Lecture 2: Review, Contour Maps, Various Forms of Generalized Gradient Methods, and Line Search Methods

Prof. Krishna R. Pattipati
Dept. of Electrical and Computer Engineering
University of Connecticut

Contact: krishna@engr.uconn.edu (860) 486-2890

ECE 6437
Computational Methods for Optimization

Fall 2009
September 8, 2009

Outline of Lecture 2

- Review of Lecture 1
- Gradients and Contour Maps
- Algorithms for Unconstrained Minimization ... Answers to the Dynamic Question
- Generalized Gradient Methods
- Step Size Rules (or) Line Search Methods

Review of Lecture 1

- Necessary and sufficient conditions for a local minimum

Necessary conditions

$$
\begin{aligned}
& \nabla \underline{f}\left(\underline{x}^{*}\right)=\underline{0} \\
& \nabla^{2} f\left(\underline{x}^{*}\right) \geq 0
\end{aligned}
$$

Sufficient conditions

$$
\begin{gathered}
\nabla \underline{f}\left(\underline{x}^{*}\right)=\underline{0} \\
\nabla^{2} f\left(\underline{x}^{*}\right)>0
\end{gathered}
$$

For general $f(\underline{x})$ local minimum \nRightarrow global minimum
For convex $f(\underline{x})$ local minimum \Leftrightarrow global minimum

- Gradient and contour maps

Contour or equivalent surface: $f(\underline{x})=c \Rightarrow\{x \in \Omega: f(\underline{x})=c\}$

- Example 1: $f\left(x_{1}, x_{2}\right)=x_{1}+x_{2}$

Gradients and Contour Maps

\square Example 2：$f\left(x_{1}, x_{2}\right)=\lambda_{1} x_{1}^{2}+\lambda_{2} x_{2}^{2} ; \lambda_{2}>\lambda_{1}>0$

The contour curve can be parameterized by $x_{1}(t), x_{2}(t)$

$$
\begin{array}{cl}
& f\left(x_{1}(t), x_{2}(t)\right)=c \\
\Rightarrow & \frac{\partial f}{\partial x_{1}} \cdot \frac{d x_{1}}{d t}+\frac{\partial f}{\partial x_{2}} \cdot \frac{d x_{2}}{d t}=\frac{d f}{d t}=0 \quad \begin{array}{c}
\text { GRADIENTS ARE ORTHOGONAL TO } \\
\text { CONTOUR CURVES }
\end{array} \\
& {\left[\begin{array}{ll}
\frac{\partial f}{\partial x_{1}} & \frac{\partial f}{\partial x_{2}}
\end{array}\right]\left[\begin{array}{l}
\frac{d x_{1}}{d t} \\
\frac{d x_{2}}{d t}
\end{array}\right]=0 \Rightarrow \nabla \underline{f}^{T}(\underline{x}) \underline{v}=0}
\end{array}
$$

Negative Gradient as Descent Direction

\square Want $\underline{x}_{0} \rightarrow \underline{x}_{1} \rightarrow \underline{x}_{2} \rightarrow \ldots \rightarrow \underline{x}_{k} \rightarrow \underline{x}_{k+1} \rightarrow \ldots \rightarrow \underline{x}^{*} \ni f\left(\underline{x}_{0}\right) \geq f\left(\underline{x}_{1}\right) \geq$ $f\left(\underline{x}_{2}\right) \geq \ldots \geq f\left(\underline{x}^{*}\right)$
$\Rightarrow f$ is decreased at each iteration (or) we move from one contour to the next such that $c_{k} \geq c_{k+1}$. DESCENT ALGORITHMS

- Q: How do we move from \underline{x}_{k} to $\underline{x}_{k+1} \ni f\left(x_{k+1}\right) \leq f\left(\underline{x}_{k}\right)$?

1. Recall that $\nabla \underline{f}\left(\underline{x}_{k}\right)$ is the direction of increase in f at $\underline{x}=\underline{x}_{k}$ then $-\nabla \underline{f}\left(\underline{x}_{k}\right)$ is the direction of (local) decrease in f. So, one way to move from \underline{x}_{k} to \underline{x}_{k+1} is via: $\underline{x}_{k+1}=\underline{x}_{k}-\alpha_{k} \nabla \underline{f}\left(\underline{x}_{k}\right), \quad \alpha_{k} \geq 0$

Steepest descent, Gradient or

 Cauchy's methodFrom Taylor series expansion

$$
\begin{aligned}
f\left(\underline{x}_{k+1}\right) & =f\left(\underline{x}_{k}-\alpha_{k} \nabla \underline{f}\left(\underline{x}_{k}\right)\right) \\
& =f\left(\underline{x}_{k}\right)-\alpha_{k} \nabla \underline{f}^{T}\left(\underline{x}_{k}\right) \nabla \underline{f}\left(\underline{x}_{k}\right)+O\left(\alpha_{k}^{2}\right)
\end{aligned}
$$

\Rightarrow For sufficiently small $\alpha_{k}: f\left(\underline{x}_{k+1}\right)<f\left(\underline{x}_{k}\right)$

More General Descent Directions

2. What are the general directions we can take to go from \underline{x}_{k} to \underline{x}_{k+1} ?

$$
\begin{aligned}
& \underline{x}_{k+1}=\underline{x}_{k}+\alpha_{k} \underline{d}_{k} \\
& \underline{d}_{k}=-\nabla \underline{f}\left(\underline{x}_{k}\right) \Rightarrow \text { Gradient method }
\end{aligned}
$$

What are the restrictions on \underline{d}_{k} to ensure $f\left(\underline{x}_{k+1}\right)<f\left(\underline{x}_{k}\right)$?

