Lecture 1: Introduction, Necessary and Sufficient Conditions for Minima \& Convex Analysis

Prof. Krishna R. Pattipati

Dept. of Electrical and Computer Engineering
University of Connecticut
Contact: krishna@engr.uconn.edu (860) 486-2890

ECE 6437
Computational Methods for Optimization

Fall 2009
September 1, 2009

Introduction

\square Contact Information

- Room number: ITE 350
- Tel/Fax: (860) 486-2890/5585
- E-mail: krishna@engr.uconn.edu
] Office Hours: Tuesday - Thursday: 11:00-12:00 Noon
- Mission or goal
- Provide systems analysis with central concepts of widely used optimization techniques
- Requires skills from both Mathematics and CS
- Need a strong background in multivariable calculus and linear algebra

Outline of Lecture 1

- Three Recurrent Themes
- Problem, Algorithms, Convergence Analysis
\square Optimization Applications
\square What is an Optimization Problem?
\square Classification of Optimization Problems
T Three Basic Questions of Optimization
- Optimality conditions, algorithm, convergence
\square Optimality Conditions for single variable and Multivariable Functions
\square Elementary Convexity Theory

Three Recurrent Themes

- Need to mathematically understand the optimization problem to be solved

D Design an algorithm to solve the problem, that is, a step-by-step procedure for solving the problem

- Convergence Analysis
- How fast does the algorithm converge?
- What is the relationship between rate of convergence and the size of the problem?

Applications of Optimization

\square Sample Applications

- Scheduling in Manufacturing systems
- Scheduling of police patrol officers in a city
- Reducing fuel costs in Electric power industry (unit commitment)
- Gasoline blending in TEXACO
- Scheduling trucks at North American Van Lines
- Advertisement to meet certain \% of each income group
- Investment portfolio to maximize expected returns, subject to constrains on risk
\square Technical Areas
- Operations Research, Systems theory (Optimal Control), Statistics (Design of Experiments), Computer Science, Chemical and Civil Engineering, Economics, Medicine, Physics, Math,....

What is an Optimization Problem?

- Three Attributes:

1. A set of independent variables or parameters $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$

$$
\underline{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] n \text { vector } \begin{aligned}
& \underline{x} \in R^{n} \text { continuous } \\
& \underline{x} \in Z^{n}(\ldots,-2,-1,0,1,2, \ldots) \text { integers } \\
& \left\{\underline{x} \mid x_{i}=0,1\right\} \text { binary }
\end{aligned}
$$

2. Conditions or restrictions on the acceptable values of the variables \Rightarrow constraints of the optimization problem, Ω (e.g., $\underline{x} \geq 0$)
3. A single measure of goodness, termed the objective (utility) function or cost function or goal, which depends on $x_{1}, x_{2}, \ldots, x_{n}, f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ or $f(\underline{x})$

$$
R^{n} \rightarrow \mathrm{Z}
$$

$$
\begin{array}{ll}
f: R^{n} \rightarrow R ; \text { if } f \in Z \quad & Z^{n} \rightarrow Z \\
& Z^{n} \rightarrow(0,1)
\end{array}
$$

Abstract Formulation

- Abstract Formulation: "Minimize $f(\underline{x})$ subject to $\underline{x} \in \Omega$ "

$$
\Omega=\text { Feasible set, closed and bounded }
$$

- Such problems have been investigated at least since 825 A.D. Persian author Abu Ja'far Muhammad ibn Musa Al-Khwarizmi who wrote the first book on Mathematics
- Since 1950 's, a hierarchy of optimization problems have emerged under the general heading "Mathematical Programming". The solution approach is algorithmic in nature, i.e., construct a sequence

$$
\underline{x}_{0} \rightarrow \underline{x}_{1} \rightarrow \ldots \underline{x}^{*}, \text { where } \underline{x}^{*} \text { minimizes } f(\underline{x})
$$

Linear Programming and Network Flows ECE 6108

- Special Case1.1: Linear Programming (LP) Problem
- $f(\underline{x})$ is linear $\Rightarrow f(\underline{x})=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}=\underline{c}^{T} \underline{x}$
- $g_{i}(\underline{x})$ linear $\quad \Longrightarrow \underline{a}_{i}^{T} \underline{x} \geq b_{i} ; \boldsymbol{i}=1,2, \ldots, p$
- $x_{i} \geq 0 ; i=1,2, . ., n ; A \underline{x}=\underline{b} ; A$ is m by n matrix
- A striking feature of this problem is that the number of feasible solutions is finite:

$$
N=\binom{n+p}{m+p}
$$

- Efficient algorithms exist for this problem
- Revised simplex
- Interior Point algorithms (application of specialized NLP to LP)
- One of the most widely used models in production planning.
\square Special cases 1.1.x:
- Network Flows (LP on networks, i.e., graphs with weights)
- Shortest paths
- Maximum flow problem
- Transportation problem
- Assignment problem

Integer Programming

[Integer Programming (combinatorial optimization) has hard intractable problems with exponential computational complexity

- Traveling salesperson problem
- VLSI routing
- Testing
- Multi-processor scheduling to minimize make span
- bin-packing
- Knapsack problem
-
- In ECE 6437, our focus will be on the following problems:
- Unconstrained NLP
- Constrained NLP
- Convex Programming

Three Basic Questions of Optimization

1. Static Question: How can one determine whether a given point \underline{x} is a minimum \rightarrow Provides theory, stopping criteria, etc.
2. Dynamic Question: If a given point \underline{x} is not a minimum, then how does one go about finding a solution that is a minimum? \rightarrow Algorithm

$$
\underline{x}_{0} \rightarrow \underline{x}_{1} \rightarrow \underline{x}_{2} \rightarrow \ldots \rightarrow \underline{x}^{*}
$$

3. Convergence Analysis:

- Does the algorithm in 2 converge?
- If so, how fast?

