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Introduction

 Contact Information

• Room number:  ITE 350

• Tel/Fax: (860) 486-2890/5585

• E-mail: krishna@engr.uconn.edu

 Office Hours: Tuesday – Thursday:  11:00-12:00 Noon

 Mission or goal

• Provide systems analysis with central concepts of widely 

used optimization techniques

• Requires skills from both Mathematics and CS 

• Need a strong background in multivariable calculus and 

linear algebra

mailto:krishna@engr.uconn.edu
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Outline of Lecture 1

 Three Recurrent Themes

• Problem, Algorithms, Convergence Analysis

 Optimization Applications

 What is an Optimization Problem?

 Classification of Optimization Problems

 Three Basic Questions of Optimization

• Optimality conditions, algorithm, convergence

 Optimality Conditions for single variable and Multi-

variable Functions

 Elementary Convexity Theory
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Three Recurrent Themes

 Need to mathematically understand the

optimization problem to be solved

 Design an algorithm to solve the problem,

that is, a step-by-step procedure for

solving the problem

 Convergence Analysis

• How fast does the algorithm converge?

• What is the relationship between rate of

convergence and the size of the

problem?

ECE 6437

Computational

Methods in

Optimization

Convergence

Analysis

(Complexity)

Algorithmic

Techniques

Optimization

Problem

(Application-
specific)



Copyright ©1991-2009 by K. Pattipati
5

Applications of Optimization

 Sample Applications

• Scheduling in Manufacturing systems

• Scheduling of police patrol officers in a city

• Reducing fuel costs in Electric power industry (unit commitment)

• Gasoline blending in TEXACO

• Scheduling trucks at North American Van Lines

• Advertisement to meet certain % of each income group

• Investment portfolio to maximize expected returns, subject to

constrains on risk

 Technical Areas

• Operations Research, Systems theory (Optimal Control),

Statistics (Design of Experiments), Computer Science, Chemical

and Civil Engineering, Economics, Medicine, Physics, Math,….
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 Three Attributes:

1. A set of independent variables or parameters

2. Conditions or restrictions on the acceptable values of the variables      

 constraints of the optimization problem,  (e.g.,         )

3. A single measure of goodness, termed the objective (utility) function  

or cost function or goal, which depends on                                             

or

What is an Optimization Problem?
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 Abstract Formulation: “Minimize subject to ”

• Such problems have been investigated at least since 825 A.D. Persian

author Abu Ja'far Muhammad ibn Musa Al-Khwarizmi who wrote the

first book on Mathematics

• Since 1950’s, a hierarchy of optimization problems have emerged under

the general heading “Mathematical Programming”. The solution

approach is algorithmic in nature, i.e., construct a sequence

Abstract Formulation

 * *

0 1 ... ,  where  minimizes x x x x f x 

  f x x

Feasible set, closed and bounded
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A classification of Mathematical 

programming problems

n

n

x R

x Z





Nonlinear programming problems

 Discrete nx Z

hard 

problems

NP 

Network 

Programming

Separable

Resource allocation

problems

Assignment

problems
LP

 Cont. nx R

Convex

Programs

ECE  6437

 

Research

No course yet
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 Unconstrained NLP: no constraints on

• Steepest descent  (gradient) method

• Conjugate gradient method

• Newton, Gauss-Newton methods & variations

• Quasi-Newton (or) variable metric methods

 Constrained NLP: defined by

• Penalty methods

• Multiplier or Augmented Lagrangian methods

• Reduced gradient method

• Recursive quadratic programming

nR   x
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 Special Case 1: Convex programming problem (CPP)

• Convex cost function with convex constraints

• is convex (defined later).

• is concave (or) is convex.

• linear

Computational Methods in Optimization:

ECE 6437  (Cont’d)

( )ig x

( )ih x
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( )ig x
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 Special Case1.1: Linear Programming (LP) Problem

• is linear

• linear

•

• A striking feature of this problem is that the number of feasible solutions is

finite:

• Efficient algorithms exist for this problem

− Revised simplex

− Interior Point algorithms (application of specialized NLP to LP)

• One of the most widely used models in production planning.

