Lecture 1: Introduction, Necessary an Conditions for Minima & Convex	nd Sufficient Analysis
Prof. Krishna R. Pattipati Dept. of Electrical and Computer Eng University of Connecticut Contact: <u>krishna@engr.uconn.edu</u> (860) 486-28	gineering 890
ECE 6437 Computational Methods for Optimization	Fall 2009 September 1, 2009
Copyright ©1991-2009 by K. Pattipati	September 1, 2009

.....

Introduction

- Contact Information
 - Room number: ITE 350
 - Tel/Fax: (860) 486-2890/5585
 - E-mail: krishna@engr.uconn.edu

Giffice Hours: Tuesday – Thursday: 11:00-12:00 Noon

□ Mission or goal

- Provide systems analysis with central concepts of widely used optimization techniques
- Requires skills from both Mathematics and CS
- Need a strong background in multivariable calculus and linear algebra

Outline of Lecture 1

- Three Recurrent Themes
 - Problem, Algorithms, Convergence Analysis
- Optimization Applications
- What is an Optimization Problem?
- **Classification of Optimization Problems**
- **Three Basic Questions of Optimization**
 - Optimality conditions, algorithm, convergence
- Optimality Conditions for single variable and Multivariable Functions
 - Elementary Convexity Theory

Three Recurrent Themes

- Need to mathematically understand the optimization problem to be solved
- Design an algorithm to solve the problem, that is, a step-by-step procedure for solving the problem

Convergence Analysis

- How fast does the algorithm converge?
- What is the relationship between rate of convergence and the size of the problem?

Applications of Optimization

- Sample Applications
 - Scheduling in Manufacturing systems
 - Scheduling of police patrol officers in a city
 - Reducing fuel costs in Electric power industry (unit commitment)
 - Gasoline blending in TEXACO
 - Scheduling trucks at North American Van Lines
 - Advertisement to meet certain % of each income group
 - Investment portfolio to maximize expected returns, subject to constrains on risk
- Technical Areas
 - Operations Research, Systems theory (Optimal Control), Statistics (Design of Experiments), Computer Science, Chemical and Civil Engineering, Economics, Medicine, Physics, Math,....

What is an Optimization Problem?

Three Attributes:

1. A set of independent variables or parameters $(x_1, x_2, ..., x_n)$

 $\underline{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} n \text{ vector } \underline{x} \in R^n \text{ continuous}$ $\frac{\underline{x} \in R^n \text{ continuous}}{\{\underline{x} \mid x_i = 0, 1\} \text{ binary}}$

- 2. Conditions or restrictions on the acceptable values of the variables \Rightarrow constraints of the optimization problem, Ω (e.g., $\underline{x} \ge 0$)
- 3. A single measure of goodness, termed the objective (utility) function or cost function or goal, which depends on $x_1, x_2, ..., x_n$, $f(x_1, x_2, ..., x_n)$ or $f(\underline{x})$ $R^n \to Z$ $f: R^n \to R$; if $f \in Z$ $Z^n \to Z$ $Z^n \to (0,1)$

Abstract Formulation: "Minimize $f(\underline{x})$ subject to $\underline{x} \in \Omega$ "

 Ω = Feasible set, closed and bounded

- Such problems have been investigated at least since 825 A.D. Persian author Abu Ja'far Muhammad ibn Musa Al-Khwarizmi who wrote the first book on Mathematics
- Since 1950's, a hierarchy of optimization problems have emerged under the general heading "Mathematical Programming". The solution approach is algorithmic in nature, i.e., construct a sequence

 $\underline{x}_0 \rightarrow \underline{x}_1 \rightarrow \dots \underline{x}^*$, where \underline{x}^* minimizes $f(\underline{x})$

Computational Methods in Optimization ECE 6437

Unconstrained NLP: $\Omega = R^n \Rightarrow$ no constraints on <u>x</u>

- Steepest descent (gradient) method
- Conjugate gradient method
- Newton, Gauss-Newton methods & variations
- Quasi-Newton (or) variable metric methods

 $\Box \quad Constrained \text{ NLP: } \Omega \quad defined \text{ by}$

 $h_i(\underline{x}) = 0, \ i = 1, 2, ..., m < n$ Equality constraints $g_i(\underline{x}) \ge 0, \ i = 1, 2, ..., p$ Inequality constraints

 $x_i^{LB} \le x_i \le x_i^{UB}$, i = 1, 2, ..., n Simple bound constraints

- Penalty methods
- Multiplier or Augmented Lagrangian methods
- Reduced gradient method
- Recursive quadratic programming

Computational Methods in Optimization: ECE 6437 (Cont'd)

Special Case 1: Convex programming problem (CPP)