How does $\left\|\underline{x}_{k}-\underline{x}^{*}\right\|$ or $\left\|f\left(\underline{x}_{k}\right)-f\left(\underline{x}^{*}\right)\right\|$ behave?
Let us consider the third question first.

- Rate of Convergence Concepts:

Suppose have an algorithm that generates a sequence $\left\{x_{k}\right\}$ with a stationary limit point \underline{x}^{*}. Define a scalar error function: $e_{k}=\left\|\underline{x}_{k}-\underline{x}^{*}\right\| \quad e: \mathrm{R}^{n} \rightarrow R$

Rate of Convergence - 1

- Rate of Convergence:

Here $\|\underline{x}\|$ is defined as any Holder p-norm defined by:

$$
\|\underline{x}\|_{p}=\left[\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right]^{1 / p}
$$

Typically, $\|\underline{x}\|_{1}=\sum_{i=1}^{n}\left|x_{i}\right| ;\|\underline{x}\|_{2}=\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\right)^{1 / 2} ;\|\underline{x}\|_{\infty}=\max _{i}\left|x_{i}\right|$
You may also define $e_{k}=\left|f\left(\underline{x}_{k}\right)-f\left(\underline{x}^{*}\right)\right|$
The behavior of e_{k} as a function of k is directly related to computational efficiency Time complexity: cost per step * number of iterations

In order to investigate the behavior of e_{k}, we compare it to "standard" sequences. One standard form is to look for

$$
e_{k+1} \cong \beta e_{k}^{r} \text { as } k \rightarrow \infty
$$

$r \triangleq$ order of convergence (or) asymptotic rate of convergence
$\beta \triangleq$ convergence ratio or asymptotic error constant

Rate of Convergence - 2

1 linear convergence (Geometric). Converges if $\beta<1$
2 quadratic (fast) convergence
3 cubic (superfast) convergence

$$
\begin{aligned}
& \text { If } \beta<1, r=1 \text { linear } \Rightarrow \lim _{k \rightarrow \infty} \frac{e_{k+1}}{e_{k}}=\beta<1 \\
& \beta=1, r=1 \text { sublinear } \Rightarrow \lim _{k \rightarrow \infty} \frac{e_{k+1}}{e_{k}}=\beta=1 \\
& \left\{\begin{array}{c}
\beta=0, r=1 \text { superlinear } \Rightarrow \lim _{k \rightarrow \infty} \frac{e_{k+1}}{e_{k}}=\beta=0 \\
r>1 \text { superlinear } \Rightarrow 0 \leq \lim _{k \rightarrow \infty} \frac{e_{k+1}}{e_{k}}<\infty
\end{array}\right.
\end{aligned}
$$

\square Examples:

1) $e_{k+1}=\beta e_{k}, \beta<1 \Rightarrow$ binary search, golden section search, gradient method, regula falsi
2) $e_{k}=\frac{1}{k} \Rightarrow \frac{e_{k+1}}{e_{k}}=\frac{k}{k+1} \Rightarrow \beta=1 \Rightarrow$ sublinear
3) $e_{k}=\left(\frac{1}{k}\right)^{k} \Rightarrow e_{k+1}=\left(\frac{1}{k+1}\right)^{k+1}=\frac{1}{k}\left(\frac{k}{k+1}\right)^{k+1} e_{k} \Rightarrow r=1 ; \beta \rightarrow 0$ as $k \rightarrow \infty \Rightarrow$ superlinear

Rate of Convergence - 3

\square Examples:
4) $e_{k}=q \beta^{k}, \mathrm{q}\left(\beta+\frac{1}{k}\right)^{k}, \mathrm{q}\left(\beta-\frac{1}{k}\right)^{k}, q \beta^{k+\frac{1}{k}} \Rightarrow$ linear
5) $e_{2 k}=\beta_{1}^{k} \beta_{2}^{k} ; \quad e_{2 k+1}=\beta_{1}^{k+1} \beta_{2}^{k} \quad e_{2 k+2}=\beta_{1}^{k+1} \beta_{2}^{k+1}$
$\lim _{k \rightarrow \infty} \frac{e_{2 k+2}}{e_{2 k}}=\beta_{1} \beta_{2} \Rightarrow r=1$ and $\beta=\sqrt{\beta_{1} \beta_{2}}$
6) $e_{k}=a^{2^{k}} \Rightarrow e_{k+1}=e_{k}^{2} \Rightarrow r=2 \Rightarrow$ quadratic (Newton's Method)
7) $e_{k+1}=M e_{k}^{\tau} ; \quad \tau=1.618$ Golden section number
$r>1 \Rightarrow$ superlinear convergence rate
Examples: secant method, quadratic fit $(\tau=1.3)$
8) $e_{k}=a^{2^{-k}}-1 ; a>0 \Rightarrow$ linear and $\beta=\frac{1}{2}$
since $\left(a^{2^{-(k+1)}}-1\right)\left(a^{2^{-(k+1)}}+1\right)=\left(a^{2^{-k}}-1\right)$
$\lim _{k \rightarrow \infty} \frac{e_{k+1}}{e_{k}}=\lim _{k \rightarrow \infty} \frac{1}{1+a^{2^{-(k+1)}}}=\frac{1}{2}$
Most of the methods that we discuss will have $1 \leq r \leq 2$

