave?
Let us consider the third question first.

O Rate of Convergence Concepts: dd
Suppose have an algorithm that generates a sequence (%} with a stationary limit j :

point x . Define a scalar error function: e, =[x, -x'| .- gn s R 33

o

L
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1 Rate of Convergence:
Here ||x|| is defined as any Holder p-norm defined by:

=[S

i=1

FEF O DL L

n
Typically, ‘ZHfZ‘Xi‘;HZHZ:(X12+X22+---+x§)1/2 [, = max, x|

i=1

You may also define e =| f (x,)— f (f)l

Time complexity: cost per step * number of iterations

In order to investigate the behavior of e,, we compare it to
“standard” sequences. One standard form is to look for

6. = e ask >
r = order of convergence (or) asymptotic rate of convergence

The behavior of e, as a function of k is directly related to computational efficiency

B = convergence ratio or asymptotic error constant

14 Copyright ©1991-2009 by K. Pattipati
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Ne5 (l Rate of Convergence - 2 |

1 linear convergence (Geometric). Converges if <1

r< 2 quadratic (fast) convergence

3 cubic (superfast) convergence

FEF O DL L

If 5 <1, r=1linear = lim X St =fp<1

k—o0 ek

S =1 r=1sublinear :>I|m S =p=1

kK —o0

£ =0, r =1superlinear :>|I(|m St =£=0
—>© e
k

e
r >1superlinear = 0< lim 221 <o

k—o ek
O Examples:

1) e., = e , B <1= binary search, golden section search, gradient method, regula falsi

1 e k d'd
2) e =—= X =~ = B=1=sublinear

)&, o, ki1 lT ey
a0
k+1 1 k k+1 . u G
— | =—|—| e =r=1 f—0ask—> o= superlinear ¥
k\k+1 -
15 Copyright ©1991-2009 by K. Pattipati ‘ ‘ ‘ ‘ . ‘
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' [ Rate of Convergence - 3

O Examples:

4) e =qp", q[/ﬂ% ,q[ﬂ—a  qp""s = linear

_ k pk. k+1 _ k+1 pk+1
5) e2 _ﬂl 182’ e2k+1 ﬁZ e2k+2_ 1 2

lim —2k+2 Corc2 =B = r=landp= «/,6’1,82

k—o0 e

6) e, =a* = e, =€ = r=2 = quadratic (Newton's Method)

7) e..=Me;; 7=1.618 Golden section number
r >1—= superlinear convergence rate
Examples: secant method, quadratic fit (z =1.3)

8) e =a?" —1a>0= linear and ﬁ:%

since (az_(m) —1)(a2_(k+l) +1) — (az_k —1)

e 1 1
lim2L =lim ——— ==
K—o0 e K—o0 14+ a2 (k+1) 2

Most of the methods that we discuss will have

Copyright ©1991-2009 by K. Pattipati
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Static Question: Necessary and Sufficient
Conditions for Minirmum-1

o O
. |
a
a
a Local or relative{
L
W .- Minima
e — weak

e Global )

— strong(strict)

d  Example:
f(x)=x*"-12x +47x* —60x = x(x - 3)(x—4)(x-5)

— weak = several equivalent minima
— strong (strict) = strict local minimum

D_

50
2

3 4| 5 B
global local
minimum minimum

17 Copyright ©1991-2009 by K. Pattipati

f(x)

7z

! N
Strict Weak local Strict X
local minimum minima global minimum

Extends to multivariable
functions readily

[
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Static Question: Necessary and Sufficient

o
. Conditions for Minimum-2
o
: O Definition: x e Q is a local minimum of f (x) over Q if for some §>0, we have
: f(x*)g f (x)vxeQand “5—5’““35 % A N(x'.5)
(or) f (5 ) f(x )VXeQmN(x*,é)
N (X", &) =& —neighbourhood of X’
N(x6)={x: [x-x <5}
X
0 Remark: strict local minimum if f (x")< f(x)¥xeQnN(x",5)\x’
O Definition: x” e Q is weak (strict) global minimum of f (x) over x e
ifF(x7)< f(x)(f(xX)<f(x))vxeQ -
(1 Note:strict global minimum = strict local minimum j :
strict local minimum = strict global minimum except for convex functions |4 :
L
18 Copyright ©1991-2009 by K. Pattipati ‘ ‘ ‘ ‘ . ‘
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Optimality Conditions of Univariate Functions:
Necessary Conditions
O For univariate functions:

e Tangent is horizontal = slope g_f = f'(xX')=0= 1" order condition

x=x"
2

e Curvature up = second derivative >0= 2" order condition

dx?