- Convex cost function with convex constraints
- $f(\underline{x})$ is convex (defined later).
- $g_i(\underline{x})$ is concave (or) $-g_i(\underline{x})$ is convex.
- $h_i(\underline{x})$ linear $\Rightarrow A \ \underline{x} = \underline{b} \Rightarrow \sum_{i=1}^n \underline{a}_i x_i = \underline{b} \in \mathbb{R}^m$

Local minimum \equiv Global minimum

Linear Programming and Network Flows -ECE 6108

- Special Case1.1: Linear Programming (LP) Problem
 - $f(\underline{x})$ is linear $\Rightarrow f(\underline{x}) = c_1 x_1 + c_2 x_2 + \ldots + c_n x_n = \underline{c}^T \underline{x}$
 - $g_i(\underline{x})$ linear $\Longrightarrow \underline{a}_i^T \underline{x} \ge b_i; i = 1, 2, ..., p$
 - $x_i \ge 0; i = 1, 2, ..., n; A\underline{x} = \underline{b}; A \text{ is } m \text{ by } n \text{ matrix}$
 - A striking feature of this problem is that the number of feasible solutions is finite: $N = \binom{n+p}{m+p}$
 - Efficient algorithms exist for this problem
 - Revised simplex
 - Interior Point algorithms (application of specialized NLP to LP)
 - One of the most widely used models in production planning.

□ Special cases 1.1.x :

- Network Flows (LP on networks, i.e., graphs with weights)
- Shortest paths
- Maximum flow problem
- Transportation problem
- Assignment problem

- Integer Programming (combinatorial optimization) has hard intractable problems with exponential computational complexity
 - Traveling salesperson problem
 - VLSI routing
 - Testing

- Multi-processor scheduling to minimize make span
- bin-packing
- Knapsack problem
-

In ECE 6437, our focus will be on the following problems:

- Unconstrained NLP
- Constrained NLP
- Convex Programming

Three Basic Questions of Optimization

- 1. <u>Static Question</u>: How can one determine whether a given point \underline{x}^* is a minimum \rightarrow Provides theory, stopping criteria, etc.
- 2. <u>Dynamic Question</u>: If a given point \underline{x} is not a minimum, then how does one go about finding a solution that is a minimum? \rightarrow Algorithm $\underline{x}_0 \rightarrow \underline{x}_1 \rightarrow \underline{x}_2 \rightarrow \dots \rightarrow \underline{x}^*$
- 3. <u>Convergence Analysis</u>:
 - Does the algorithm in 2 converge?
 - If so, how fast?

How does $\left\| \underline{x}_k - \underline{x}^* \right\|$ or $\left\| f(\underline{x}_k) - f(\underline{x}^*) \right\|$ behave? Let us consider the third question first.

Rate of Convergence Concepts:

Suppose have an algorithm that generates a sequence $\{x_k\}$ with a stationary limit point \underline{x}^* . Define a scalar error function: $e_k = \|\underline{x}_k - \underline{x}^*\|$ $e: \mathbb{R}^n \to \mathbb{R}$

Rate of Convergence - 1

_ 1/

Rate of Convergence:

Here $\|\underline{x}\|$ is defined as any Holder *p*-norm defined by:

$$\|\underline{x}\|_{p} = \left[\sum_{i=1}^{n} |x_{i}|^{p}\right]^{/p}$$

Typically, $\|\underline{x}\|_{1} = \sum_{i=1}^{n} |x_{i}|; \|\underline{x}\|_{2} = (x_{1}^{2} + x_{2}^{2} + \dots + x_{n}^{2})^{1/2}; \|\underline{x}\|_{\infty} = \max_{i} |x_{i}|$

You may also define $e_k = |f(\underline{x}_k) - f(\underline{x}^*)|$

The behavior of e_k as a function of k is directly related to computational efficiency

Time complexity: cost per step * number of iterations

In order to investigate the behavior of e_k , we compare it to "standard" sequences. One standard form is to look for

 $e_{k+1} \cong \beta e_k^r$ as $k \to \infty$

 $r \triangleq$ order of convergence (or) asymptotic rate of convergence $\beta \triangleq$ convergence ratio or asymptotic error constant

Rate of Convergence - 2

1 linear convergence (Geometric). Converges if $\beta < 1$ 2 quadratic (fast) convergence

→ 3 cubic (superfast) convergence

If
$$\beta < 1$$
, $r = 1$ linear $\Rightarrow \lim_{k \to \infty} \frac{e_{k+1}}{e_k} = \beta < 1$

$$\beta = 1, r = 1$$
 sublinear $\Rightarrow \lim_{k \to \infty} \frac{c_{k+1}}{e_k} = \beta = 1$

$$\beta = 0, r = 1$$
 superlinear $\Rightarrow \lim_{k \to \infty} \frac{e_{k+1}}{e_k} = \beta = 0$
 $r > 1$ superlinear $\Rightarrow 0 \le \lim_{k \to \infty} \frac{e_{k+1}}{e_k} < \infty$