Static Question: Necessary and Sufficient Conditions for Minimum-2

$\square \quad$ Definition : $\underline{x}^{*} \in \Omega$ is a local minimum of $f(\underline{x})$ over Ω if for some $\delta>0$, we have

$$
\begin{aligned}
& f\left(\underline{x}^{*}\right) \leq f(\underline{x}) \forall \underline{x} \in \Omega \text { and }\left\|\underline{x}-\underline{x}^{*}\right\| \leq \delta \\
& \text { (or }) f\left(\underline{x}^{*}\right) \leq f(\underline{x}) \forall \underline{x} \in \Omega \cap N\left(\underline{x}^{*}, \delta\right) \\
& N\left(\underline{x}^{*}, \delta\right)=\delta \text { - neighbourhood of } \underline{x}^{*} \\
& N\left(\underline{x}^{*}, \delta\right)=\left\{\underline{x}:\left\|\underline{x}-\underline{x}^{*}\right\| \leq \delta\right\}
\end{aligned}
$$

\square Remark: strict local minimum if $f\left(\underline{x}^{*}\right)<f(\underline{x}) \forall \underline{x} \in \Omega \cap N\left(\underline{x}^{*}, \delta\right) \backslash \underline{x}^{*}$
\square Definition : $\underline{x}^{*} \in \Omega$ is weak (strict) global minimum of $f(\underline{x})$ over $\underline{x} \in \Omega$

$$
\text { if } f\left(\underline{x}^{*}\right) \leq f(\underline{x})\left(f\left(\underline{x}^{*}\right)<f(\underline{x})\right) \forall \underline{x} \in \Omega
$$

$\square \quad$ Note: strict global minimum \Rightarrow strict local minimum
strict local minimum \nRightarrow strict global minimum except for convex functions

Optimality Conditions of Univariate Functions: Necessary Conditions

- For univariate functions:
- Tangent is horizontal \Rightarrow slope $\left.\frac{d f}{d x}\right|_{x=x^{*}}=f^{\prime}\left(x^{*}\right)=0 \Rightarrow 1^{\text {st }}$ order condition
- Curvature up \Rightarrow second derivative $\left.\frac{d^{2} f}{d x^{2}}\right|_{x=x^{*}} \geq 0 \Rightarrow 2^{\text {nd }}$ order condition
$\square \quad$ Proof: Suppose x^{*} is a local minimum. Let $y=x^{*}+\delta x$. Then, by the mean value theorem
$f(y)=f\left(x^{*}+\delta x\right)=f\left(x^{*}\right)+f^{\prime}\left(x^{*}\right) \delta x+\frac{1}{2} f^{\prime \prime}\left(x^{*}+\alpha \delta x\right) \delta x^{2}$
Suppose $f^{\prime}\left(x^{*}\right) \neq 0$. Then pick $\delta x=-\varepsilon f^{\prime}\left(x^{*}\right) ; \varepsilon$ sufficiently small
$\Rightarrow f(y)-f\left(x^{*}\right)=-\varepsilon\left[f^{\prime}\left(x^{*}\right)\right]^{2}+\frac{1}{2} \varepsilon^{2}\left[f^{\prime}\left(x^{*}\right)\right]^{2} f^{\prime \prime}\left(x^{*}\right)<0$
a contradiction $\Rightarrow \operatorname{need} f^{\prime}\left(x^{*}\right)=0$
From the first order condition, we have $f\left(x^{*}+\delta x\right)=f\left(x^{*}\right)+\frac{1}{2} f^{\prime \prime}\left(x^{*}+\alpha \delta x\right) \delta x^{2} ; 0<\alpha<1$ if $f^{\prime \prime}\left(x^{*}\right)<0 \Rightarrow f^{\prime \prime}\left(x^{*}+\alpha \delta x\right)<0$ for some small α by continuity $f\left(x^{*}+\delta x\right)<f\left(x^{*}\right) \Rightarrow$ a contradiction $\therefore f^{\prime \prime}\left(x^{*}\right)>0$

Optimality Conditions of Univariate Functions: Remarks

\square For univariate functions:

1. The proof provides a method of advancing from one x to the next.

Take a step of $-\varepsilon f^{\prime}(x)$ s.t. $f\left(x-\varepsilon f^{\prime}(x)\right)<f(x)$
Steepest descent or Gradient or Cauchy Method.
2. These are only necessary conditions. They are not sufficient.

Example: $f(x)=x^{3} ; f^{\prime}(0)=f^{\prime \prime}(0)=0$

Not a local minimum, such point is called a saddle point or point of inflection.
3. Note that first order condition is satisfied by minima, maxima and saddle point. Such points are refered to as stationary points.

