

Prof. Krishna R. Pattipati Dept. of Electrical and Computer Engineering University of Connecticut Contact: krishna@engr.uconn.edu (860) 486-2890

ECE 6437

Computational Methods for Optimization

Fall 2009 September 8, 2009

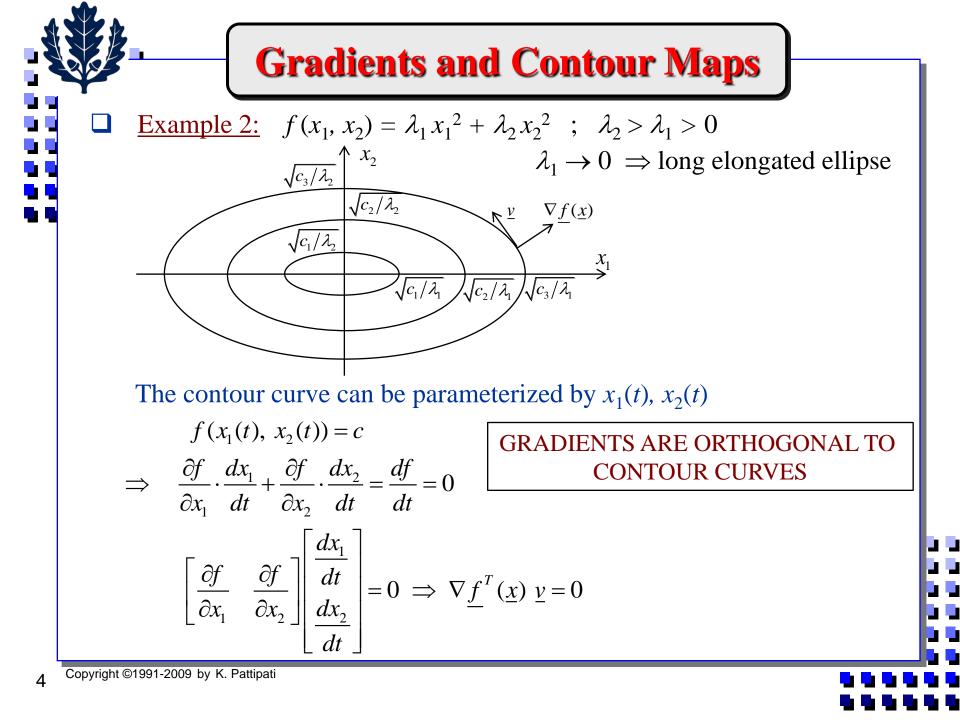


Outline of Lecture 2

- **Review of Lecture 1**
- Gradients and Contour Maps
- Algorithms for Unconstrained Minimization ...
 Answers to the Dynamic Question
- Generalized Gradient Methods
- □ Step Size Rules (or) Line Search Methods

Review of Lecture 1

Necessary and sufficient conditions for a local minimum Necessary conditions Sufficient conditions $\nabla f(\underline{x}^*) = \underline{0}$ $\nabla f(\underline{x}^*) = \underline{0}$ $\nabla^2 f(x^*) > 0$ $\nabla^2 f(x^*) \ge 0$ For general $f(\underline{x})$ local minimum $\neq \Rightarrow$ global minimum For convex $f(\underline{x})$ local minimum \Leftrightarrow global minimum Gradient and contour maps Contour or equivalent surface: $f(\underline{x}) = c \implies \{x \in \Omega : f(\underline{x}) = c\}$ **Example 1:** $f(x_1, x_2) = x_1 + x_2 + x_2 + x_2$ X_1 *c* = 2 c = 1c = 0



Negative Gradient as Descent Direction

- Want $\underline{x}_0 \to \underline{x}_1 \to \underline{x}_2 \to \ldots \to \underline{x}_k \to \underline{x}_{k+1} \to \ldots \to \underline{x}^* \ni f(\underline{x}_0) \ge f(\underline{x}_1) \ge$ $f(\underline{x}_2) \ge \ldots \ge f(\underline{x}^*)$
 - \Rightarrow f is decreased at each iteration (or) we move from one contour to the next such that $c_k \ge c_{k+1}$. | DESCENT ALGORITHMS
- **Q:** How do we move from \underline{x}_k to $\underline{x}_{k+1} \ni f(\underline{x}_{k+1}) \leq f(\underline{x}_k)$?