Examples:

1) $e_{k+1} = \beta e_k$, $\beta < 1 \Rightarrow$ binary search, golden section search, gradient method, regula falsi 2) $e_k = \frac{1}{k} \Rightarrow \frac{e_{k+1}}{e_k} = \frac{k}{k+1} \Rightarrow \beta = 1 \Rightarrow$ sublinear 3) $e_k = \left(\frac{1}{k}\right)^k \Rightarrow e_{k+1} = \left(\frac{1}{k+1}\right)^{k+1} = \frac{1}{k} \left(\frac{k}{k+1}\right)^{k+1} e_k \Rightarrow r = 1; \ \beta \to 0 \text{ as } k \to \infty \Rightarrow$ superlinear

Rate of Convergence - 3

Examples:

4) $e_k = q\beta^k$, $q\left(\beta + \frac{1}{k}\right)^k$, $q\left(\beta - \frac{1}{k}\right)^k$, $q\beta^{k+\frac{1}{k}} \Rightarrow \text{linear}$ 5) $e_{2k} = \beta_1^k \beta_2^k; \quad e_{2k+1} = \beta_1^{k+1} \beta_2^k \quad e_{2k+2} = \beta_1^{k+1} \beta_2^{k+1}$ $\lim_{k \to \infty} \frac{e_{2k+2}}{e_{2k}} = \beta_1 \beta_2 \implies r = 1 \text{ and } \beta = \sqrt{\beta_1 \beta_2}$ 6) $e_k = a^{2^k} \implies e_{k+1} = e_k^2 \implies r = 2 \implies$ quadratic (Newton's Method) 7) $e_{k+1} = M e_k^{\tau}$; $\tau = 1.618$ Golden section number $r > 1 \Rightarrow$ superlinear convergence rate **Examples:** secant method, quadratic fit $(\tau = 1.3)$ 8) $e_k = a^{2^{-k}} - 1; a > 0 \Longrightarrow$ linear and $\beta = \frac{1}{2}$ since $(a^{2^{-(k+1)}}-1)(a^{2^{-(k+1)}}+1) = (a^{2^{-k}}-1)$ $\lim_{k \to \infty} \frac{e_{k+1}}{e_{k-1}} = \lim_{k \to \infty} \frac{1}{1 + a^{2^{-(k+1)}}} = \frac{1}{2}$

Most of the methods that we discuss will have $1 \le r \le 2$

<u>Definition</u>: $\underline{x}^* \in \Omega$ is a local minimum of $f(\underline{x})$ over Ω if for some $\delta > 0$, we have

 X_1

<u>**Remark</u>: strict local minimum if f(\underline{x}^*) < f(\underline{x}) \forall \underline{x} \in \Omega \cap N(\underline{x}^*, \delta) \setminus \underline{x}^*</u></u>**

- **Definition**: $\underline{x}^* \in \Omega$ is weak (strict) global minimum of $f(\underline{x})$ over $\underline{x} \in \Omega$ if $f(\underline{x}^*) \le f(\underline{x}) (f(\underline{x}^*) < f(\underline{x})) \forall \underline{x} \in \Omega$
- Note : strict global minimum \Rightarrow strict local minimum strict local minimum \neq strict global minimum except for convex functions

Optimality Conditions of Univariate Functions: Necessary Conditions

- For univariate functions:
- Tangent is horizontal \Rightarrow slope $\frac{df}{dx}\Big|_{x=x^*} = f'(x^*) = 0 \Rightarrow 1^{\text{st}}$ order condition
- Curvature up \Rightarrow second derivative $\left. \frac{d^2 f}{dx^2} \right|_{x=x^*} \ge 0 \Rightarrow 2^{nd}$ order condition

Proof: Suppose x^* is a local minimum. Let $y = x^* + \delta x$. Then, by the mean value theorem

- $f(y) = f(x^* + \delta x) = f(x^*) + f'(x^*)\delta x + \frac{1}{2}f''(x^* + \alpha \delta x)\delta x^2$ Suppose $f'(x^*) \neq 0$. Then pick $\delta x = -\varepsilon f'(x^*)$; ε sufficiently small
- $\Rightarrow f(y) f(x^*) = -\varepsilon \left[f'(x^*) \right]^2 + \frac{1}{2} \varepsilon^2 \left[f'(x^*) \right]^2 f''(x^*) < 0$

a contradiction \Rightarrow need $f'(x^*) = 0$

From the first order condition, we have $f(x^* + \delta x) = f(x^*) + \frac{1}{2} f''(x^* + \alpha \delta x) \delta x^2; 0 < \alpha < 1$ if $f''(x^*) < 0 \Rightarrow f''(x^* + \alpha \delta x) < 0$ for some small α by continuity $f(x^* + \delta x) < f(x^*) \Rightarrow$ a contradiction $\therefore f''(x^*) > 0$