*
X=X

] Proof: Suppose X is a local minimum. Lety = X + &x. Then, by the mean value theorem
fy)=f (x*+5x)= f(x*)+ f’(x*)5x+% f”(x*+055x)§x2
Suppose f'(x") = 0. Then pick 6x =—zf'(x"); & sufficiently small
. IPRC | T2 s
= f(y)—f(x )=—g[f (x )} +Egz[f (x )] f (x )<O
a contradiction = need f'(x")=0

From the first order condition, we have f (x* +5x) — f (x*)+% f”(x* +a§x)5x2;0 <a<l

L L L L
[

if£7(x")<0= f"(x"+adx) <0 for some small & by continuity

f(x"+06x)< f(x")= acontradiction . f"(x")>0
Copyright ©1991-2009 by K. Pattipati ‘ ‘ ‘ ‘ . ‘



‘ i 7 Optimality Conditions of Univariate Functions:
| Remarks

d For univariate functions: _
1. The proof provides a method of advancing from one x to the next.

Takeastepof —ef'(x) st f(x—ef'(x))< f(x)
Steepest descent or Gradient or Cauchy Method.

FEF O DL L

2. These are only necessary conditions. They are not sufficient.

: —y3- 7 —f — ()]
Example: f (x)=x% f'(0)=f"(0)=0 /(X)X3

Xy

Not a local minimum, such point is called a saddle point or

point of inflection.

L L L L
[

3. Note that first order condition is satisfied by minima, maxima and

saddle point. Such points are refered to as stationary points.

20 Copyright ©1991-2009 by K. Pattipati ‘ ‘ ‘ ‘ . ‘
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Sufficient Conditions of Optimality for a
Univariate Function

&

O For univariate functions:

(i) f'(x)=0
(i) £"(x")>0

e (i)was proven earlier. To show (ii), note that f (x"—&x)>f (x')

FEF O DL L

only if (X" +adx) > 0 wich by continuity implies that f "(X")>0,
e The above results extend directly to multivariable functions, i.e.,
functions of several variables.

2
e Assume i(g)eC2:>ﬂ and ot
OX. OX;0X,

exist and are continuous

Univariate Multivariate

L L L L
[

derivative <> gradient (vector of first order partial derivatives)

second derivative <> Hessian (Matrix of second order partial derivatives

N
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@ Conditions of Optimality for a
Multivariate Function-1

o
o
- |
o
: d  Gradient:
: Cof oA i F (X Xy X+ 6,0y X )= T (X0 X000, X, )
8X1 axi 50 o
of i (X+88) = F(X)
VE(x)=9g(x)=| X, |; -0
a a : Rate of change of f along the x. direction
of (or) slope of the tangent line along x,
| ox, | (or) direction of increase in f at x
Q Example: f(X)=xX,"+X,c08(X)
2 . od o
X" — X, SIN 0
S B i T IO E A +
- 2%, X, +C€0S (X, ) - S
o
: — L
29 Copyright ©1991-2009 by K. Pattipati ‘ ‘ ‘ ‘ . ‘
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Conditions of Optimality for a
Multivariate Function-2

O Hessian:
2
Vi (x)= of = F(x) Hessian = n x n matrix
OX;OX;
2 2
since 8251;(,- = aijaf)(i = F(x) is symmetric = F(x)=F"(x)
n(n+1)
f; = f; [Need only elements
2
9% f &*f
O Example: V2f (x) = ox’°  OX0X, | % co_s(xl) 2x, —sin(x,) _[o 1 3
— o2 f o2 f 2%, —sin(x,) 2X, wry (17
| OX,OX,  OX,0 %=1

(J Example: A quadratic function

f (x)=%§TQ§+QT§+C=%iiqijxixj +Zn:bixi +C
i=1

i=1 j=1

Vi (x)=Qx+b; V*f(x)=Q

[
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Y21 Summary of Conditions of Optimality for a
Multivariate Function-3

d Necessary conditions

1 VE(x)=0 L Vi(x)

2. V*f(x")=0 (PSD) 2. Vi (X

1. A symetric matrix A is PSD iff
X'Ax>0VvxeR"= 4 (A)=0

U U
All principal minors have non-negative All principal minors have positive
determinants determinants

U U

Matrix A can be factored as A= LDL'
d. >0; L unit lower A

A=LDL;d. >0; O(

1 Sufficient conditions

=0

)>0 (PD matrix)

A symetric matrix A is PD iff
X'Ax>0VxeR"A x20=4(A)>0

n3

2. For any symmetric matrix A with 4, > 4, >...> 4, we have

A X'X < x" AX < A, x" x Rayleigh inequality

Copyright ©1991-2009 by K. Pattipati

5 j Computation

* PD: Positive Definite

* PSD: Positive Semi-definite

L L L L
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Proof of Optimality Conditions - 1

d Proof necessity:

