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Outline of Lecture 2

 Review of Lecture 1

 Gradients and Contour Maps

 Algorithms for Unconstrained Minimization …    

Answers to the Dynamic Question

 Generalized Gradient Methods

 Step Size Rules (or) Line Search Methods



Copyright ©1991-2009 by K. Pattipati
3

 Necessary and sufficient conditions for a local minimum

Necessary conditions Sufficient conditions

 Gradient and contour maps

Contour or equivalent surface:  f (x) = c   {x  : f (x) = c}

 Example 1:    f (x1, x2) = x1 + x2

2 2

( ) 0                                         ( ) 0    

( ) 0                                       ( ) 0

f x f x

f x f x

 

 

   

   

Review of Lecture 1

c = 0
c = 1

c = 2

1x

2x

For general  f (x)  local minimum   global minimum

For convex  f (x)  local minimum   global minimum
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 Example 2: f (x1, x2) = 1 x1
2 + 2 x2

2 ;   2 > 1 > 0

Gradients and Contour Maps

1 1c 
2 1c  3 1c 

1 2c 

2 2c 

3 2c 

v ( )f x

1 2

1 2

1 2

1

21 2

           ( ( ),  ( ))

   0

         0  ( ) 0
T

f x t x t c

dx dxf f df

x dt x dt dt

dx

f f dt
f x v

dxx x

dt



 
     

 

 
   

     
    

  

GRADIENTS ARE ORTHOGONAL TO 

CONTOUR CURVES

1x

2x 1  0   long elongated ellipse

The contour curve can be parameterized by x1(t), x2(t)
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Negative Gradient as Descent Direction 

 Want  x0  x1  x2  . . .  xk  xk+1  . . .  x*  f (x0)  f (x1) 

f (x2)  . . .  f (x*)

 f is decreased at each iteration (or) we move from one contour to 

the next such that ck  ck+1.

 Q: How do we move from xk to xk+1  f (xk+1) ≤  f (xk) ?

1. Recall that                is the direction of increase in f at x = xk then

is the direction of (local) decrease in  f .  So, one way to 

move from xk to xk+1 is via:  

Steepest descent, Gradient or 

Cauchy's method

    

     

1

2            ( )

k k kk

T

k k kk k

f x f x f x

f x f x f x O



 

   

    
c1

c2

c3

 kf x

kx

 kf x

1x

2x

From Taylor series expansion

DESCENT ALGORITHMS

 For sufficiently small k: f (xk+1) < f (xk)

 kf x

 kf x

 1 ,   0k k kk kx x f x     

 kk f x 
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More General Descent Directions

2. What are the general directions we can take to go from xk to xk+1 ?      

 
1           

      Gradient method

k k kk

k k

x x d

d f x

  

  

What are the restrictions on dk to ensure f (xk+1) < f (xk) ?

         2

1   By def :    
Tn

k k k k k kf x f x d f x f x d O        

Directional derivative

   

     
22

cos

0   90 ,  180  or  180 ,  90  

T

k k k k

T o o o o

k k

f x d f x d

f x d





  

     

 Directional derivative of f at xk in the direction dk

 Rate of change of f in the direction dk with respect to 
 Inner product of the gradient at xk and the selected direction dk

 
T

k kf x d

– For sufficiently small , we can guarantee f (xk+1) <  f (xk) if

– If                              dk is the descent direction since it ensures a 

reduction in the function value

– Recall that      

  0
T

k kf x d 

  0
T

k kf x d 
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A General Form for Descent Direction

 

       

            ,   0  

      0,    0

   If ,   is termed "uniformly gradient related"

k kk k

T T

k k k k kk

k k

d H f x H

f x d f x H f x f x

d d

   

        

  

– A general form of dk:  

c1

c2

c3

kx

 kf x

1x

2x



kd

1kx 

kd

 Note: Hk = I  steepest descent
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Generalized Gradient Methods (GGM)

 1 ,   0,  1,  2,  ...k k k k kk k kx x d x H f x k       

 Key questions:

1. How to pick dk (or equivalently Hk )

2. How to pick k to get a “good sized” reduction in the function value

2.1 Pick k to get any decrease in function value

2.2 Pick k to get a specified decrease in function value

2.3 Pick k to get maximum decrease in function value

   1  ... won't work !!k kf x f x 

Armijo and Goldstein step size rules 

   
0

mink k k kkf x d f x d
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Ways to Pick Descent Directions - 1

 How to pick dk (or Hk) . . . Determines the algorithm      

1. Steepest descent (gradient, Cauchy) method

2. Diagonally scaled steepest descent method

3. Newton’s method

– Don’t actually compute the inverse:

Instead solve  

     ,   0,  1,  2,...k kkH I d f x k    

 

 

1 2

1
2

2

Diag ,  ,  ...,  ,   0,  1,  2,...