Optimality Conditions of Univariate Functions: Remarks

For univariate functions:

1. The proof provides a method of advancing from one x to the next.

Take a step of
$$-\varepsilon f'(x)$$
 s.t. $f(x - \varepsilon f'(x)) < f(x)$

Steepest descent or Gradient or Cauchy Method.

2. These are only necessary conditions. They are <u>not</u> sufficient. <u>Example</u>: $f(x) = x^3$; f'(0) = f''(0) = 0 f(x) = f''(x) = f''(x) = 0

Not a local minimum, such point is called a <u>saddle point</u> or point of inflection.

3. Note that first order condition is satisfied by minima, maxima and saddle point. Such points are referred to as stationary points.

Copyright ©1991-2009 by K. Pattipati

Sufficient Conditions of Optimality for a Univariate Function

- For univariate functions: (*i*) $f'(x^*) = 0$
- $(ii) f''(x^*) > 0$
 - (*i*) was proven earlier. To show (*ii*), note that $f(x^* \delta x) > f(x^*)$ only if $f''(x^* + \alpha \delta x) > 0$ wich by continuity implies that $f''(x^*) > 0$.
 - The above results extend directly to multivariable functions, i.e., functions of several variables.
 - Assume $f(\underline{x}) \in C^2 \Rightarrow \frac{\partial f}{\partial x_i}$ and $\frac{\partial^2 f}{\partial x_i \partial x_j}$ exist and are continuous

UnivariateMultivariatederivative \leftrightarrow gradient (vector of first order partial derivatives)second derivative \leftrightarrow Hessian (Matrix of second order partial derivatives)

Conditions of Optimality for a Multivariate Function-1

Gradient:

$$\nabla \underline{f}(\underline{x}) = \underline{g}(\underline{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \frac{\partial f}{\partial x_2} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}; \quad \begin{array}{l} \frac{\partial f}{\partial x_i} = \lim_{\delta \to 0} \frac{f(x_1, x_2, \dots, x_i + \delta, \dots, x_n) - f(x_1, x_2, \dots, x_n)}{\delta} \\ = \lim_{\delta \to 0} \frac{f(\underline{x} + \underline{e}_i \delta) - f(\underline{x})}{\delta} \\ \text{Rate of change of } f \text{ along the } x_i \text{ direction} \\ \text{(or) slope of the tangent line along } x_i \\ \text{(or) direction of increase in } f \text{ at } \underline{x} \end{bmatrix}$$

Conditions of Optimality for a Multivariate Function-2

Hessian: $\nabla^2 f(x) = \left| \frac{\partial^2 f}{\partial x \cdot \partial x} \right| = F(\underline{x}) \text{ Hessian } \Rightarrow n \ge n \text{ matrix}$ since $\frac{\partial^2 f}{\partial x_i \partial x_i} = \frac{\partial^2 f}{\partial x_i \partial x_i} \Longrightarrow F(\underline{x})$ is symmetric $\Longrightarrow F(\underline{x}) = F^T(\underline{x})$ $f_{ij} = f_{ji}$ Need only $\frac{n(n+1)}{2}$ elements $\square \text{ Example:} \quad \nabla^2 f(x) = \begin{vmatrix} \frac{\partial^2 f}{\partial x_1^2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \\ \frac{\partial^2 f}{\partial x_1 \partial x_2} & \frac{\partial^2 f}{\partial x_1 \partial x_2} \end{vmatrix} = \begin{bmatrix} -x_2 \cos(x_1) & 2x_2 - \sin(x_1) \\ 2x_2 - \sin(x_1) & 2x_1 \end{vmatrix} \bigg|_{\substack{x_1 = \frac{\pi}{2} \\ x_2 = 1}} = \begin{bmatrix} 0 & 1 \\ 1 & \pi \end{bmatrix} < 0$ **Example:** A quadratic function $f(x) = \frac{1}{2}\underline{x}^{T}Q\underline{x} + \underline{b}^{T}\underline{x} + c = \frac{1}{2}\sum_{i=1}^{n}\sum_{j=1}^{n}q_{ij}x_{i}x_{j} + \sum_{i=1}^{n}b_{i}x_{i} + c$ $\nabla f(x) = Qx + \underline{b}; \quad \nabla^2 f(x) = Q$