 $\mathcal{N}^{\nabla \underline{f}(\underline{x}_k)}$

c₂

 C_3

1. Recall that $\nabla f(\underline{x}_k)$ is the direction of increase in f at $\underline{x} = \underline{x}_k$ then $-\nabla f(\underline{x}_k)$ is the direction of (local) decrease in f. So, one way to

move from \underline{x}_k to \underline{x}_{k+1} is via: $\underline{x}_{k+1} = \underline{x}_k - \alpha_k \nabla f(\underline{x}_k), \quad \alpha_k \ge 0$ $-\alpha_k \nabla f(\underline{x}_k)$

Steepest descent, Gradient or Cauchy's method

From Taylor series expansion

$$f\left(\underline{x}_{k+1}\right) = f\left(\underline{x}_{k} - \alpha_{k}\nabla \underline{f}\left(\underline{x}_{k}\right)\right)$$

$$= f\left(\underline{x}_{k}\right) - \alpha_{k} \nabla \underline{f}^{T}\left(\underline{x}_{k}\right) \nabla \underline{f}\left(\underline{x}_{k}\right) + O(\alpha$$

 \Rightarrow For sufficiently small $\alpha_k: f(\underline{x}_{k+1}) < f(\underline{x}_k)$

 x_2

 $-\nabla \underline{f}(\underline{x}_k)$

More General Descent Directions

2. What are the general directions we can take to go from \underline{x}_k to \underline{x}_{k+1} ? $\underline{x}_{k+1} = \underline{x}_k + \alpha_k \underline{d}_k$

 $\underline{d}_k = -\nabla \underline{f}(\underline{x}_k) \implies \text{Gradient method}$

What are the restrictions on \underline{d}_k to ensure $f(\underline{x}_{k+1}) < f(\underline{x}_k)$?

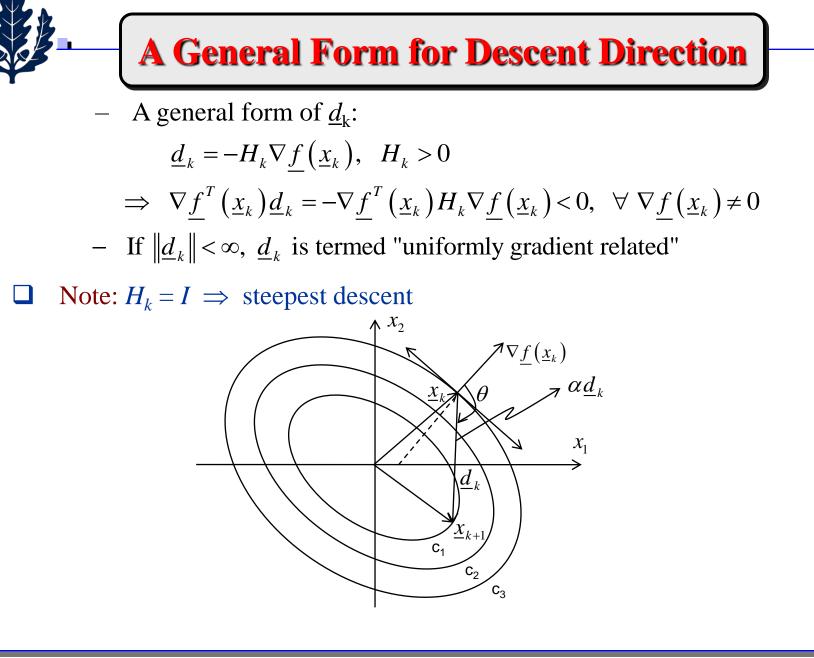
- By def^{*n*}: $f(\underline{x}_{k+1}) = f(\underline{x}_k + \alpha \underline{d}_k) = f(\underline{x}_k) + \alpha \nabla \underline{f}^T(\underline{x}_k) \underline{d}_k + O(\alpha^2)$

Directional derivative

- $\nabla \underline{f}'(\underline{x}_k) \underline{d}_k$ = Directional derivative of f at \underline{x}_k in the direction \underline{d}_k
 - = Rate of change of f in the direction \underline{d}_k with respect to α
 - = Inner product of the gradient at \underline{x}_k and the selected direction \underline{d}_k
 - For sufficiently small α , we can guarantee $f(\underline{x}_{k+1}) < f(\underline{x}_k)$ if
 - If $\nabla \underline{f}^{T}(\underline{x}_{k})\underline{d}_{k} < 0 \Rightarrow \underline{d}_{k}$ is the descent direction since it ensures a reduction in the function value

- Recall that
$$\nabla \underline{f}^{T}(\underline{x}_{k})\underline{d}_{k} = \left\|\nabla \underline{f}(\underline{x}_{k})\right\|_{2}\left\|\underline{d}_{k}\right\|_{2}\cos\theta$$