0,   quite often  

n

k k k k

ki i

k k

i

H h h h k

f x
h h

x



 

 
   

 

   

   

1
2 2

1
1 1 2

                ,  0,  1,  2,... if  0

Generally, implemented as    where  

k kk

T T

kk k k k k k k

H f x k f x

H L D L f x L D L




 

      

   

   
1

2

k k kd f x f x


     
   

   

2          

or   

k k k

T

k kk k k

f x d f x

L D L d f x

    

 
 solve  kk k

L y f x  

/ ,   1i i i

k k kz y d i n  

T

kkkL d z

Diagonal Newton’s Method

 O(n2) operations once Lk and are availablekD
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– Solve                                     (quadratic form) in one iteration. 
1

 
2

T T

kf x x Qx b x c  

4. Modified Newton’s method

– Modify Hk as:

 

 

1
2

1
2

   if PD

   if not PD

k

k

k k

f x
H

f x I





  
 

    

This can be accomplished as part of LDLT factorization

This modification is due to Levenberg and Marquardt (1944, 1963)

Use Hessian at the starting point x0 only

Need to compute LDLT decomposition once !!
3

  computation
6

n
O
 

  
 

 
1

2

0 ,  0,  1,  2,...kH f x k


    –

 

 

1
2

2

; 0,  1,  2,..., 1;  0,  1,  2,...

                                      if   is PD

kpkp i

kp

H f x i p k

f x




      



–

1

1 0 0

*1

( )

   

x x Q Qx b

Q b x





  

  

Ways to Pick Descent Directions - 2
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5. Discretized Newton’s method

6. Gauss-Newton method (specifically for nonlinear least squares 

problem.  Levenberg -Marquardt was developed in this context)

  

2 2

2

1
2

( )( ) ( ) ( )

    ;    

Use these to approximate 

k jk k i k

i i i i

i i j

kk d

f x ef x f x e f x

x x x xf f

x x x

H f x



 



    
 

    
 

  

  
 

 

     

   

   

1 2

2

1

1

1

     . . . 

1 1
min  ( )

2 2

   if invertible

   if not

T

m

m
T

i
x

i

T

k k

k
T

k k

g g g g

f x g x g x g x

g x g x

H

g x g x I









 

   
 

    
 



Ways to Pick Descent Directions - 3
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1 2

  . . .      by  matrix

k k k

k k k km

f x g x g x

g x g x g x g x n m

 

     
 

 Note 1:

For this problem, Gauss-Newton method takes the form:

       
1

1

T

k k k k k kkx x g x g x g x g x



     
 

   Jacobian
T

g 

1) Levenberg-Marquardt iteration first appeared in this form

2) This iteration also occurs in maximum likelihood (ML)      

identification of linear dynamic systems in a slightly complex form

3) Incremental Gradient (used in Neural network training)

4) Extended Kalman filter  is basically an incremental version of 

Gauss-Newton        

 Note 2:

Ways to Pick Descent Directions - 4
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7. Conjugate gradient method

– Seeks to generate dk directly without having to form Hk

– Solves                                        in n iterations (quadratic 

termination properly)

 

   

   

     

   

     

   

1

1 1

1

1 1

1

1 1

    Fletcher-Reeves (FR)method

   Polar-Ribiere-Poljak (PRP) method

   Sorensen-Wolfe (SW

k k kk

T

k k

T

k k

T

k k k

k T

k k

T

k k k

T

k k k

d f x d

f x f x

f x f x

f x f x f x

f x f x

f x f x f x

f x f x d







 



 



 

  

 

 

    
 

    

   

) method













 
1

2

T T
f x x Qx b x c  

Ways to Pick Descent Directions - 5
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8. Quasi-Newton (or) Variable Metric Methods

– Since Newton’s method minimizes quadratic functions in one

iteration, how about approximating inverse of Hessian or Hessian 

as a function of xk and                etc. 

– Has quadratic termination property (converges in n iterations for

quadratic functions

– Note: don’t need second derivative information

1

T T

k kk k k k
k k T T

kk k k k

p p H q q H
H H

p q q H q
   INVERSE: 

APPROX.