Summary of Conditions of Optimality for a Multivariate Function-3

Sufficient conditions

2. $\nabla^2 f(\underline{x}^*) > 0$ (*PD* matrix)

A symetric matrix A is PD iff

 $\underline{x}^{T} A \underline{x} > 0 \quad \forall \underline{x} \in \mathbb{R}^{n} \land \underline{x} \neq \underline{0} \Longrightarrow \lambda_{i}(A) > 0$

All principal minors have positive

1. $\nabla f\left(\underline{x}^*\right) = \underline{0}$

determinants

- Necessary conditions
- 1. $\nabla \underline{f}(\underline{x}^*) = \underline{0}$
- 2. $\nabla^2 f\left(\underline{x}^*\right) \ge 0 (PSD)$
- 1. A symetric matrix *A* is *PSD* iff $\underline{x}^{T} A \underline{x} \ge 0 \quad \forall \underline{x} \in \mathbb{R}^{n} \Longrightarrow \lambda_{i} (A) \ge 0$ \bigcup

All principal minors have non-negative determinants

 \Downarrow

Matrix *A* can be factored as $A = LDL^T$ $d_i \ge 0$; *L* unit lower Δ

2. For any symmetric matrix *A* with $\lambda_1 \ge \lambda_2 \ge ... \ge \lambda_n$, we have $\lambda_n \underline{x}^T \underline{x} \le \underline{x}^T A \underline{x} \le \lambda_1 \underline{x}^T \underline{x}$ Rayleigh inequality • PD: Positive Definite

• PSD: Positive Semi-definite

 $A = LDL^{T}; d_{i} > 0; O\left(\frac{n^{3}}{6}\right)$ Computation $j_{i} \ge ... \ge \lambda_{n}$, we have

Proof of Optimality Conditions - 1

Proof necessity:

From the mean value theorem, we have for any \underline{x} and y

$$f\left(\underline{y}\right) = f\left(\underline{x}\right) + \nabla \underline{f}^{T}\left(\underline{x}\right)\left(\underline{y} - \underline{x}\right) + \frac{1}{2}\left(\underline{y} - \underline{x}\right)^{T} \nabla^{2} f\left(\underline{x} + \beta\left(\underline{y} - \underline{x}\right)\right)\left(\underline{y} - \underline{x}\right); \beta \in (0,1)$$

Take $\underline{x} = \underline{x}^{*}, \ \underline{y} = \underline{x} + \alpha \underline{d}$ where $\|\underline{d}\| = 1$ for any norm (usually 1,2, ∞)
 $\Rightarrow f\left(\underline{x}^{*} + \alpha \underline{d}\right) = f\left(\underline{x}^{*}\right) + \alpha \nabla \underline{f}^{T}\left(\underline{x}^{*}\right) \underline{d} + \frac{1}{2} \alpha^{2} \underline{d}^{T} \nabla^{2} f\left(\underline{x}^{*} + \beta \alpha \underline{d}\right) \underline{d} = g\left(\alpha\right)$
If \underline{x}^{*} is a minimum, the scalar function $g\left(\alpha\right)$ has minimum at $\alpha = 0 \Rightarrow g'(0) = 0$
 $\Rightarrow g'(0) = \nabla \underline{f}^{T}\left(\underline{x}^{*}\right) \underline{d} = f'\left(\underline{x}, \underline{d}\right) \quad \forall \ \underline{d} \in \mathbb{R}^{n}$
Taking $\underline{d} = \underline{e}_{1} \Rightarrow \frac{\partial f}{\partial x_{1}}\Big|_{\underline{x}^{*}} = 0$ similarly $\frac{\partial f}{\partial x_{i}}\Big|_{\underline{x}^{*}} = 0$ since \underline{d} is arbitrary
 $\Rightarrow \nabla f\left(\underline{x}^{*}\right) = \underline{0} \Rightarrow \left\| \nabla f\left(\underline{x}^{*}\right) \right\| = 0 \quad 1^{st}$ order condition. so, norm will be small near minimum.
For a local minimum, we also need
 $\frac{d^{2}g\left(0\right)}{d\alpha^{2}} \ge 0 \Rightarrow \underline{d}^{T} \nabla^{2} f^{T}\left(\underline{x}^{*}\right) \underline{d} \ge 0 \forall \ \underline{d} \in \mathbb{R}^{n} \Rightarrow \nabla^{2} f\left(\underline{x}^{*}\right)$ is PSD