Copyright © 1991-2009 by K. Pattipati

Sufficient Conditions of Optimality for a Univariate Function

- For univariate functions:
(i) $f^{\prime}\left(x^{*}\right)=0$
(ii) $f^{\prime \prime}\left(x^{*}\right)>0$
- (i) was proven earlier. To show (ii), note that $f\left(x^{*}-\delta x\right)>f\left(x^{*}\right)$ only if $f^{\prime \prime}\left(x^{*}+\alpha \delta x\right)>0$ wich by continuity implies that $f^{\prime \prime}\left(x^{*}\right)>0$.
- The above results extend directly to multivariable functions, i.e., functions of several variables.
- Assume $f(\underline{x}) \in C^{2} \Rightarrow \frac{\partial f}{\partial x_{i}}$ and $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}$ exist and are continuous

Univariate Multivariate
derivative $\quad \leftrightarrow$ gradient (vector of first order partial derivatives) second derivative \leftrightarrow Hessian (Matrix of second order partial derivatives)

Conditions of Optimality for a Multivariate Function-1

- Gradient:

$$
\nabla \underline{f}(\underline{x})=\underline{g}(\underline{x})=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial x_{2}} \\
\vdots \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right] ; \begin{aligned}
& \frac{\partial f}{\partial x_{i}}=\lim _{\delta \rightarrow 0} \frac{f\left(x_{1}, x_{2}, \ldots, x_{i}+\delta, \ldots, x_{n}\right)-f\left(x_{1}, x_{2}, \ldots, x_{n}\right)}{\delta} \\
& =\lim _{\delta \rightarrow 0} \frac{f\left(\underline{x}+\underline{e}_{i} \delta\right)-f(\underline{x})}{\delta} \\
& \begin{array}{l}
\text { Rate of change of } f \text { along the } x_{i} \text { direction } \\
\text { (or) slope of the tangent line along } x_{i}
\end{array} \\
& \text { (or) direction of increase in } f \text { at } \underline{x}
\end{aligned}
$$

- Example: $f(\underline{x})=x_{1} x_{2}^{2}+x_{2} \cos \left(x_{1}\right)$

$$
\nabla \underline{f}(\underline{x})=\left[\begin{array}{l}
x_{2}^{2}-x_{2} \sin \left(x_{1}\right) \\
2 x_{1} x_{2}+\cos \left(x_{1}\right)
\end{array}\right] ;\left.\quad \nabla \underline{f}(\underline{x})\right|_{\substack{x_{1}=\pi / 2 \\
x_{2}=1}}=\left[\begin{array}{c}
o \\
\pi
\end{array}\right] ; f(\underline{x})=\pi / 2
$$

Conditions of Optimality for a Multivariate Function-2

- Hessian:

$$
\begin{aligned}
& \nabla^{2} f(x)=\left[\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}\right]=F(\underline{x}) \text { Hessian } \Rightarrow n \mathrm{x} n \text { matrix } \\
& \text { since } \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{\partial^{2} f}{\partial x_{j} \partial x_{i}} \Rightarrow F(\underline{x}) \text { is symmetric } \Rightarrow F(\underline{x})=F^{T}(\underline{x})
\end{aligned}
$$

$$
f_{i j}=f_{j i} \text { Need only } \frac{n(n+1)}{2} \text { elements }
$$

Example: $\nabla^{2} f(x)=\left[\begin{array}{cc}\frac{\partial^{2} f}{\partial x_{1}{ }^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} \\ \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f}{\partial x_{2}{ }^{2}}\end{array}\right]=\left[\begin{array}{cc}-x_{2} \cos \left(x_{1}\right) & 2 x_{2}-\sin \left(x_{1}\right) \\ 2 x_{2}-\sin \left(x_{1}\right) & 2 x_{1}\end{array}\right]_{\substack{x_{1}-\pi / 2 \\ x_{2}=1}}=\left[\begin{array}{cc}0 & 1 \\ 1 & \pi\end{array}\right]<0$
\square Example: A quadratic function

$$
\begin{aligned}
& f(x)=\frac{1}{2} \underline{x}^{T} Q \underline{x}+\underline{b}^{T} \underline{x}+c=\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} q_{j} x_{i} x_{j}+\sum_{i=1}^{n} b_{i} x_{i}+c \\
& \nabla \underline{f}(\underline{x})=Q \underline{x}+\underline{b} ; \quad \nabla^{2} f(x)=Q
\end{aligned}
$$

Summary of Conditions of Optimality for a Multivariate Function-3

- Necessary conditions

1. $\nabla \underline{f}\left(\underline{x}^{*}\right)=\underline{0}$
2. $\nabla^{2} f\left(\underline{x}^{*}\right) \geq 0(P S D)$
3. A symetric matrix A is $P S D$ iff
$\underline{x}^{T} A \underline{x} \geq 0 \forall \underline{x} \in R^{n} \Rightarrow \lambda_{i}(A) \geq 0$ \Downarrow

All principal minors have non-negative determinants
\Downarrow
Matrix A can be factored as $A=L D L^{T}$ $d_{i} \geq 0 ; L$ unit lower Δ

- Sufficient conditions

1. $\nabla \underline{f}\left(\underline{x}^{*}\right)=\underline{0}$
2. $\nabla^{2} f\left(\underline{x}^{*}\right)>0(P D$ matrix $)$

A symetric matrix A is $P D$ iff
$\underline{x}^{T} A \underline{x}>0 \forall \underline{x} \in R^{n} \wedge \underline{x} \neq \underline{0} \Rightarrow \lambda_{i}(A)>0$ \Downarrow