 Special cases 1.1.x :
• Network Flows (LP on networks, i.e., graphs with weights)

• Shortest paths

• Maximum flow problem

• Transportation problem

• Assignment problem

Linear Programming and Network Flows -

ECE 6108 
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 Integer Programming (combinatorial optimization) has hard intractable

problems with exponential computational complexity

• Traveling salesperson problem

• VLSI routing

• Testing

• Multi-processor scheduling to minimize make span

• bin-packing

• Knapsack problem

• …..

 In ECE 6437, our focus will be on the following problems:

• Unconstrained NLP

• Constrained NLP

• Convex Programming

Integer Programming
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1. Static Question: How can one determine whether a given point

is a minimum → Provides theory, stopping criteria, etc.

2. Dynamic Question: If a given point is not a minimum, then how

does one go about finding a solution that is a minimum? → Algorithm

3. Convergence Analysis:
• Does the algorithm in 2 converge?

• If so, how fast?

How does or behave?

Let us consider the third question first.

 Rate of Convergence Concepts:
Suppose have an algorithm that generates a sequence with a stationary limit

point . Define a scalar error function:

Three Basic Questions of Optimization

*x

x

*

0 1 2x x x x   

*

kx x *
( ) ( )kf x f x

 kx
*x :  Rne R

*

kke x x 
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 Rate of Convergence:

Rate of Convergence - 1
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1 linear convergence (Geometric). Converges if

2 quadratic (fast) convergence

3 cubic (superfast) convergence
r
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Static Question: Necessary and Sufficient 

Conditions for Minimum-1

     4 3 212 47 60 3 4 5f x x x x x x x x x       

 Example:
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Optimality Conditions of Univariate Functions:

Necessary Conditions

*

*

* st

2
nd

2

* *

   Tangent is horizontal  slope ( ) 0   1  order condition

   Curvature up  second de

Proof

rivative 0  2  order condition

: Suppose   is a local minimum. Let . Then,

x x

x x

df
f x

dx

d f

dx

x y x x





    

   

 

         

 

         

 

* * * * 2

* *

2 2
* * 2 * *

*

 by the mean value theorem

1

2

Suppose 0. Then pick  ( );    sufficiently small

1
0

2

 a contradiction  need 0

From the

f y f x x f x f x x f x x x

f x x f x

f y f x f x f x f x

f x

   

  

 

      

   

          
   

 

     

   

     

* * * 2

* *

* * *

1
 first order condition, we have ;0 1

2

if 0 0 for some small  by continuity

 a contradiction  0

f x x f x f x x x

f x f x x

f x x f x f x

   

 



     

    

    

 For univariate functions:





Copyright ©1991-2009 by K. Pattipati
20

Optimality Conditions of Univariate Functions: 

Remarks

 

1.  The proof provides a method of advancing from one  to the next. 

     Take a step of   ( ) s.t.  ( ) ( )

     Steepest descent or Gradient or Cauchy Method.

2.  These are only necessary c

x
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Sufficient Conditions of Optimality for a 

Univariate Function
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Conditions of Optimality for a 

Multivariate Function-1
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 Hessian:
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 Necessary conditions
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Convex Sets -1

 Important because local optimum  global optimum
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 Examples:

 

 

1.  A hyperplane  is convex.

2.  Half spaces :

              or       :  are convex.
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4.   Sum or difference of convex sets is convex.
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 Convex Functions
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8.   Convex programming problem

      min                                        convex

      s.t.                                      concave  convex

      0

      = : 0 : 0
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                            As a worst case, local minima must be bunched together as shown. 

 Examples:

x

  f x

Convex Functions - 5



Copyright ©1991-2009 by K. Pattipati
34

        
     

 

* * * *

* *2

10.  First order necessary condition is also sufficient

        

11.    is convex iff the scalar function =  is convex  and .

12.  Since near ,  0,  we can appl
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y convex analysis locally.

       In addition, from Taylor series, for  near  
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Summary

 Abstract Definition of an Optimization Problem

 Classification of Optimization Problems

 Three Basic Questions of Optimization

• Optimality conditions, algorithm, convergence

 Optimality Conditions for single variable and Multi-

variable Functions

 Elementary Convexity Theory