Proof of Optimality Conditions - 2

Sufficiency: Suppose $\nabla^2 f(\underline{x}^*) > 0 \implies$ smallest eigenvalue λ_n of $\nabla^2 f(\underline{x}^*) > 0$ $f\left(\underline{x}^{*}+\alpha\underline{d}\right) = f\left(\underline{x}^{*}\right) + \frac{1}{2}\alpha^{2}\underline{d}^{T}\nabla^{2}f\left(\underline{x}^{*}+\beta\alpha\underline{d}\right)\underline{d}; \ \beta \in (0,1)$ For sufficiently small α , $\nabla^2 f\left(\underline{x}^* + \beta \alpha \underline{d}\right) > 0$ if $\nabla^2 f\left(\underline{x}^*\right) > 0$ Let λ_n be the smallest eigenvalue of $\nabla^2 f(\underline{x}^* + \beta \alpha \underline{d})$. Then $f\left(\underline{x}^{*} + \alpha \underline{d}\right) - f\left(\underline{x}^{*}\right) = \frac{1}{2}\alpha^{2}\underline{d}^{T}\nabla^{2}f\left(\underline{x}^{*} + \beta \alpha \underline{d}\right)\underline{d} \ge \frac{\alpha^{2}}{2}\lambda_{n} \|d\|^{2} \dots \text{Recall Rayleigh inequality}$ $\Rightarrow x^*$ is a strict local minimum. <u>Note</u>: Strict local maximum if $\nabla^2 f(\underline{x}^*) < 0$ and saddle point if $\nabla^2 f(\underline{x}^*)$ is indefinite. Example: $f(x_1, x_2) = x_1^2 - 6x_1 + x_2^2 + 4x_2 + 5$ $\nabla f(x_1, x_2) = \begin{bmatrix} 2x_1 - 6 \\ 2x_1 + 4 \end{bmatrix} \Rightarrow \frac{x_1^* = 3}{x_1^* = -2}; \nabla^2 f(\underline{x}^*) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix} > 0 \Rightarrow \text{Strict local minimum} \text{ (It is also global minimum. Why?)}$ Example: $f(x_1, x_2) = 2x_1^2 + 2x_1x_2 + 14x_1 - 2x_2^2 + 22x_2 - 8$ $\nabla f(x_1, x_2) = \begin{bmatrix} 4x_1 + 2x_2 + 14\\ 2x_1 - 4x_2 + 22 \end{bmatrix} \Rightarrow \underline{x}^* = \begin{bmatrix} -5\\ 3 \end{bmatrix}; \nabla^2 f(\underline{x}^*) = \begin{bmatrix} 4 & 2\\ 2 & -4 \end{bmatrix} \qquad \Rightarrow \text{Indefinite}$

Convex Sets -1

- Important because local optimum ⇔ global optimum
 - **Definition** : A set $\Omega \in \mathbb{R}^n$ convex if for *any* two points $\underline{x}_1, \underline{x}_2 \in \Omega$ and $\forall \alpha \in (0,1)$ we have $\alpha \underline{x}_1 + (1-\alpha) \underline{x}_2 \in \Omega$. In words, Ω is convex if for every two points \underline{x}_1 and \underline{x}_2 , the line segment joining \underline{x}_1 and \underline{x}_2 is also in Ω .
- Convex

• Nonconvex

A convex set is one whose boundaries do not bulge inward (or) do not have indentations.

Convex Sets -2

 x_2

C+D

D

(C/2

С

 $x_1 - x_2 - 1 = 0$

 x_1

2C

- 4. Sum or difference of convex sets is convex.
- 5. Expansions or contraction of convex sets is convex.
- 6. Empty set is convex (by definition).

Convex Functions - 1

f(x)

Concave

 $\alpha f(x_1) + (1-\alpha) f(x_2)$

х

 $f(x) = \alpha x_1 + (1 - \alpha) x_2$

Not convex

Not convex

 x_{2}

r

 X_1

Convex Functions

Consider $f(\underline{x}): \Omega \to R$; $f(\underline{x})$ is a sacalar multivariable function. $f(\underline{x})$ is a convex function on a convex set Ω if for any two points \underline{x}_1 and $\underline{x}_2 \in \Omega$ $f(\alpha \underline{x}_1 + (1-\alpha) \underline{x}_2) \le \alpha f(\underline{x}_1) + (1-\alpha) f(\underline{x}_2) \forall 0 \le \alpha \le 1$

Convex

- A convex function bends up
- A line segment (chord, secant) between any two points never lies below the graph
- Linear interpolation between any two points x₁ and x₂ overestimates the function

 \Rightarrow • Concave if -f(x) is convex.