- By def ${ }^{n}: f\left(\underline{x}_{k+1}\right)=f\left(\underline{x}_{k}+\alpha \underline{d}_{k}\right)=f\left(\underline{x}_{k}\right)+\alpha \nabla \underline{f}^{T}\left(\underline{x}_{k}\right) \underline{d}_{k}+O\left(\alpha^{2}\right)$

Directional derivative
$\nabla \underline{f}^{T}\left(\underline{x}_{k}\right) \underline{d}_{k}=$ Directional derivative of f at \underline{x}_{k} in the direction \underline{d}_{k}
$=$ Rate of change of f in the direction \underline{d}_{k} with respect to α
$=$ Inner product of the gradient at \underline{x}_{k} and the selected direction \underline{d}_{k}

- For sufficiently small α, we can guarantee $f\left(\underline{x}_{k+1}\right)<f\left(\underline{x}_{k}\right)$ if

$$
\nabla \underline{f}^{T}\left(\underline{x}_{k}\right) \underline{d}_{k}<0
$$

- If $\nabla \underline{f}^{T}\left(\underline{x}_{k}\right) \underline{d}_{k}<0 \Rightarrow \underline{d}_{k}$ is the descent direction since it ensures a reduction in the function value
- Recall that $\nabla \underline{f}^{T}\left(\underline{x}_{k}\right) \underline{d}_{k}=\left\|\nabla \underline{f}\left(\underline{x}_{k}\right)\right\|_{2}\| \|_{k} \|_{2} \cos \theta$

$$
\nabla \underline{f}^{T}\left(\underline{x}_{k}\right) \underline{d}_{k}<0 \Rightarrow \theta \in\left(90^{\circ}, 180^{\circ}\right) \text { or }\left(-180^{\circ},-90^{\circ}\right)
$$

A General Form for Descent Direction

- A general form of $\underline{d}_{\mathrm{k}}$:

$$
\begin{aligned}
& \underline{d}_{k}=-H_{k} \nabla \underline{f}\left(\underline{x}_{k}\right), \quad H_{k}>0 \\
\Rightarrow & \nabla \underline{f}^{T}\left(\underline{x}_{k}\right) \underline{d}_{k}=-\nabla \underline{f}^{T}\left(\underline{x}_{k}\right) H_{k} \nabla \underline{f}\left(\underline{x}_{k}\right)<0, \quad \forall \nabla \underline{f}\left(\underline{x}_{k}\right) \neq 0
\end{aligned}
$$

- If $\left\|\underline{d}_{k}\right\|<\infty, \underline{d}_{k}$ is termed "uniformly gradient related"
\square Note: $H_{k}=I \Rightarrow$ steepest descent

Generalized Gradient Methods (GGM)

$$
\underline{x}_{k+1}=\underline{x}_{k}+\alpha_{k} \underline{d}_{k}=\underline{x}_{k}-\alpha_{k} H_{k} \nabla \underline{f}\left(\underline{x}_{k}\right), k=0,1,2, \ldots
$$

\square Key questions:

1. How to pick \underline{d}_{k} (or equivalently H_{k})
2. How to pick α_{k} to get a "good sized" reduction in the function value
2.1 Pick α_{k} to get any decrease in function value $f\left(\underline{x}_{k+1}\right)<f\left(\underline{x}_{k}\right)$... won't work !!
2.2 Pick α_{k} to get a specified decrease in function value Armijo and Goldstein step size rules
2.3 Pick α_{k} to get maximum decrease in function value

$$
f\left(\underline{x}_{k}+\alpha \underline{d}_{k}\right)=\min _{\alpha \geq 0} f\left(\underline{x}_{k}+\alpha \underline{d}_{k}\right)
$$

Ways to Pick Descent Directions - 1

\square How to pick $\underline{d}_{k}\left(\right.$ or $\left.H_{k}\right) \ldots$ Determines the algorithm

1. Steepest descent (gradient, Cauchy) method

$$
H_{k}=I \Rightarrow \underline{d}_{k}=-\nabla \underline{f}\left(\underline{x}_{k}\right), \quad k=0,1,2, \ldots
$$

2. Diagonally scaled steepest descent method

$$
\begin{aligned}
& H_{k}=\operatorname{Diag}\left(h_{k}^{1}, h_{k}^{2}, \ldots, h_{k}^{n}\right), k=0,1,2, \ldots \\
& h_{k}^{i}>0, \text { quite often } h_{k}^{i}=\left[\frac{\partial^{2} f\left(\underline{x}_{k}\right)}{\partial x_{i}^{2}}\right]^{-1} \longrightarrow \text { Diagonal Newton's Method }
\end{aligned}
$$

3. Newton's method

$$
H_{k}=\left[\nabla^{2} f\left(\underline{x}_{k}\right)\right]^{-1}, k=0,1,2, \ldots \text { if } \nabla^{2} f\left(\underline{x}_{k}\right)>0
$$

Generally, implemented as $H_{k}=\left(L_{k}^{T}\right)^{-1} \tilde{D}_{k}^{-1} L_{k}^{-1}$ where $\nabla^{2} \underline{f}\left(\underline{x}_{k}\right)=L_{k} \tilde{D}_{k} L_{k}^{T}$

- Don't actually compute the inverse: $\underline{d}_{k}=-\left[\nabla^{2} f\left(\underline{x}_{k}\right)\right]^{-1} \nabla \underline{f}\left(\underline{x}_{k}\right)$ Instead solve $\left[\nabla^{2} f\left(\underline{x}_{k}\right)\right] \underline{d}_{k}=-\nabla \underline{f}\left(\underline{x}_{k}\right) \rightarrow$ solve $L_{k} \underline{y}_{k}=-\nabla \underline{f}\left(\underline{x}_{k}\right)$

$$
\text { (or) } L_{k} \tilde{D}_{k} L_{k}^{T} \underline{d}_{k}=-\nabla \underline{f}\left(\underline{x}_{k}\right) \longleftrightarrow z_{k}^{i}=y_{k}^{i} / \tilde{d}_{k}^{i}, \quad 1 \leq i \leq n
$$

$\approx O\left(n^{2}\right)$ operations once L_{k} and \tilde{D}_{k} are available $\triangle L_{k}^{T} \underline{d}_{k}=\underline{z}_{k}$

Ways to Pick Descent Directions - 2

- Solve $f\left(\underline{x}_{k}\right)=\frac{1}{2} \underline{x}^{T} Q \underline{x}+\underline{b}^{T} \underline{x}+\underline{c}$ (quadratic form) in one iteration.