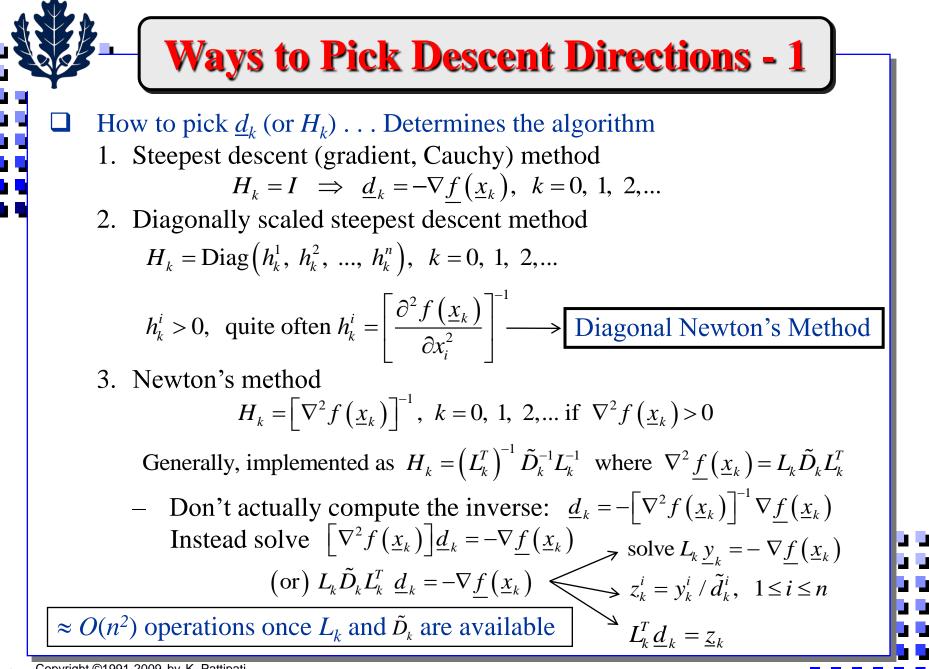
$$\nabla \underline{f}^{T}(\underline{x}_{k})\underline{d}_{k} < 0 \implies \theta \in (90^{\circ}, 180^{\circ}) \text{ or } (-180^{\circ}, -90^{\circ})$$



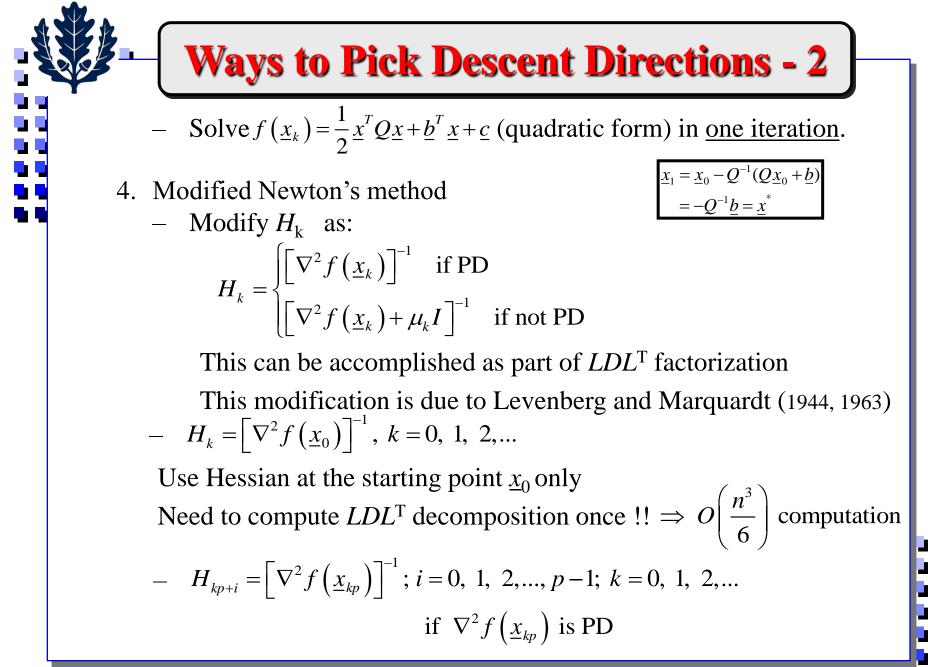
$$\underline{x}_{k+1} = \underline{x}_k + \alpha_k \underline{d}_k = \underline{x}_k - \alpha_k H_k \nabla \underline{f}(\underline{x}_k), \quad k = 0, 1, 2, \dots$$

Key questions:

- 1. How to pick \underline{d}_k (or equivalently H_k)
- 2. How to pick α_k to get a "good sized" reduction in the function value
 - 2.1 Pick α_k to get any decrease in function value $f(\underline{x}_{k+1}) < f(\underline{x}_k)$... won't work !!
 - 2.2 Pick α_k to get a specified decrease in function value Armijo and Goldstein step size rules
 - 2.3 Pick α_k to get maximum decrease in function value $f\left(\underline{x}_k + \alpha_k \underline{d}_k\right) = \min_{\alpha \ge 0} f\left(\underline{x}_k + \alpha \underline{d}_k\right)$