Convex Functions - 2

Examples:

1. A linear function is convex $f(\underline{x}) = \underline{c}^T \underline{x}$

$$f\left(\alpha \ \underline{x} + (1-\alpha)\underline{x}_{2}\right) = \alpha \underline{c}^{T} \underline{x}_{1} + (1-\alpha)\underline{c}^{T} \underline{x}_{2} = \alpha f\left(\underline{x}_{1}\right) + (1-\alpha)f\left(\underline{x}_{2}\right)$$

A quadratic function $\underline{x}^{T}Q\underline{x}$ is convex if Q is PSD. 2. $(1)f(\alpha \underline{x}_1 + (1-\alpha)\underline{x}_2) = \alpha^2 \underline{x}_1^T Q \underline{x}_1 + \alpha (1-\alpha)(\underline{x}_1^T Q \underline{x}_2 + \underline{x}_2^T Q \underline{x}_1) + (1-\alpha)^2 \underline{x}_2^T Q \underline{x}_2$ (2) $\alpha f(x_1) + (1-\alpha) f(x_2) = \alpha x_1^T Q x_1 + (1-\alpha) x_2^T Q x_2$ $(1)-(2) = -\alpha(1-\alpha)\left[\underline{x}_{1}^{T}Q\underline{x}_{1} + \underline{x}_{2}^{T}Q\underline{x}_{2} - \underline{x}_{1}^{T}Q\underline{x}_{2} - \underline{x}_{2}^{T}Q\underline{x}_{1}\right]$ $= -\alpha (1 - \alpha) (x_1 - x_2)^T Q(x_1 - x_2) \le 0$ iff Q is PSD 3. In general $f\left(\sum_{i} \alpha_{i} \underline{x}_{i}\right) \leq \sum_{i} \alpha_{i} f\left(\underline{x}_{i}\right); \sum_{i} \alpha_{i} = 1; \alpha_{i} \geq 0$ JENSEN'S INEQUALITY $f[E(x)] \le E\{f(x)\}$

Convex Functions - 4
Convex Functions - 4
Convex Functions - 4
Convex
$$\in C^2 \Leftrightarrow \nabla^2 f(\underline{x})$$
 is PSD over $\underline{x} \in \Omega(\Omega = \operatorname{convex})$
(only if) $f(\underline{x}_2) = f(\underline{x}_1) + \nabla f''(\underline{x}_1)(\underline{x}_2 - \underline{x}_1) + \frac{1}{2}(\underline{x}_2 - \underline{x}_1)^T \nabla^2 f(\underline{x}_1 + \alpha(\underline{x}_2 - \underline{x}_1))(\underline{x}_2 - \underline{x}_1)$
 $\nabla^2 f(\underline{x}_1) \geq 0 \Rightarrow \nabla^2 f(\underline{x}_1 + \alpha(\underline{x}_2 - \underline{x}_1)) \geq 0$ for sufficiently small α
 $\Rightarrow f(\underline{x}_2) \geq f(\underline{x}_1) + \nabla f''(\underline{x}_1)(\underline{x}_2 - \underline{x}_1) \Rightarrow f(\underline{x})$ is convex
(If): Suppose $\nabla^2 f(\underline{x}_1) < 0 \Rightarrow$ can find $N(\underline{x}^*, \delta) \Rightarrow$
 $(\underline{x}_2 - \underline{x}_1)^T \nabla^2 f(\underline{x}_1 + \alpha(\underline{x}_2 - \underline{x}_1))(\underline{x}_2 - \underline{x}_1) = 0$ outradition
6. Sum of convex functions is convex
17. The epigraph or the level set $\Omega_{\mu} = \{\underline{x}: f(\underline{x}) \leq \mu\}$
is convex for all μ if $f(\underline{x})$ is convex.
Proof: Let \underline{x}_1 and $\underline{x}_2 \in \Omega_{\mu} \Rightarrow f(\underline{x}_1) \leq \mu$
and $f(\underline{x}_2) \leq \mu$;
 $f(\alpha \underline{x}_1 + (1 - \alpha) \underline{x}_2) \leq \alpha f(\underline{x}_1) + (1 - \alpha) f(\underline{x}_2) \leq \mu$
 $\alpha \underline{x}_1 + (1 - \alpha) \underline{x}_2 \in \Omega_{\mu}$

Convex Functions - 5

Examples:

- 8. Convex programming problem
 - $\min f(\underline{x}) \qquad f(\underline{x}) \text{ convex}$ s.t. $A\underline{x} = \underline{b} \qquad g_i(\underline{x}) \text{ concave} \Rightarrow -g_i(\underline{x}) \text{ convex}$ $g_i(\underline{x}) \ge 0$ $\Omega_i = \{\underline{x} : -g_i(\underline{x}) \le 0\} = \{\underline{x} : g_i(\underline{x}) \ge 0\} \text{ convex}; \quad \Omega_\mu = \{\underline{x} : f(\underline{x}) \le \mu\} \text{ convex}$
 - $A\underline{x} = \underline{b} \quad \text{intersection of hyperplanes} \Rightarrow \text{convex set } \mathsf{A}$ $\Omega = \bigcap \Omega_i \cap \Omega_\mu \cap \mathsf{A} \text{ convex}$
- 9. Local optimum ⇔ global optimum global ⇒ local is always true!!!