4. Modified Newton's method

$$
\begin{aligned}
\underline{x}_{1} & =\underline{x}_{0}-Q^{-1}\left(Q \underline{x}_{0}+\underline{b}\right) \\
& =-Q^{-1} \underline{b}=\underline{x}^{*}
\end{aligned}
$$

- Modify H_{k} as:

$$
H_{k}=\left\{\begin{array}{l}
{\left[\nabla^{2} f\left(\underline{x}_{k}\right)\right]^{-1} \quad \text { if PD }} \\
{\left[\nabla^{2} f\left(\underline{x}_{k}\right)+\mu_{k} I\right]^{-1} \quad \text { if not PD }}
\end{array}\right.
$$

This can be accomplished as part of $L D L^{\mathrm{T}}$ factorization
This modification is due to Levenberg and Marquardt $(1944,1963)$ - $H_{k}=\left[\nabla^{2} f\left(\underline{x}_{0}\right)\right]^{-1}, k=0,1,2, \ldots$

Use Hessian at the starting point \underline{x}_{0} only
Need to compute $L D L^{\mathrm{T}}$ decomposition once $!!\Rightarrow O\left(\frac{n^{3}}{6}\right)$ computation

- $H_{k p+i}=\left[\nabla^{2} f\left(\underline{x}_{k p}\right)\right]^{-1} ; i=0,1,2, \ldots, p-1 ; k=0,1,2, \ldots$

$$
\text { if } \nabla^{2} f\left(\underline{x}_{k p}\right) \text { is PD }
$$

Ways to Pick Descent Directions - 3

5. Discretized Newton's method

$$
\frac{\partial^{2} f}{\partial x_{i}^{2}}=\frac{\frac{\partial f\left(\underline{x}_{k}\right)}{\partial x_{i}}-\frac{\partial f\left(\underline{x}_{k}-\underline{e}_{i} \delta\right)}{\partial x_{i}}}{\delta} ; \quad \frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=\frac{\frac{\partial f\left(\underline{x}_{k}\right)}{\partial x_{i}}-\frac{\partial f\left(\underline{x}_{k}-\underline{e}_{j} \delta\right)}{\partial x_{i}}}{\delta}
$$

Use these to approximate $H_{k}=\left[\left\{\nabla^{2} f\left(\underline{x}_{k}\right)\right\}_{d}\right]^{-1}$
6. Gauss-Newton method (specifically for nonlinear least squares problem. Levenberg -Marquardt was developed in this context)

$$
\begin{aligned}
& \underline{g}=\left(g_{1} g_{2} \ldots g_{m}\right)^{T} \\
& \min _{\underline{x}} f(\underline{x})=\frac{1}{2} \underline{g}^{T}(\underline{x}) \underline{g}(\underline{x})=\frac{1}{2} \sum_{i=1}^{m} g_{i}^{2}(\underline{x}) \\
& H_{k}= \begin{cases}{\left[\nabla \underline{\underline{g}}\left(\underline{x}_{k}\right) \nabla \underline{g}^{T}\left(\underline{x}_{k}\right)\right]^{-1}} & \text { if invertible } \\
{\left[\nabla \underline{g}\left(\underline{x}_{k}\right) \nabla \underline{g}^{T}\left(\underline{x}_{k}\right)+\mu I\right]^{-1} \quad \text { if not }}\end{cases}
\end{aligned}
$$

Ways to Pick Descent Directions - 4

Note 1:

$$
\begin{array}{ll}
\nabla \underline{f}\left(\underline{x}_{k}\right)=\nabla \underline{g}\left(\underline{x}_{k}\right) \underline{g}\left(\underline{x}_{k}\right) \\
\nabla \underline{\underline{g}}\left(\underline{x}_{k}\right)=\left[\nabla \underline{g}_{1}\left(\underline{x}_{k}\right) \nabla \underline{g}_{2}\left(\underline{x}_{k}\right) \ldots \nabla \underline{g}_{m}\left(\underline{x}_{k}\right)\right] & n \text { by } m \text { matrix } \\
& \nabla \underline{\underline{g}}^{T} \sim \text { Jacobian }
\end{array}
$$

For this problem, Gauss-Newton method takes the form:

$$
\underline{x}_{k+1}=\underline{x}_{k}-\alpha_{k}\left[\nabla \underline{\underline{g}}\left(\underline{x}_{k}\right) \nabla \underline{\underline{g}}^{T}\left(\underline{x}_{k}\right)\right]^{-1} \nabla \underline{\underline{g}}\left(\underline{x}_{k}\right) \underline{g}\left(\underline{x}_{k}\right)
$$

- Note 2:

1) Levenberg-Marquardt iteration first appeared in this form
2) This iteration also occurs in maximum likelihood (ML) identification of linear dynamic systems in a slightly complex form
3) Incremental Gradient (used in Neural network training)
4) Extended Kalman filter is basically an incremental version of Gauss-Newton