From the mean value theorem, we have forany x and y

f(y)=f(x)+VfT (5)(y—1)+3(y—1)T V2 (x+B(y—x))(y-x); 8(0)

Take x =X, y ad where ||d| =1 for any norm (usually 1,2,:0)

X X+

= f (X +ad)=f(x")+aVf’ (f)g+§a2c_lTV2f(§*+ﬂac_l)c_lzg(a)

If x” is @ minimum, the scalar function g («) has minimumat « =0=>g'(0)=0
= g'(0)=Vf'(x")d = f'(x,d) VdeR"

=0 similarly o

=0 since d is arbitrary
OX

i X*

= Vi (5 ) 0= HVf H 0 1% order condition. so, norm will be small near minimum.

For a local minimum, we also need

2
ddg(ZO) ZODQTVZfT(l*)C_lZOV QE RN :)VZf (5*) is PSD
a

Copyright ©1991-2009 by K. Pattipati

L L L L
[



1Y Proof of Optimality Conditions - 2
J - -
a O Sufficiency:
: Suppose V*f (x")>0 = smallest eigenvalue 4, of V*f (x")>0
: f(§*+ac_l): f(g*)+%a2gTV2f(§*+ﬁac_j)g; p<(0,1)
For sufficiently small &, V*f (X" + Bad ) >0 if VZf (x")>0
Let A, be the smallest eigenvalue of V?*f (f +,8ad) Then
x . 1 * 2 . . .
f (5 +ac_l)— f (5 ):EangVZf (5 +,8ag)gl 27/% |d|” ....Recall Rayleigh inequalit
= X is a strict local minimum.
O Note: Strict local maximum if V2 (x")<0 and saddle point if V*f (x")is indefinite.
] Example: f(x,X,)=X%°—6X+X,"+4x,+5
2% —6 X =3 s |20 Strict local minimum
V(% %) = [ZXZ +4} RO (x')= {0 2} >0=> (1t s also global minimum. Why?)
4
d  Example: f (x,X,)=2x%"+2XX, +14% —2XZ + 22X, —8 4
(4 2)2 14 2 5 - 4 27 P20k =—J20 o1
Vf(xl’xz):|: XXy }jx*:{_ }vzf(f):[ } — Indefinite 2%
2% —4X, +22 3 2 —4] = saddle point 4
26 Copyright ©1991-2009 by K. Pattipati ‘ ‘ ‘ ‘ . :



R (I Convex Sets -1 l

O Important because local optimum < global optimum

O Definition: Aset Q e R" convex if for any two points x, x, e Q and V& €(0,1)

FEF O DL L

we have ax +(1-a)x, € Q. In words, Q is convex if for every two
points x, and x,, the line segment joining x, and x, is also in Q.

 Convex  Nonconvex

A convex set Is one
@ whose boundaries do not
bulge inward (or) do not

have indentations.

27 Copyright ©1991-2009 by K. Pattipati ‘ ‘ ‘ ‘ . ‘
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Vo5 (I Convex Sets -2 l

d Examples:

1. A hyperplane a" x = b is convex.

2. Half spaces H, ={§Z§T 2b}

| <

or H = {XZQTX < b} are CONVvex.

3. m ¢ convex. wc, Need not be

LN

[

4. Sum or difference of convex sets is convex.

5. EXxpansions or contraction of convex sets is convex.

6. Empty set is convex (by definition).

Copyright ©1991-2009 by K. Pattipati
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oYe Convex Functions - 1

d Convex Functions

Consider f (x):Q— R; f(x) is a sacalar multivariable function.
f (5) Is a convex function on a convex set Q if for any two points
X and x, € Q2

f (05)_(1 +(1—a)§2)£af (x)+(1-a)f(x)V0<a Sl( )A
f(x
e A convex function bends up
o A line segment (chord, secant) between ,
any two points never lies below the graph | |

e Linear interpolation between any two

points X, and X, overestimates the function X, X X %
f(X)=ax +(1-a)x,

/‘\ vé\ Not convex
Not
ConvexU \74\ o

Concave

—e Concaveif —f (x) IS convex.