All principal minors have positive determinants

$$
\Downarrow
$$

$A=L D L^{T} ; d_{i}>0 ; O\left(\frac{n^{3}}{6}\right)$ Computation

- PD: Positive Definite
- PSD: Positive Semi-definite

Proof of Optimality Conditions - 1

\square Proof necessity:
From the mean value theorem, we have for any \underline{x} and \underline{y}
$f(\underline{y})=f(\underline{x})+\nabla \underline{f}^{T}(\underline{x})(\underline{y}-\underline{x})+\frac{1}{2}(\underline{y}-\underline{x})^{T} \nabla^{2} f(\underline{x}+\beta(\underline{y}-\underline{x}))(\underline{y}-\underline{x}) ; \beta \in(0,1)$
Take $\underline{x}=\underline{x}^{*}, \underline{y}=\underline{x}+\alpha \underline{d}$ where $\|\underline{d}\|=1$ for any norm (usually $1,2, \infty$)
$\Rightarrow f\left(\underline{x}^{*}+\alpha \underline{d}\right)=f\left(\underline{x}^{*}\right)+\alpha \nabla \underline{f}^{T}\left(\underline{x}^{*}\right) \underline{d}+\frac{1}{2} \alpha^{2} \underline{d}^{T} \nabla^{2} f\left(\underline{x}^{*}+\beta \alpha \underline{d}\right) \underline{d}=g(\alpha)$
If \underline{x}^{*} is a minimum, the scalar function $g(\alpha)$ has minimum at $\alpha=0 \Rightarrow g^{\prime}(0)=0$
$\Rightarrow g^{\prime}(0)=\nabla \underline{f}^{T}\left(\underline{x}^{*}\right) \underline{d}=f^{\prime}(\underline{x}, \underline{d}) \quad \forall \underline{d} \in R^{n}$
Taking $\underline{d}=\left.\underline{e}_{1} \Rightarrow \frac{\partial f}{\partial x_{1}}\right|_{\underline{x}^{*}}=0$ similarly $\left.\frac{\partial f}{\partial x_{i}}\right|_{\underline{x}^{*}}=0$ since \underline{d} is arbitrary
$\Rightarrow \nabla f\left(\underline{x}^{*}\right)=\underline{0} \Rightarrow\left\|\nabla f\left(\underline{x}^{*}\right)\right\|=0 \quad 1^{\text {st }}$ order condition. so, norm will be small near minimum.
For a local minimum, we also need
$\frac{d^{2} g(0)}{d \alpha^{2}} \geq 0 \Rightarrow \underline{d}^{T} \nabla^{2} f^{T}\left(\underline{x}^{*}\right) \underline{d} \geq 0 \forall \underline{d} \in R^{n} \Rightarrow \nabla^{2} f\left(\underline{x}^{*}\right)$ is PSD

Proof of Optimality Conditions - 2

- Sufficiency:

Suppose $\nabla^{2} f\left(\underline{x}^{*}\right)>0 \Rightarrow$ smallest eigenvalue λ_{n} of $\nabla^{2} f\left(\underline{x}^{*}\right)>0$

$$
f\left(\underline{x}^{*}+\alpha \underline{d}\right)=f\left(\underline{x}^{*}\right)+\frac{1}{2} \alpha^{2} \underline{d}^{T} \nabla^{2} f\left(\underline{x}^{*}+\beta \alpha \underline{d}\right) \underline{d} ; \beta \in(0,1)
$$

For sufficiently small $\alpha, \nabla^{2} f\left(\underline{x}^{*}+\beta \alpha \underline{d}\right)>0$ if $\nabla^{2} f\left(\underline{x}^{*}\right)>0$
Let λ_{n} be the smallest eigenvalue of $\nabla^{2} f\left(\underline{x}^{*}+\beta \alpha \underline{d}\right)$. Then $f\left(\underline{x}^{*}+\alpha \underline{d}\right)-f\left(\underline{x}^{*}\right)=\frac{1}{2} \alpha^{2} \underline{d}^{T} \nabla^{2} f\left(\underline{x}^{*}+\beta \alpha \underline{d}\right) \underline{d} \geq \frac{\alpha^{2}}{2} \lambda_{\mathrm{n}}\|d\|^{2}$....Recall Rayleigh inequality $\Rightarrow \underline{x}^{*}$ is a strict local minimum.
\square Note: Strict local maximum if $\nabla^{2} f\left(\underline{x}^{*}\right)<0$ and saddle point if $\nabla^{2} f\left(\underline{x}^{*}\right)$ is indefinite.
\square Example: $f\left(x_{1}, x_{2}\right)=x_{1}^{2}-6 x_{1}+x_{2}^{2}+4 x_{2}+5$

$$
\left.\nabla f\left(x_{1}, x_{2}\right)=\left[\begin{array}{l}
2 x_{1}-6 \\
2 x_{2}+4
\end{array}\right] \Rightarrow \begin{array}{l}
x_{1}^{*}=3 \\
x_{2}^{*}=-2
\end{array} ; \nabla^{2} f\left(\underline{x}^{*}\right)=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]>0 \Rightarrow \begin{array}{l}
\text { (Itrict tocal minimum }
\end{array}\right]
$$