Ways to Pick Descent Directions - 5

7. Conjugate gradient method

- Seeks to generate \underline{d}_{k} directly without having to form H_{k} $\underline{d}_{k}=-\nabla \underline{f}\left(\underline{x}_{k}\right)+\beta_{k} \underline{d}_{k-1}$
$\int \frac{\nabla \underline{f}^{T}\left(\underline{x}_{k}\right) \nabla \underline{f}\left(\underline{x}_{k}\right)}{\nabla \underline{f}^{T}\left(\underline{x}_{k-1}\right) \nabla \underline{f}\left(\underline{x}_{k-1}\right)} \quad$ Fletcher-Reeves (FR)method $\beta_{k}=\left\{\frac{\nabla \underline{f}^{T}\left(\underline{x}_{k}\right)\left[\nabla \underline{f}\left(\underline{x}_{k}\right)-\nabla \underline{f}\left(\underline{x}_{k-1}\right)\right]}{\nabla \underline{f}^{T}\left(\underline{x}_{k-1}\right) \nabla \underline{f}\left(\underline{x}_{k-1}\right)} \quad\right.$ Polar-Ribiere-Poljak (PRP) method $\frac{\nabla \underline{f}^{T}\left(\underline{x}_{k}\right)\left[\nabla \underline{f}\left(\underline{x}_{k}\right)-\nabla \underline{f}\left(\underline{x}_{k-1}\right)\right]}{\left[\nabla \underline{f}\left(\underline{x}_{k}\right)-\nabla \underline{f}\left(\underline{x}_{k-1}\right)\right]^{T} \underline{d}_{k-1}}$ Sorensen-Wolfe (SW) method
- Solves $f(\underline{x})=\frac{1}{2} \underline{x}^{T} Q \underline{x}+\underline{b}^{T} \underline{x}+\underline{c}$ in \underline{n} iterations (quadratic termination properly)

Ways to Pick Descent Directions - 6

8. Quasi-Newton (or) Variable Metric Methods

- Since Newton's method minimizes quadratic functions in one iteration, how about approximating inverse of Hessian or Hessian as a function of \underline{x}_{k} and $\nabla \underline{f}\left(\underline{x}_{k}\right)$ etc.
$\begin{array}{ll}\text { INVERSE: } & H_{k+1}=H_{k}+\frac{\underline{p}_{k} \underline{p}_{k}^{T}}{\underline{p}_{k}^{T} \underline{q}_{k}}-\frac{H_{k} \underline{q}_{k} \underline{q}_{k}^{T} H_{k}}{\underline{q}_{k}^{T} H_{k} \underline{q}_{k}} \quad \begin{array}{l}\text { Davidon-Fletcher- } \\ \text { APPROX. }\end{array} \quad \begin{array}{l}\text { Powell (DFP) update }\end{array}\end{array}$
HESSIAN: $\quad B_{k+1}=B_{k}+\frac{\underline{q}_{k} \underline{q}_{k}^{T}}{\underline{p}_{k}^{T} \underline{q}_{k}}-\frac{B_{k} \underline{p}_{k} \underline{p}_{k}^{T} B_{k}}{\underline{p}_{k}^{T} B_{k} \underline{p}_{k}}$

$$
\begin{aligned}
& \underline{p}_{k}=\underline{x}_{k+1}-\underline{x}_{k}=\alpha_{k} \underline{d}_{k} \\
& \underline{q}_{k}=\nabla \underline{f}\left(\underline{x}_{k+1}\right)-\nabla \underline{f}\left(\underline{x}_{k}\right)=\underline{g}_{k+1}-\underline{g}_{k}
\end{aligned}
$$

- Has quadratic termination property (converges in n iterations for quadratic functions
- Note: don't need second derivative information

What do we want to do with these?

- Key questions:

1) Do the methods converge?
2) If so, do they converge to a local minimum or a stationary point (i.e., maximum, saddle point, minimum)?
3) What is the order (speed) of convergence ?
4) How does the choice of α_{k} affect convergence?
$\Rightarrow \quad$ We will focus on the problem of selecting α_{k} next.

Step Size Rules

\square Step size rules (or) Line search methods:

- Pick α_{k} to
- Guarantee a reduction in function value $f\left(\underline{x}_{k+1}\right)<f\left(\underline{x}_{k}\right)$
- Guarantee at least a specified reduction in the function value
- Minimize $f\left(\underline{x}_{k}+\alpha \underline{d}_{k}\right)$ with respect to α such that $\alpha>0$
- Know that if $\nabla \underline{f}\left(\underline{x}_{k}\right) \neq 0$. Then \exists a sufficiently small α э $f\left(\underline{x}_{k+1}\right)<f\left(\underline{x}_{k}\right)$ since $\nabla \underline{f}^{T}\left(\underline{x}_{k}\right) \underline{d}_{k} \neq 0$. We will show that a mere guarantee of reduction in f does not result in a reliable algorithm in the sense that the sequence $\left\{\underline{x}_{k}\right\}$ may converge to a nonstationary point !!
- Consider steepest descent iteration

$$
\underline{x}_{k+1}=\underline{x}_{k}-\alpha_{k} \nabla \underline{f}\left(\underline{x}_{k}\right)
$$

and the following algorithm for finding α_{k}

Naïve Methods May Not Work

Given $s>0, \beta \in(0,1)$, find $f\left(\underline{x}_{k}-s \nabla \underline{f}\left(\underline{x}_{k}\right)\right)$
Do while $f\left(\underline{x}_{k}-s \nabla \underline{f}\left(\underline{x}_{k}\right)\right) \geq f\left(\underline{x}_{k}\right)$

$$
s \leftarrow s \beta
$$

$$
s=\left|\frac{f\left(\underline{x}_{k}\right) \cdot \rho \cdot \gamma}{\nabla \underline{f}^{T}\left(\underline{x}_{k}\right) \cdot \underline{d}_{k}}\right|
$$

Evaluate $f\left(\underline{x}_{k}-s \nabla \underline{f}\left(\underline{x}_{k}\right)\right)$

$$
\rho \approx[0.1,0.3] ; \gamma \approx[2,10]
$$

end Do

$$
\alpha_{k}=s
$$

(or) see three point pattern method later

- PROBLEM: Can get stuck at a non-stationary point.