Davidon-Fletcher-
Powell (DFP) update

   

1

1

1 1

T T

k kk k k k
k k T T

kk k k k

k k kkk

k kk k k

q q B p p B
B B

p q p B p

p x x d

q f x f x g g







 

  

  

    

HESSIAN: 
APPROX.

Broyden-Fletcher-
Goldfarb-Shanno 
(BFGS) update

 kf x

Ways to Pick Descent Directions - 6
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What do we want to do with these?

 Key questions:

1) Do the methods converge?

2) If so, do they converge to a local minimum or a stationary point 

(i.e., maximum, saddle point, minimum)?

3) What is the order (speed) of convergence ?

4) How does the choice of k affect convergence ?

 We will focus on the problem of selecting k next. 
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Step Size Rules 

 Step size rules (or) Line search methods:

• Pick      to

– Guarantee a reduction in function value f (xk+1) < f (xk) 

– Guarantee at least a specified reduction in the function 

value

– Minimize f (xk +  dk ) with respect to  such that  > 0

k



Increasing 
complexity

– Consider steepest descent iteration

and the following algorithm for finding k

 1k k kkx x f x   

• Know that if                   . Then  a sufficiently small      

since                         . We will show that a mere 

guarantee of reduction in f does not result in a reliable algorithm in the 

sense that the sequence       may converge to a nonstationary point !!

   1k kf x f x 

  0kf x 

  0
T

k kf x d 

{ }kx
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Given 0,  0,  1 ,  find 

Do while   

                    

                  Evaluate 

end Do

k k

k k k

k k

k

s f x s f x

f x s f x f x

s s

f x s f x

s







   

  



 



 

 

   

. . 

.

0.1,  0.3 ;  2,  10

(or) see three point pattern 

method later

k

T

k k

f x
s

f x d

 

 




 

 PROBLEM: Can get stuck at a non-stationary point.

 Note:    

       

       

     

0 ;   

0 ' 0 ...

' ;   ' 0   

k

k k

T T

k k k k k

T

k k k

g f x

g f x d g g

g f x d d g f x d

g f x f x d

  

 

 



    

    

  

Naïve Methods May Not Work
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 Example

 
 

 

 

 
 

 
 

 

 

2

2

2

2

2

3 1
2 1          if 1

4

1         if 1         

3 1
2 1          if 1

4

1                         1 1

3 1
2 1       if 1

4

3
2 1            if 1

2

2           

x
x x

f x

x x

x
x x

f x x x

x
x x

x x

f x x

 
   

 


 

 
  




     


    


  

 

 

 2

          1 1   

3
2 1       if 1

2

3 2          if 1

2       1 1

3 2        if 1

x

x x

x

f x x

x





  

    





    
  

x

 f x

x

 f x

x

 2 f x

Counter Example - 1
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• Suppose 

• Pattern:

   
   
   

0 0 0 1

2 1 1

3 2 2

3 3 3 12  2 2   1
2 2 2 2

3 3 5 12 1
2 4 4 4

5 3 9 12 1
4 8 8 8

x x f x x

x x f x

x x f x

             

        

         

converges 1 where ( ) 2.       JAMMED!!f x  

 What is happening?
Although f (xk+1) < f (xk), the difference f (xk+1) < f (xk)  0 as | xk |  1

 A possible way out: Need a step size rule that not only guarantees a 
decrease but also ensures that the function decrease f (xk+1)  f(xk)
never tends to zero as {xk} tends to a nonstationary point (i.e., a 
nonoptimal point). There are three such rules: Armijo, Goldstein and 
Wolf’s rules. We will discuss the first two here. 

         2 2 1
1 1 1 1 12   1    1    1    ...   1    1

2 4 8 2 2k k       

Counter Example - 2
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Armijo Step Size Rule

 

     

 

1
Given 0,  0,  1 ,  0,  

2

Do while  

     

      

    Evaluate 

end Do

T

k k k k k

k k

k

s

f x sd f x s f x d

s s

f x sd

s

 







 
   

 

   







 Armijo rule

 Note that the method guarantees

      

     

1             

(or)      UPPER BOUND

T

k k k k k kk

T

k k k k kk k

f x d f x f x x x

f x d f x f x d

 

 

    

    

Works well in practice, but may result in small k

admissible s

k

   
T

k k ky f x f x d  

 k kkf x d

   
T

k k ky f x f x d  
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1 2

1

2

Given 0,  0,  1 ,  0,  1 2 ,  0,  1

Do until   1  

   If      

          

   else    

        if   1  

          

    e

T T

k k k k k k k k

T

k k k k k

T

k k k k k

s

f x s f x d f x sd f x s f x d

f x s f x d f x sd

s s

f x s f x d f x sd

s s

  