\square Example: $f\left(x_{1}, x_{2}\right)=2 x_{1}^{2}+2 x_{1} x_{2}+14 x_{1}-2 x_{2}^{2}+22 x_{2}-8$

$$
\nabla f\left(x_{1}, x_{2}\right)=\left[\begin{array}{l}
4 x_{1}+2 x_{2}+14 \\
2 x_{1}-4 x_{2}+22
\end{array}\right] \Rightarrow \underline{x}^{*}=\left[\begin{array}{c}
-5 \\
3
\end{array}\right] ; \nabla^{2} f\left(\underline{x}^{*}\right)=\left[\begin{array}{cc}
4 & 2 \\
2 & -4
\end{array}\right] \begin{aligned}
& \lambda_{1}=\sqrt{20}, \lambda_{2}=-\sqrt{20} \\
& \Rightarrow \text { Indefinite } \\
& \Rightarrow \text { Saddle point }
\end{aligned}
$$

Convex Sets -1

[Important because local optimum \Leftrightarrow global optimum
\square Definition : A set $\Omega \in R^{n}$ convex if for any two points $\underline{x}_{1}, \underline{x}_{2} \in \Omega$ and $\forall \alpha \in(0,1)$ we have $\alpha \underline{x}_{1}+(1-\alpha) \underline{x}_{2} \in \Omega$. In words, Ω is convex if for every two points \underline{x}_{1} and \underline{x}_{2}, the line segment joining \underline{x}_{1} and \underline{x}_{2} is also in Ω.

- Convex

A convex set is one whose boundaries do not bulge inward (or) do not have indentations.

- Nonconvex

Convex Sets -2

\square Examples:

1. A hyperplane $\underline{a}^{T} \underline{x}=\underline{b}$ is convex.
2. Half spaces $H_{+}=\left\{\underline{x}: \underline{a}^{T} \underline{x} \geq b\right\}$ or $\quad H_{-}=\left\{\underline{x}: \underline{a}^{T} \underline{x} \leq b\right\}$ are convex.

3. $\cap c_{i}$ convex. $\cup c_{i}$ Need not be

4. Sum or difference of convex sets is convex.

5. Expansions or contraction of convex sets is convex.
6. Empty set is convex (by definition).

Convex Functions - 1

- Convex Functions

Consider $f(\underline{x}): \Omega \rightarrow R ; f(\underline{x})$ is a sacalar multivariable function.
$f(\underline{x})$ is a convex function on a convex set Ω if for any two points
\underline{x}_{1} and $\underline{x}_{2} \in \Omega$
$f\left(\alpha \underline{x}_{1}+(1-\alpha) \underline{x}_{2}\right) \leq \alpha f\left(\underline{x}_{1}\right)+(1-\alpha) f\left(\underline{x}_{2}\right) \forall 0 \leq \alpha \leq 1$

- A convex function bends up
- A line segment (chord, secant) between any two points never lies below the graph
- Linear interpolation between any two points x_{1} and x_{2} overestimates the function

\Rightarrow - Concave if $-f(x)$ is convex.

Convex Functions - 2

- Examples:

1. A linear function is convex $f(\underline{x})=\underline{c}^{T} \underline{x}$

$$
f\left(\alpha \underline{x}+(1-\alpha) \underline{x}_{2}\right)=\alpha \underline{c}^{T} \underline{x}_{1}+(1-\alpha) \underline{c}^{T} \underline{x}_{2}=\alpha f\left(\underline{x}_{1}\right)+(1-\alpha) f\left(\underline{x}_{2}\right)
$$

2. A quadratic function $\underline{x}^{T} Q \underline{x}$ is convex if Q is $P S D$.
(1) $f\left(\alpha \underline{x}_{1}+(1-\alpha) \underline{x}_{2}\right)=\alpha^{2} \underline{x}_{1}^{T} Q \underline{x}_{1}+\alpha(1-\alpha)\left(\underline{x}_{1}^{T} Q \underline{x}_{2}+\underline{x}_{2}^{T} Q \underline{x}_{1}\right)+(1-\alpha)^{2} \underline{x}_{2}^{T} Q \underline{x}_{2}$
(2) $\alpha f\left(\underline{x}_{1}\right)+(1-\alpha) f\left(\underline{x}_{2}\right)=\alpha \underline{x}_{1}^{T} Q \underline{x}_{1}+(1-\alpha) \underline{x}_{2}^{T} Q \underline{x}_{2}$
(1) $-(2)=-\alpha(1-\alpha)\left[\underline{x}_{1}^{T} Q \underline{x}_{1}+\underline{x}_{2}^{T} Q \underline{x}_{2}-\underline{x}_{1}^{T} Q \underline{x}_{2}-\underline{x}_{2}^{T} Q \underline{x}_{1}\right]$
$=-\alpha(1-\alpha)\left(\underline{x}_{1}-\underline{x}_{2}\right)^{T} Q\left(\underline{x}_{1}-\underline{x}_{2}\right) \leq 0$ iff Q is PSD
3. In general $f\left(\sum_{i} \alpha_{i} \underline{x}_{i}\right) \leq \sum_{i} \alpha_{i} f\left(\underline{x}_{i}\right) ; \quad \sum_{i} \alpha_{i}=1 ; \alpha_{i} \geq 0$