ㄱ Note: $g(0)=f\left(\underline{x}_{k}\right)$;

$$
\begin{aligned}
& g(\alpha)=f\left(\underline{x}_{k}+\alpha \underline{d}_{k}\right)=g(0)+\alpha g^{\prime}(0)+\ldots \\
& g^{\prime}(\alpha)=\nabla \underline{f}^{T}\left(\underline{x}_{k}+\alpha \underline{d}_{k}\right) \underline{d}_{k} ; g^{\prime}(0)=\nabla \underline{f}^{T}\left(\underline{x}_{k}\right) \underline{d}_{k} \\
& g(\alpha) \cong f\left(\underline{x}_{k}\right)+\alpha \nabla \underline{f}^{T}\left(\underline{x}_{k}\right) \underline{d}_{k}
\end{aligned}
$$

Counter Example - 1

\square Example

$$
\begin{aligned}
& f(x)= \begin{cases}\frac{3(1-|x|)^{2}}{4}-2(1-|x|) & \text { if }|x|>1 \\
x^{2}-1 \quad \text { if }|x| \leq 1\end{cases} \\
& \Rightarrow f(x)=\left\{\begin{array}{lr}
\frac{3(1-x)^{2}}{4}-2(1-x) & \text { if } x>1 \\
x^{2}-1 & -1 \leq x \leq 1 \\
\frac{3(1+x)^{2}}{4}-2(1+x) & \text { if } x<-1
\end{array}\right.
\end{aligned}
$$

$$
\nabla f(x)=\left\{\begin{array}{lr}
2+\frac{3}{2}(x-1) & \text { if } x>1 \\
2 x & -1 \leq x \leq 1 \\
-2+\frac{3}{2}(x+1) & \text { if } x<-1
\end{array}\right.
$$

$$
\nabla^{2} f(x)=\left\{\begin{array}{lr}
3 / 2 & \text { if } x>1 \\
2 & -1 \leq x \leq 1 \\
3 / 2 & \text { if } x<-1
\end{array}\right.
$$

Counter Example - 2

- Suppose $x_{0}=2 \Rightarrow x_{0}-\nabla f\left(x_{0}\right)=2-2-3 / 2=-3 / 2 \Rightarrow x_{1}=-3 / 2=-(1+1 / 2)$

$$
\begin{aligned}
& x_{2}=x_{1}-\nabla f\left(x_{1}\right)=-3 / 2+2+3 / 4=5 / 4=(1+1 / 4) \\
& x_{3}=x_{2}-\nabla f\left(x_{2}\right)=5 / 4-2-3 / 8=-9 / 8=-(1+1 / 8)
\end{aligned}
$$

- Pattern: $2-(1+1 / 2)(1+1 / 4)-(1+1 / 8)$... $\left(1+1 / 2^{2 k}\right)-\left(1+1 / 2^{2 k+1}\right)$

$$
\text { converges } \pm 1 \text { where } \nabla \underline{f}(x)=2 \text {. JAMMED!! }
$$

$\square \quad$ What is happening?
Although $f\left(x_{k+1}\right)<f\left(x_{k}\right)$, the difference $f\left(x_{k+1}\right)<f\left(x_{k}\right) \rightarrow 0$ as $\left|x_{k}\right| \rightarrow 1$
\square A possible way out: Need a step size rule that not only guarantees a decrease but also ensures that the function decrease $f\left(\underline{x}_{k+1}\right)-f\left(\underline{x}_{k}\right)$ never tends to zero as $\left\{\underline{x}_{k}\right\}$ tends to a nonstationary point (i.e., a nonoptimal point). There are three such rules: Armijo, Goldstein and Wolf's rules. We will discuss the first two here.

Armijo Step Size Rule

- Armijo rule

$$
\text { Given } s>0, \beta \in(0,1), \sigma \in\left(0, \frac{1}{2}\right)
$$

admissible α_{k}^{s}
Do while

$$
\begin{aligned}
& f\left(\underline{x}_{k}+s \underline{d}_{k}\right)-f\left(\underline{x}_{k}\right) \geq \sigma s \nabla \underline{f}^{T}\left(\underline{x}_{k}\right) \underline{d}_{k} \\
& s \leftarrow s \beta
\end{aligned}
$$

$$
\text { Evaluate } f\left(\underline{x}_{k}+s \underline{d}_{k}\right)
$$

end Do

$$
\alpha_{k}=s
$$

- Note that the method guarantees

$$
f\left(\underline{x}_{k}+\alpha_{k} \underline{d}_{k}\right) \leq f\left(\underline{x}_{k}\right)+\sigma \nabla \underline{f}^{T}\left(\underline{x}_{k}\right)\left[\underline{x}_{k+1}-\underline{x}_{k}\right]
$$

(or) $f\left(\underline{x}_{k}+\alpha_{k} \underline{d}_{k}\right) \leq f\left(\underline{x}_{k}\right)+\sigma \alpha_{k} \nabla \underline{f}^{T}\left(\underline{x}_{k}\right) \underline{d}_{k}=$ UPPER BOUND
Works well in practice, but may result in small α_{k}