 









   

       

   



    



     

   

nd if

end Do

LB:  1

UB:  

k

T

k k k

T

k k k

s

y f x f x d

y f x f x d



 





   

  

• Goldstein rule: To guard against small k , impose a lower bound on f (xk+1) 

  

LB

permissible k

5 1Typical  10 ,  10     

UB

Goldestein Step Size Rule
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 Example:

Application to Quadratic Function

     

       

 

*

1

2

1
      ;    

2

1 1
From Goldstein rule:   

2 2

                                                              
2

  1

T
T k k

k k k k k kk k k k T

k k

T T

k k k k k k k k

T T

k k k k

d Qx
f x d x d Q x d

d Qd

f x f x x d Q x d x Qx

d Qx d Qd

d

   

 




 




    

    

 

 

 

 

 

2

* * * * *

*

*

2

  1  
2

      1     2 2(1 )
2

1
          

2

Armijo    2 1

T T T T

k k k k k k k k

T T T T

k k k k k k k k

k k k k k

k

k

Qx d Qx d Qd d Qx

d Qx d Qx d Qd d Qx


 


 


       

  

  

  

    

          

  

  

 
1

quadratic function:   ;     0
2

T
f x x Qx Q 

Divide by 



Copyright ©1991-2009 by K. Pattipati
23

 Minimize f (xk +  dk) with respect to  such that   0

Pick k to minimize g () = f (xk +  dk), i.e., get the most decrease in 
the direction dk

From the optimality condition 
 

 
*

*0  0 
T

k k k

g
f x d d









    



 What do we know?    
 

   
0

0 ;  0
T

k k k

g
g f x g f x d









  



For Newton type methods, also knows

 
   

2

2

2

0

0 0
T

k k k

g
g d f x d









   



• We will use        ,         and possibly          to limit the range            for 
 to a finite range           later.

 0g 0g  0g  0,  

 1 1,  l r

• We assume that                    as                    Existence of minimum 
guaranteed by Weirstrauss’ theorem.             

    g          

   

 g 

Line Search for Optimal Step Size
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Schemes to Find *

 Those that use function evaluations only 

g () = f (xk +  dk)

 Those that use function and derivative information

 Those that use function, derivative and second derivative info 

 Newton’s method (rarely used for line serach)

Combined Golden section and Quadratic interpolation is the best

 many schemes to find *. They can be broadly divided into three categories

       ;  
T

k k k k kk kg f x d g f x d d      

Fibonacci search

Golden section search

Quadratic interpolation

Secant method

Cubic interpolation
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Key Idea:  Unimodality of Functions

 Assume g () is a strictly unimodal function on an interval L1 = [l1, r1], 

i.e., a single global minimum. Unimodal functions need not be smooth.

 Def n: A function g() is unimodal over an interval L1 = [l1, r1] if 1 and 

2 are two points in L1 s.t. 1 < 2 < * or *  < 1 < 2. Then

g (1) > g (2) > g (*)     (or)     g (*) < g (1) < g (2) 

Discrete

A unimodal function is monotonic on either side of *

 Note: a strictly convex function is unimodal

 How to use it?: Suppose 1, 2  [l1, r1] with 1 < 2 and we find 

     

     

     

1 2 1 1

1 2 1 2

1 2 1 2

1.     then  ,  

2.     then  ,  

3.     then  ,  

g g r

g g l

g g
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Bracketing using Unimodal Property

The unimodality assumption helps us to bracket the 
minimum into smaller and smaller subintervals, ek

3

1l 1 2 1r
1l 1 2 1r

2

1l 1 2 1r

1

 1 1,  l r  1 2,  l 

 1 2,   

 1 1,  r
     1 1 2 2

1 2

1 2

,    ,    . . .  ,  

                   . . .       