JENSEN'S INEQUALITY

Convex Functions - 3

Examples (cont'd):
4. The linear extrapolation at a point underestimates a convex function $f(\underline{x})$

$$
\text { assume } f(\underline{x}) \in C^{2} ; f\left(\underline{x}_{2}\right) \geq f\left(\underline{x}_{1}\right)+\underbrace{\nabla f^{T}\left(\underline{x}_{1}\right)\left(\underline{x}_{2}-x_{1}\right)}_{\begin{array}{c}
\text { Defines the tangent } \\
\text { plane at } \underline{x}_{1}
\end{array}}
$$

$$
\begin{aligned}
& \lim _{\alpha \rightarrow 0} \frac{f\left(\underline{x}_{1}+\alpha\left(\underline{x}_{2}-\underline{x}_{1}\right)\right)-f\left(\underline{x}_{1}\right)}{\alpha} \leq f\left(\underline{x}_{2}\right)-f\left(\underline{x}_{1}\right) \\
& \nabla \underline{f}^{T}\left(\underline{x}_{1}\right)\left(\underline{x}_{2}-\underline{x}_{1}\right) \leq f\left(\underline{x}_{2}\right)-f\left(\underline{x}_{1}\right)
\end{aligned}
$$

(If) Assume result is true at \underline{x}_{1} and \underline{x}_{2} э $\underline{x}_{0}=\alpha \underline{x}_{2}+(1-\alpha) \underline{x}_{1}$

$$
\begin{aligned}
& (1-\alpha) f\left(\underline{x}_{1}\right) \geq(1-\alpha)\left[f\left(\underline{x}_{0}\right)+\nabla \underline{f}^{T}\left(\underline{x}_{0}\right)\left(\underline{x}_{1}-\underline{x}_{0}\right)\right] \\
& \alpha f\left(\underline{x}_{2}\right) \geq \alpha\left[f\left(\underline{x}_{0}\right)+\nabla \underline{f}^{T}\left(\underline{x}_{0}\right)\left(\underline{x}_{2}-\underline{x}_{0}\right)\right] \\
& \Rightarrow \alpha f\left(\underline{x}_{2}\right)+(1-\alpha) f\left(\underline{x}_{1}\right) \geq f\left(\underline{x}_{0}\right)+\nabla \underline{f}^{T}\left(\underline{x}_{0}\right)\left[(1-\alpha) \underline{x}_{1} \not \subset \alpha \underline{x}_{2}-\underline{x}_{0}\right]
\end{aligned}
$$

Convex Functions - 4

Examples:

5. $f(\underline{x})$ convex $\in C^{2} \Leftrightarrow \nabla^{2} f(\underline{x})$ is PSD over $\underline{x} \in \Omega(\Omega=$ convex $)$
(only if) $f\left(\underline{x}_{2}\right)=f\left(\underline{x}_{1}\right)+\nabla \underline{f}^{T}\left(\underline{x}_{1}\right)\left(\underline{x}_{2}-\underline{x}_{1}\right)+\frac{1}{2}\left(\underline{x}_{2}-\underline{x}_{1}\right)^{T} \nabla^{2} f\left(\underline{x}_{1}+\alpha\left(\underline{x}_{2}-\underline{x}_{1}\right)\right)\left(\underline{x}_{2}-\underline{x}_{1}\right)$
$\nabla^{2} f\left(\underline{x}_{1}\right) \geq 0 \Rightarrow \nabla^{2} f\left(\underline{x}_{1}+\alpha\left(\underline{x}_{2}-\underline{x}_{1}\right)\right) \geq 0$ for sufficiently small α
$\Rightarrow f\left(\underline{x}_{2}\right) \geq f\left(\underline{x}_{1}\right)+\nabla \underline{f}^{T}\left(\underline{x}_{1}\right)\left(\underline{x}_{2}-\underline{x}_{1}\right) \Rightarrow f(\underline{x})$ is convex
(If) : Suppose $\nabla^{2} f\left(\underline{x}_{1}\right)<0 \Rightarrow$ can find $\mathrm{N}\left(\underline{x}^{*}, \delta\right) \ni$
$\left(\underline{x}_{2}-\underline{x}_{1}\right)^{T} \nabla^{2} f\left(\underline{x}_{1}+\alpha\left(\underline{x}_{2}-\underline{x}_{1}\right)\right)\left(\underline{x}_{2}-\underline{x}_{1}\right)<0$
$\Rightarrow f\left(\underline{x}_{2}\right) \leq f\left(\underline{x}_{1}\right)+\nabla \underline{f}^{T}\left(\underline{x}_{1}\right)\left(\underline{x}_{2}-\underline{x}_{1}\right)$ a contradition
6. Sum of convex functions is convex
7. The epigraph or the level set $\Omega_{\mu}=\{\underline{x}: f(\underline{x}) \leq \mu\}$ is convex for all μ if $f(\underline{x})$ is convex.
Proof: Let \underline{x}_{1} and $\underline{x}_{2} \in \Omega_{\mu} \Rightarrow f\left(\underline{x}_{1}\right) \leq \mu$ and $f\left(\underline{x}_{2}\right) \leq \mu$;

$$
\begin{aligned}
& f\left(\alpha \underline{x}_{1}+(1-\alpha) \underline{x}_{2}\right) \leq \alpha f\left(\underline{x}_{1}\right)+(1-\alpha) f\left(\underline{x}_{2}\right) \leq \mu \\
& \alpha \underline{x}_{1}+(1-\alpha) \underline{x}_{2} \in \Omega_{\mu}
\end{aligned}
$$