Goldestein Step Size Rule

- Goldstein rule: To guard against small α_{k}, impose a lower bound on $f\left(x_{k+1}\right)$ Given $s>0, \beta_{1} \in(0,1), \sigma \in(0,1 / 2), \beta_{2} \in(0,1)$
Do until $f\left(\underline{x}_{k}\right)+(1-\sigma) s \nabla \underline{f}^{T}\left(\underline{x}_{k}\right) \underline{d}_{k} \leq f\left(\underline{x}_{k}+s \underline{d}_{k}\right) \leq f\left(\underline{x}_{k}\right)+\sigma s \nabla \underline{f}^{T}\left(\underline{x}_{k}\right) \underline{d}_{k}$

$$
\begin{aligned}
& \text { If } f\left(\underline{x}_{k}\right)+\sigma s \nabla \underline{f}^{T}\left(\underline{x}_{k}\right) \underline{d}_{k}<f\left(\underline{x}_{k}+s \underline{d}_{k}\right) \\
& \quad s \leftarrow s \beta_{1} \\
& \text { else }
\end{aligned}
$$

$$
\text { Typical } \sigma=\left[10^{-5}, 10^{-1}\right]
$$

$$
\text { if } f\left(\underline{x}_{k}\right)+(1-\sigma) s \nabla \underline{f}^{T}\left(\underline{x}_{k}\right) \underline{d}_{k}>f\left(\underline{x}_{k}+s \underline{d}_{k}\right)
$$

$$
s \leftarrow s / \beta_{2}
$$

end if
end Do
$\alpha_{k}=s$
$\mathrm{LB}: y=f\left(\underline{x}_{k}\right)+(1-\sigma) \alpha \nabla \underline{f}^{T}\left(\underline{x}_{k}\right) \underline{d}_{k}$
UB: $y=f\left(\underline{x}_{k}\right)+\sigma \alpha \nabla \underline{f}^{T}\left(\underline{x}_{k}\right) \underline{d}_{k}$

Application to Quadratic Function

Example: quadratic function: $f(\underline{x})=\frac{1}{2} \underline{x}^{T} Q \underline{x} ; \quad Q>0$

$$
f\left(\underline{x}_{k}+\alpha_{k} \underline{d}_{k}\right)=\frac{1}{2}\left(\underline{x}_{k}+\alpha_{k} \underline{d}_{k}\right)^{T} Q\left(\underline{x}_{k}+\alpha_{k} \underline{d}_{k}\right) ; \quad \alpha_{k}^{*}=\frac{-d_{k}^{T} Q \underline{x}_{k}}{\underline{d}_{k}^{T} Q \underline{d}_{k}}
$$

From Goldstein rule: $f\left(\underline{x}_{k+1}\right)-f\left(\underline{x}_{k}\right)=\frac{1}{2}\left(\underline{x}_{k}+\alpha \underline{d}_{k}\right)^{T} Q\left(\underline{x}_{k}+\alpha \underline{d}_{k}\right)-\frac{1}{2} \underline{x}_{k}^{T} Q \underline{x}_{k}$

$$
\begin{aligned}
& \qquad=\alpha \underline{d}_{k}^{T} Q \underline{x}_{k}+\frac{\alpha^{2}}{2} \underline{d}_{k}^{T} Q \underline{d}_{k} \\
& \Rightarrow(1-\sigma) \alpha \underline{d}_{k}^{T} Q \underline{x}_{k} \leq \alpha \underline{d}_{k}^{T} Q \underline{x}_{k}+\frac{\alpha^{2}}{2} \underline{d}_{k}^{T} Q \underline{d}_{k} \leq \sigma \alpha \underline{d}_{k}^{T} Q \underline{x}_{k} \\
& \Rightarrow(1-\sigma) \underline{d}_{k}^{T} Q \underline{x}_{k} \leq \underline{d}_{k}^{T} Q \underline{x}_{k}+\frac{\alpha}{2} \underline{d}_{k}^{T} Q \underline{d}_{k} \leq \sigma \underline{d}_{k}^{T} Q \underline{x}_{k} \longleftarrow \\
& \quad-(1-\sigma) \alpha_{k}^{*} \leq-\alpha_{k}^{*}+\frac{\alpha}{2} \leq-\sigma \alpha_{k}^{*} \Rightarrow 2 \sigma \alpha_{k}^{*} \leq \alpha \leq 2(1-\sigma) \alpha_{k}^{*} \\
& \quad \sigma=\frac{1}{2} \Rightarrow \alpha=\alpha_{k}^{*} \\
& \text { Armijo } \Rightarrow \alpha \leq 2(1-\sigma) \alpha_{k}^{*}
\end{aligned}
$$

Line Search for Optimal Step Size

\square Minimize $f\left(\underline{x}_{k}+\alpha \underline{d}_{k}\right)$ with respect to α such that $\alpha \geq 0$
Pick α_{k} to minimize $g(\alpha)=f\left(\underline{x}_{k}+\alpha \underline{d}_{k}\right)$, i.e., get the most decrease in the direction \underline{d}_{k}
From the optimality condition $\left.\frac{\partial g(\alpha)}{\partial \alpha}\right|_{\alpha^{*}}=0 \Rightarrow \nabla \underline{f}^{T}\left(\underline{x}_{k}+\alpha^{*} \underline{d}_{k}\right) \underline{d}_{k}=0$
$\square \underline{\text { What do we know? } g(0)=f\left(\underline{x}_{k}\right) ;\left.\frac{\partial g(\alpha)}{\partial \alpha}\right|_{\alpha=0}=g^{\prime}(0)=\nabla \underline{f}^{T}\left(\underline{x}_{k}\right) \underline{d}_{k}, ~(0)}$
For Newton type methods, also knows

$$
\left.\frac{\partial^{2} g(\alpha)}{\partial \alpha^{2}}\right|_{\alpha=0}=g^{\prime \prime}(0)=\underline{d}_{k}^{T} \nabla^{2} f\left(\underline{x}_{k}\right) \underline{d}_{k}>0
$$

- We will use $g(0), g^{\prime}(0)$ and possibly $g^{\prime \prime}(0)$ to limit the range $(0, \infty)$ for α to a finite range $\left(l_{1}, r_{1}\right)$ later.
- We assume that $g(\alpha) \rightarrow \infty$ as $\alpha \rightarrow \infty \Rightarrow$ Existence of minimum guaranteed by Weirstrauss' theorem.