To prove local \Rightarrow global, let \underline{x}^* be a local minimum, but y is a global minimum.

Consider
$$\underline{x} = \alpha \underline{x}^* + (1 - \alpha) \underline{y} \in \Omega$$

Convexity
$$\Rightarrow f\left(\alpha \underline{x}^* + (1-\alpha)\underline{y}\right) \le \alpha f\left(\underline{x}^*\right) + (1-\alpha)f(\underline{y}) \le f\left(\underline{x}^*\right) \forall \alpha$$

- $\Rightarrow \underline{x}^*$ can not be a local minimum, a contradiction.
 - As a worst case, local minima must be bunched together as shown.

 $f(\underline{x})$

x

Examples:

- 10. First order necessary condition is also sufficient
 - $f\left(\underline{x}\right) \ge f\left(\underline{x}^{*}\right) + \nabla f^{T}\left(\underline{x}^{*}\right)\left(\underline{x} \underline{x}^{*}\right) = f\left(\underline{x}^{*}\right) \forall \underline{x} \in \mathbb{R}^{n}$
- 11. $f(\underline{x})$ is convex iff the scalar function $g(\alpha) = f(\underline{x} + \alpha \underline{d})$ is convex $\forall \underline{x}$ and \underline{d} .
- 12. Since near \underline{x}^* , $\nabla^2 f(\underline{x}^*) \ge 0$, we can apply convex analysis locally.

In addition, from Taylor series, for \underline{x} near \underline{x}^*

$$f\left(\underline{x}^{*}\right) \cong f\left(\underline{x}\right) + \nabla \underline{f}^{T}\left(\underline{x}\right) \left(\underline{x}^{*} - \underline{x}\right) + \frac{1}{2} \left(\underline{x}^{*} - \underline{x}\right)^{T} \nabla^{2} f\left(\underline{x}\right) \left(\underline{x}^{*} - \underline{x}\right)$$
$$= \underbrace{f\left(\underline{x}\right) - \nabla \underline{f}^{T}\left(\underline{x}\right) \underline{x} + \frac{1}{2} \underline{x}^{T} \nabla^{2} f\left(\underline{x}\right) \underline{x}}_{c} + \underbrace{\left[\nabla f^{T}\left(\underline{x}\right) - \underline{x}^{T} \nabla^{2} f\left(\underline{x}\right)\right]}_{\underline{b}^{T}} \underline{x}^{*} + \frac{1}{2} \underline{x}^{*T} \underbrace{\nabla^{2} f\left(\underline{x}\right) \underline{x}^{*}}_{Q} \underline{x}^{*}$$

$$= c + \underline{b}^T \underline{x}^* + \frac{1}{2} \underline{x}^{*T} Q \underline{x}^*$$
 A quadratic approximation near \underline{x}^*

Convex Functions - 7

Example:

$$f(\underline{x}) = -\ln(1 - x_1 - x_2) - \ln x_1 - \ln x_2$$

$$\nabla f(\underline{x}) = \begin{bmatrix} \frac{1}{1 - x_1 - x_2} - \frac{1}{x_1} \\ \frac{1}{1 - x_1 - x_2} - \frac{1}{x_2} \end{bmatrix} = \underline{0} \Rightarrow \frac{2x_1 + x_2 = 1}{x_1 + 2x_2 = 1} \Rightarrow x_1 = x_2 = \frac{1}{3}$$

$$\nabla^2 f(\underline{x}) = \begin{bmatrix} \frac{1}{(1 - x_1 - x_2)^2} + \frac{1}{x_1^2} & \frac{1}{(1 - x_1 - x_2)^2} \\ \frac{1}{(1 - x_1 - x_2)^2} & \frac{1}{(1 - x_1 - x_2)^2} + \frac{1}{x_2^2} \end{bmatrix} > 0 \forall \Omega = \{\underline{x} : x_1 > 0, x_2 > 0, x_1 + x_2 < 1\}$$

Strictly Convex

Copyright ©1991-2009 by K. Pattipati

- Abstract Definition of an Optimization Problem
- Classification of Optimization Problems
 - **Three Basic Questions of Optimization**
 - Optimality conditions, algorithm, convergence
- Optimality Conditions for single variable and Multivariable Functions
- Elementary Convexity Theory