Convex Functions - 5

Examples:

8. Convex programming problem $\min f(\underline{x})$ $f(\underline{x})$ convex
s.t. $A \underline{x}=\underline{b}$
$g_{i}(\underline{x})$ concave $\Rightarrow-g_{i}(\underline{x})$ convex
$g_{i}(\underline{x}) \geq 0$
$\Omega_{i}=\left\{\underline{x}:-g_{i}(\underline{x}) \leq 0\right\}=\left\{\underline{x}: g_{i}(\underline{x}) \geq 0\right\}$ convex; $\Omega_{\mu}=\{\underline{x}: f(\underline{x}) \leq \mu\}$ convex
$A \underline{x}=\underline{b}$ intersection of hyperplanes \Rightarrow convex set A
$\Omega=\bigcap_{i} \Omega_{i} \cap \Omega_{\mu} \cap$ A convex
9. Local optimum \Leftrightarrow global optimum
global \Rightarrow local is always true!!!
To prove local \Rightarrow global, let \underline{x}^{*} be a local minimum, but y is a global minimum.
Consider $\underline{x}=\alpha \underline{x}^{*}+(1-\alpha) \underline{y} \in \Omega$

Convexity $\Rightarrow f\left(\alpha \underline{x}^{*}+(1-\alpha) \underline{y}\right) \leq \alpha f\left(\underline{x}^{*}\right)+(1-\alpha) f(y) \leq f\left(\underline{x}^{*}\right) \forall \alpha$
$\Rightarrow \underline{x}^{*}$ can not be a local minimum, a contradiction.
As a worst case, local minima must be bunched together as shown.

Convex Functions - 6

Examples:

10. First order necessary condition is also sufficient

$$
f(\underline{x}) \geq f\left(\underline{x}^{*}\right)+\nabla f^{T}\left(\underline{x}^{*}\right)\left(\underline{x}-\underline{x}^{*}\right)=f\left(\underline{x}^{*}\right) \forall \underline{x} \in R^{n}
$$

11. $f(\underline{x})$ is convex iff the scalar function $g(\alpha)=f(\underline{x}+\alpha \underline{d})$ is convex $\forall \underline{x}$ and \underline{d}.
12. Since near $\underline{x}^{*}, \nabla^{2} f\left(\underline{x}^{*}\right) \geq 0$, we can apply convex analysis locally.

In addition, from Taylor series, for \underline{x} near \underline{x}^{*}

$$
\begin{aligned}
f\left(\underline{x}^{*}\right) & \cong f(\underline{x})+\nabla \underline{f}^{T}(\underline{x})\left(\underline{x}^{*}-\underline{x}\right)+\frac{1}{2}\left(\underline{x}^{*}-\underline{x}\right)^{T} \nabla^{2} f(\underline{x})\left(\underline{x}^{*}-\underline{x}\right) \\
& =\underbrace{f(\underline{x})-\nabla f^{T}(\underline{x}) \underline{x}+\frac{1}{2} \underline{x}^{T} \nabla^{2} f(\underline{x}) \underline{x}}_{c}+\underbrace{\left[\nabla f^{T}(\underline{x})-\underline{x}^{T} \nabla^{2} f(\underline{x})\right]}_{\underline{b}^{T}} \underline{x}^{*}+\frac{1}{2} \underline{x}^{* T} \underbrace{\nabla^{2} f(\underline{x})}_{Q} \underline{x}^{*}
\end{aligned}
$$

$=c+\underline{b}^{T} \underline{x}^{*}+\frac{1}{2} \underline{x}^{* T} Q \underline{x}^{*}$ A quadratic approximation near \underline{x}^{*}

Convex Functions - 7

Example:

$$
\begin{aligned}
& f(\underline{x})=-\ln \left(1-x_{1}-x_{2}\right)-\ln x_{1}-\ln x_{2} \\
& \nabla f(\underline{x})=\left[\begin{array}{cc}
\frac{1}{1-x_{1}-x_{2}}-\frac{1}{x_{1}} \\
\frac{1}{1-x_{1}-x_{2}}-\frac{1}{x_{2}}
\end{array}\right]=\underline{0} \Rightarrow \begin{array}{l}
2 x_{1}+x_{2}=1 \\
x_{1}+2 x_{2}=1
\end{array} \Rightarrow x_{1}=x_{2}=\frac{1}{3} \\
& \nabla^{2} f(\underline{x})=\left[\begin{array}{cc}
\frac{1}{\left(1-x_{1}-x_{2}\right)^{2}}+\frac{1}{x_{1}^{2}} & \frac{1}{\left(1-x_{1}-x_{2}\right)^{2}} \\
\frac{1}{\left(1-x_{1}-x_{2}\right)^{2}} & \frac{1}{\left(1-x_{1}-x_{2}\right)^{2}}+\frac{1}{x_{2}^{2}}
\end{array}\right]>0 \forall \Omega=\left\{\underline{x}: x_{1}>0, x_{2}>0, x_{1}+x_{2}<1\right\}
\end{aligned}
$$

Strictly Convex

Summary

\square Abstract Definition of an Optimization Problem
\square Classification of Optimization Problems
\square Three Basic Questions of Optimization

- Optimality conditions, algorithm, convergence
\square Optimality Conditions for single variable and Multivariable Functions
\square Elementary Convexity Theory