Schemes to Find α^{*}

\exists many schemes to find α^{*}. They can be broadly divided into three categories
\square Those that use function evaluations only

$$
g(\alpha)=f\left(\underline{x}_{k}+\alpha \underline{d}_{k}\right) \longleftrightarrow \text { Fibonacci search }
$$

Combined Golden section and Quadratic interpolation is the best

- Those that use function and derivative information

$$
g(\alpha)=f\left(\underline{x}_{k}+\alpha_{k} \underline{d}_{k}\right) ; g^{\prime}(\alpha)=\nabla \underline{f}^{T}\left(\underline{x}_{k}+\alpha_{k} \underline{d}_{k}\right) \underline{d}_{k}<_{\text {Cubic interpolation }}^{\text {Secant method }}
$$

\square Those that use function, derivative and second derivative info
\rightarrow Newton's method (rarely used for line serach)

Key Idea: Unimodality of Functions

\square Assume $\mathrm{g}(\alpha)$ is a strictly unimodal function on an interval $L_{1}=\left[l_{1}, r_{1}\right]$, i.e., a single global minimum. Unimodal functions need not be smooth.
\square Def n : A function $g(\alpha)$ is unimodal over an interval $L_{1}=\left[l_{1}, r_{1}\right]$ if α_{1} and α_{2} are two points in L_{1} s.t. $\alpha_{1}<\alpha_{2}<\alpha^{*}$ or $\alpha^{*}<\alpha_{1}<\alpha_{2}$. Then $\mathrm{g}\left(\alpha_{1}\right)>\mathrm{g}\left(\alpha_{2}\right)>\mathrm{g}\left(\alpha^{*}\right) \quad$ (or) $\mathrm{g}\left(\alpha^{*}\right)<\mathrm{g}\left(\alpha_{1}\right)<\mathrm{g}\left(\alpha_{2}\right)$

A unimodal function is monotonic on either side of α^{*}

- Note: a strictly convex function is unimodal
\square How to use it?: Suppose $\alpha_{1}, \alpha_{2} \in\left[l_{1}, r_{1}\right]$ with $\alpha_{1}<\alpha_{2}$ and we find

1. $g\left(\alpha_{1}\right)>g\left(\alpha_{2}\right)$ then $\alpha^{*} \in\left[\alpha_{1}, r_{1}\right]$
2. $g\left(\alpha_{1}\right)<g\left(\alpha_{2}\right)$ then $\alpha^{*} \in\left[l_{1}, \alpha_{2}\right]$
3. $g\left(\alpha_{1}\right)=g\left(\alpha_{2}\right)$ then $\alpha^{*} \in\left[\alpha_{1}, \alpha_{2}\right]$

Bracketing using Unimodal Property

The unimodality assumption helps us to bracket the minimum into smaller and smaller subintervals, e_{k}

- Suppose want to find the minimum sized interval $\left[l_{1}, r_{1}\right]$ using N function evaluations. Also want to evaluate function only once in going from one interval to the next

$$
\left[l_{k}, r_{k}\right] \underset{\substack{\text { one function } \\ \text { evaluation }}}{\rightarrow}\left[l_{k+1}, r_{k+1}\right]
$$

Fibonacci Search - 1

\square We can accomplish this using Fibonacci search first discovered by Leonardo of Pisa (1202). Independent of $g(\alpha)$ as long as $g(\alpha)$ is unimodal

- If $N=2$, pick α_{1} and α_{2} at center and close to each other

$$
\begin{aligned}
& {\left[l_{1}, r_{1}\right]} \\
& e_{2} \approx \frac{e_{1}}{2}
\end{aligned}
$$

- If $N=3$... two step process

Note: α_{1} or α_{2} are in place

First isolate which $\frac{2}{3}$ of interval α^{*} lies in $\left[l_{1}, \alpha_{2}\right]$ or $\left[\alpha_{1}, r_{1}\right]$
Then, reduce $\left[l_{1}, \alpha_{2}\right] \sim\left[\alpha_{1}, r_{1}\right]$ by $\frac{1}{2}$
$\Rightarrow e_{3}=\frac{e_{2}}{2}=\frac{2}{3} \cdot \frac{1}{2} \cdot e_{1}=\frac{e_{1}}{3}$

Fibionacci Search - 2

- If $N=4$.... 3 step process

Rabbits

- One month to fertility
- One month to produce pair

$$
\mathrm{e}_{2}=\frac{3}{5} e_{1}
$$

- Never die

$l_{1} l_{1}+\frac{\left(r_{1}-l_{1}\right)}{5}$ Evaluate to left or right of $l_{1}+\frac{\left(r_{1}-l_{1}\right)}{5}$

$$
\begin{array}{cccc}
N & 2 & 3 & 4 \\
e_{N} & \frac{1}{2} & \frac{1}{3} & \frac{1}{5}
\end{array} \Rightarrow F_{k}=F_{k-1}+F_{k-2}
$$