Lk L L
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Convex Functions - 2

O Examples:

1. Alinear function is convexf (x)=¢' x

f(a )_(-l—(l—a)xz):agT§1+(1—a)gT§2 =af (gl)+(l—a) f (XZ)

FEF O DL L

2. A quadratic function x' Qx is convex if Q is PSD.
D1 (ax, +(1-a)x,) =’ K Qx, +a(1-a)(XQx, + X,Qx, ) +(1-a)’ KQx,
@ af (x)+(1-a)f(x,)=axQx +(1-a)x,Qx,
@O -@=-a(1-a)| K Q% +1Qx, - X Q%, - X,Qx |
=—a(l-a) (x,-%,) Q(x ~x,)<0iffQisPSD

3. Ingeneral f(zi:aigijszi:aif(gi); Zi:aizl; o, >0

JENSEN'S INEQUALITY  [f[E(X)]< E{f (X)}

[
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O Examples (cont’d):
4. The linear extrapolation at a point underestimates a convex function f ( g)

assume f (x) e C%; f(x,)= f(x)+VF™(x)(x,—x,)

Defines t\ﬁe tangent
plane at x;
1
1
1
*  Proof:

(only if) f (x) is convex = f (ax,+(1-a)x,)<af (x2)+(1—xla) fXQl)

i |G XTI ) ()

a—0 o

V(%) (% = %) < T (%)= (%)
(If) Assume resultis true at x, and x, 3> X, =ax, +(1-a)x,

Convex Functions - 3

FEF O DL L

T
(L-a) F ()2 (L) T () + VI (%0)(xa o) | 1

«d

af(X,)za| f(%)+ VI (%) (X~ Xo)] a

< 'd

o

L
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NT 4 Convex Functions - 4

d  Examples:
5. f(x) convex € C* < V*f(x) isPSD over x € Q(Q = convex)

FEF O DL L

(Only if) f (Zz) = f (51)+V1T (Zl)(ZZ _Zl)+%(52 _Zl)T Ve (Zl +Ol(§2 _51))(52 _Zl)
Vif(x,)=20=V*f(x +a(x,—x)) =0 for sufficiently small &
= f(x,)=f(x)+VFE (x)(x,—x )= f(x) is convex

(1f): Suppose V*f(x,)<0=> canfind N(g*,5)a

(x,=%) V(% +a(x-x))(x,-%)<0 fl
= f(x,)<f(x)+Vf (x)(x,-x,) acontradition
6. Sum of convex functions is convex /
7. The epigraph or the level set Q = {g: f (5) < ,u} ; ~— f;(g):constant:y

is convex for all 22 if f (x) is convex.

Proof: Let x, and x, cQ, = f(x, )< u —— 4
Q,={X:f(x) < uf d'd

and f (x,) < X; a0
f(a§1+(1—a)§2)£af(Zl)+(1—a)f(§2)£,u < 'd
r

ax +(l-a)x, €Q Ny

32 Copyright ©1991-2009 by K. Pattipati ‘ ‘ ‘ ‘ . ‘
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Yes Convex Functions - 5
O Examples:
8. Convex programming problem
min f (x) f (x) convex
st. Ax=b g; (x) concave = —g;, (x) convex
g (x)=0

Q,={x:-g;(x)<0} ={x:g,(x) =0} convex; Q, ={x:f(x)<u} convex
Ax =D intersection of hyperplanes = convex set A

Q=nQ;NnQ, NA convex

9. Local optimum < global optimum ()

global = local is always true!!!

To prove local = global, let X be a local minimum,
but y is a global minimum.

Consider x=aX +(1-a)yeQ
Convexity = f (af +(1_0‘)X) <af (5*)+(1—a) f(y)<f (5*)Va

— X can not be a local minimum, a contradiction.

As a worst case, local minima must be bunched together as shown.

Copyright ©1991-2009 by K. Pattipati

<y

L L L L
[



FEF O DL L

34

(I Convex Functions - 6 l

10. First order necessary condition is also sufficient

f(g)zf( )+Vf( )(_—_) f( )VZER”

11. f(x) is convex iff the scalar function g (&) =f (x+ad) is convex Vx and d.

d Examples:

12. Since near x, V2f(x ( )> 0, we can apply convex analysis locally.

In addition, from Taylor series, for x near x
f( ) f(x)+ VET(x )(x —x) ;(f—g)Tvzf(g)(f—g)

= 1 (8)- VT (x5 X V1 (917 ()X VT (9]
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—c+b"x + % X 'Qx A quadratic approximation near x
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Example:
f(X)=—Inl—x —x,)—-Inx —InX,
RS
1-x - 2 =1
A0 T e PR S N
1 1 X +2X, = 3
1-X =% X |
| 1 1 1
%%y € @xnx)
V2 f(x)= 12 . ’ . >0VQ={x:x >0,x,>0,x +X, <1}
%%  A-4-%) ¥

Strictly Convex
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(I Summary |

Abstract Definition of an Optimization Problem

.

Classification of Optimization Problems
 Three Basic Questions of Optimization
«  Optimality conditions, algorithm, convergence

[ Optimality Conditions for single variable and Multi-
variable Functions

 Elementary Convexity Theory
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