        . . .   TOL

N N

N

k

l r l r l r

e e e

e e e

  

  

   

• Suppose want to find the minimum sized interval [l1, r1] using N
function evaluations.  Also want to evaluate function only once in 
going from one interval to the next  

   1 1,    ,  k k k k
one function
evaluation

l r l r 

2 2( , )l r
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Fibonacci Search - 1

 We can accomplish this using Fibonacci search first discovered by 

Leonardo of Pisa (1202). Independent of g () as long as g () is 

unimodal

• If N = 2, pick 1 and 2 at center and close to each other

• If N = 3 … two step process

   1 1
1 1 2,    if  

2

l r
l g g  

 
  

 
 1 1,  l r

   1 1
1 1 2,    if  

2

l r
r g g  

 
  

 
1

2
2

e
e 

   

   

1 2 1 1

1 2 1 1

2 1
3 1

2
First isolate which  of interval  lies in

3

,    or  ,    

1
Then, reduce ,    ,   by 

2

2 1
  

2 3 2 3

l r

l r

e e
e e



 

 



     



1 2Note:  or  are in place 

1l 1r

1 2

1 1

2

l r





1 1

2

l r





1l 1r

1 2

1 1
1

3

r l
l




 1 1

1

2

3

r l
l
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• If N = 4…. 3 step process

2 1

3
 e

5
e

1l 1r
 1 1

1

2

5

r l
l




 1 1

1

3

5

r l
l




1l
 1 1

1

3

5

r l
l


1 1

1
5

r l
l




 1 1

1

2

5

r l
l




1l
 1 1

1

2

5

r l
l




3 2 1

4 3 1

2 2
e

3 5

1 1
e

2 5

e e

e e

 

 

      2      3      4

1 1 1
             

2 3 5
N

N

e

Rabbits

– One month to fertility

– One month to produce pair

– Never die

0

1

2

3

4

5

1

1

2

3

5

8

F

F

F

F

F

F













1 2  k k kF F F   

new

old

Fibionacci Search - 2

1l
 1 1

1
5

r l
l


 Evaluate to left or right of

1 1
1

( )

5

r l
l
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• For general N, let k = 1, 2, .., N1. The Fibionacci method uses at step k

 

 

1
1

1

2

1

      

      

where  are the Fibionacci numbers

N k
k k k

N k

N k
k k k

N k

k

F
l r l

F

F
l r l

F

F





 

 



 

  

  

where except for k = 1, 
one of the points 1 or 2

was already evaluated at a 
previous iteration.

1 2 0 1;   1k k kF F F F F    

kl kr1 2

 1

1

N k
k k

N k

F
r l

F

 

 



 
1

N k
k k

N k

F
r l

F



 



SYMMETRIC INTERVALS

Fibionacci Search - 3



Copyright ©1991-2009 by K. Pattipati
30

Interval Reduction for Fibionacci Search

   

   

1
2 1 1

1 1

1 1 1 1 2 1 1 1

         

where for 1, the last point is at a place close the remaining one, because

1 1
             ;       

2 2

Bas

N k N k
k k k k k k k

N k N k

N N N N N N

F F
r r l r l r l l

F F

k N

l r l l r l

 

 

  

   

     

        

 

     

 

1 1

1
1 1

ic result:         smallest possible reduction

                 and   

N N

N

N k
k k

N

r l
r l

F

F
r l r l

F



 


  

  

 Proof:
 

     

     

1 1

1

1 2 1 2
2 2 1 1 3 3 1 1 1 1

1

1 1
1 1 1 1 1 1

      

  ; .

1
  

N k
k k k k

N k

N N N N

N N N N

N k
k k N N

N N N

F
r l r l

F

F F F F
r l r l r l r l r l

F F F F

F F
r l r l r l r l r l

F F F
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Advantages and Disadvantages

 Advantages of Fibionacci method:

• Smallest interval for a given N

• No derivative information

• Simple to implement

 Disadvantages of Fibionacci method:
• Need to prespecify N.  Also need to compute (or store) Fibionacci numbers.

Luckily, don’t have to if N is large.  Leads to GOLDEN SECTION SEARCH

 Golden section search retains

a) Symmetry of interval reduction

b) Only one function evaluation per step
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Copyright ©1991-2009 by K. Pattipati
33

Golden Section vs. Fibionacci Search

 Golden section method yields 17% larger interval than Fibionacci for the same 

 Proof:
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Golden section search is 17% less efficient

than Fibionacci search, but is much easier

to implement.
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Summary

 Reviewed necessary and sufficient conditions of optimality

 Gradients and Contour Maps

• Gradient is orthogonal to contour curves

• Descent directions

 Algorithms for Unconstrained Minimization

• Steepest descent, Diagonally scaled steepest descent,  Newton, 

Discretized Newton,  Gauss-Newton, Conjugate gradient, Quasi-

Newton

 Step Size Rules (or) Line Search Methods

• Armijo, Goldstein, Fibionacci search and Golden section search

• Next:  combine Golden section with quadratic interpolation