Fibionacci Search - 3

- For general N, let $k=1,2, . ., N-1$. The Fibionacci method uses at step k

$$
\begin{aligned}
& \alpha_{1}=l_{k}+\frac{F_{N-1-k}}{F_{N+1-k}}\left(r_{k}-l_{k}\right) \\
& \alpha_{2}=l_{k}+\frac{F_{N-k}}{F_{N+1-k}}\left(r_{k}-l_{k}\right)
\end{aligned}
$$

where except for $k=1$, one of the points α_{1} or α_{2} was already evaluated at a previous iteration.
where F_{k} are the Fibionacci numbers

SYMMETRIC INTERVALS

－Interval Reduction for Fibionacci Search

$$
r_{k}-\alpha_{2}=r_{k}-l_{k}-\frac{F_{N-k}}{F_{N+1-k}}\left(r_{k}-l_{k}\right)=\left(r_{k}-l_{k}\right) \frac{F_{N-k-1}}{F_{N+1-k}}=\alpha_{1}-l_{1}
$$

where for $k=N-1$ ，the last point is at a place close the remaining one，because

$$
\alpha_{1}=l_{N-1}+\frac{1}{2}\left(r_{N-1}-l_{N-1}\right) \quad ; \quad \alpha_{2}=l_{N-1}+\frac{1}{2}\left(r_{N-1}-l_{N-1}\right)
$$

Basic result：$\quad r_{N}-l_{N}=\frac{r_{1}-l_{1}}{F_{N}}+\varepsilon$ smallest possible reduction

$$
\text { and } \quad r_{k}-l_{k}=\frac{F_{N-k+1}}{F_{N}}\left(r_{1}-l_{1}\right)
$$

\square Proof：

$$
\begin{aligned}
& \text { rrooI: } \\
r_{k+1} & -l_{k+1}=\frac{F_{N-k}}{F_{N+1-k}}\left(r_{k}-l_{k}\right) \\
\Rightarrow & r_{2}-l_{2}=\frac{F_{N-1}}{F_{N}}\left(r_{1}-l_{1}\right) ; r_{3}-l_{3}=\frac{F_{N-2}}{F_{N-1}} \cdot \frac{F_{N-1}}{F_{N}}\left(r_{1}-l_{1}\right)=\frac{F_{N-2}}{F_{N}}\left(r_{1}-l_{1}\right) \\
\Rightarrow & r_{k}-l_{k}=\frac{F_{N-k+1}}{F_{N}}\left(r_{1}-l_{1}\right) \Rightarrow r_{N}-l_{N}=\frac{F_{1}}{F_{N}}\left(r_{1}-l_{1}\right)=\frac{1}{F_{N}}\left(r_{1}-l_{1}\right)
\end{aligned}
$$

Advantages and Disadvantages

- Advantages of Fibionacci method:
- Smallest interval for a given N
- No derivative information
- Simple to implement
\square Disadvantages of Fibionacci method:
- Need to prespecify N. Also need to compute (or store) Fibionacci numbers.

Luckily, don't have to if N is large. Leads to GOLDEN SECTION SEARCH
\square Golden section search retains
a) Symmetry of interval reduction
b) Only one function evaluation per step

Consider the limiting ratio of $\frac{F_{N}}{F_{N-1}} \triangleq \tau$ as $N \rightarrow \infty$

$$
\begin{gathered}
F_{N}=F_{N-1}+F_{N-2} \Rightarrow \frac{F_{N}}{F_{N-1}}=1+\frac{F_{N-2}}{F_{N-1}} \\
\text { As } N \rightarrow \infty \Rightarrow \tau=1+\frac{1}{\tau} \Rightarrow \tau^{2}-\tau-1=0 \quad \text { (or) } \tau=1.618
\end{gathered}
$$

Golden Section Search

Note: $\frac{1}{\tau}=\tau-1=0.618$

Note that $\alpha_{G_{1}}$ or $\alpha_{G_{2}}$ is in the correct position for the next step.

$$
\text { since } \frac{1}{\tau^{2}}=1-\frac{1}{\tau}
$$

Golden Section vs. Fibionacci Search

Golden section method yields 17% larger interval than Fibionacci for the same

$$
N \Rightarrow \lim _{N \rightarrow \infty} \frac{F_{N}}{\tau^{N-1}}=1.17 \quad \text { Characteristic Equation }: z^{2}-z-1=0
$$

- Proof:

$$
\begin{gathered}
F_{k}=F_{k-1}+F_{k-2} \\
F_{k}=A \tau_{1}^{k}+B\left(\frac{-1}{\tau}\right)^{k} \\
\left.F_{0}=F_{1}=1 \Rightarrow \begin{array}{c}
A+B=1 \\
A \tau-\frac{B}{\tau}=1
\end{array}\right\} \Rightarrow \begin{array}{l}
A=\frac{1+1 / \sqrt{5}}{2} \\
B=\frac{1-1 / \sqrt{5}}{2} \\
F_{N}=\left[\tau^{N+1}-\left(\frac{-1}{\tau}\right)^{N+1}\right] / \sqrt{5} \\
\lim _{N \rightarrow \infty} \frac{F_{N}}{\tau^{N-1}}=\frac{\tau^{2}}{\sqrt{5}}=1.17
\end{array} \begin{array}{l}
\begin{array}{l}
\text { Golc } \\
\text { than } \\
\text { to im }
\end{array}
\end{array}
\end{gathered}
$$

Golden section search is 17% less efficient than Fibionacci search, but is much easier to implement.

Summary

\square Reviewed necessary and sufficient conditions of optimality
\square Gradients and Contour Maps

- Gradient is orthogonal to contour curves
- Descent directions
- Algorithms for Unconstrained Minimization
- Steepest descent, Diagonally scaled steepest descent, Newton, Discretized Newton, Gauss-Newton, Conjugate gradient, QuasiNewton
\square Step Size Rules (or) Line Search Methods
- Armijo, Goldstein, Fibionacci search and Golden section search
- Next: combine Golden section with quadratic interpolation