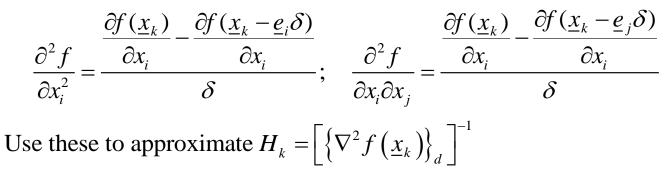


Copyright ©1991-2009 by K. Pattipati



Ways to Pick Descent Directions - 3

5. Discretized Newton's method



6. Gauss-Newton method (specifically for nonlinear least squares problem. Levenberg -Marquardt was developed in this context)

$$\underline{g} = (g_1 \ g_2 \ \dots \ g_m)^T$$

$$\min_{\underline{x}} f(\underline{x}) = \frac{1}{2} \underline{g}^T (\underline{x}) \underline{g} (\underline{x}) = \frac{1}{2} \sum_{i=1}^m g_i^2 (\underline{x})$$

$$H_k = \begin{cases} \left[\nabla \underline{g} (\underline{x}_k) \nabla \underline{g}^T (\underline{x}_k) \right]^{-1} & \text{if invertible} \\ \left[\nabla \underline{g} (\underline{x}_k) \nabla \underline{g}^T (\underline{x}_k) + \mu I \right]^{-1} & \text{if not} \end{cases}$$

Ways to Pick Descent Directions - 4

Note 1:

$$\nabla \underline{f}(\underline{x}_{k}) = \nabla \underline{g}(\underline{x}_{k}) \underline{g}(\underline{x}_{k})$$

$$\nabla \underline{\underline{g}}(\underline{x}_{k}) = \left[\nabla \underline{g}_{1}(\underline{x}_{k}) \nabla \underline{g}_{2}(\underline{x}_{k}) \dots \nabla \underline{g}_{m}(\underline{x}_{k})\right] \quad n \text{ by } m \text{ matrix}$$

$$\nabla \underline{g}^{T} \sim \text{ Jacobian}$$

For this problem, Gauss-Newton method takes the form:

$$\underline{x}_{k+1} = \underline{x}_k - \alpha_k \left[\nabla \underline{\underline{g}} (\underline{x}_k) \nabla \underline{\underline{g}}^T (\underline{x}_k) \right]^{-1} \nabla \underline{\underline{g}} (\underline{x}_k) \underline{\underline{g}} (\underline{x}_k)$$

 $\Box \quad \text{Note 2:} \quad$

- 1) Levenberg-Marquardt iteration first appeared in this form
- 2) This iteration also occurs in maximum likelihood (ML)identification of linear dynamic systems in a slightly complex form
- 3) Incremental Gradient (used in Neural network training)
- Extended Kalman filter is basically an incremental version of Gauss-Newton

Ways to Pick Descent Directions - 5
Conjugate gradient method
- Seeks to generate
$$\underline{d}_k$$
 directly without having to form H_k
 $\underline{d}_k = -\nabla \underline{f}(\underline{x}_k) + \beta_k \underline{d}_{k-1}$

$$\beta_k = \begin{cases} \frac{\nabla \underline{f}^T(\underline{x}_k) \nabla \underline{f}(\underline{x}_k)}{\nabla \underline{f}^T(\underline{x}_{k-1}) \nabla \underline{f}(\underline{x}_{k-1})} & \text{Fletcher-Reeves (FR)method} \\ \frac{\nabla \underline{f}^T(\underline{x}_k) [\nabla \underline{f}(\underline{x}_k) - \nabla \underline{f}(\underline{x}_{k-1})]}{\nabla \underline{f}^T(\underline{x}_{k-1}) \nabla \underline{f}(\underline{x}_{k-1})} & \text{Polar-Ribiere-Poljak (PRP) method} \\ \frac{\nabla \underline{f}^T(\underline{x}_k) [\nabla \underline{f}(\underline{x}_k) - \nabla \underline{f}(\underline{x}_{k-1})]}{\nabla \underline{f}^T(\underline{x}_k) - \nabla \underline{f}(\underline{x}_{k-1})} & \text{Sorensen-Wolfe (SW) method} \end{cases}$$

- Solves $f(\underline{x}) = \frac{1}{2} \underline{x}^T Q \underline{x} + \underline{b}^T \underline{x} + \underline{c}$ in <u>*n*</u> iterations (quadratic termination properly)

Ways to Pick Descent Directions - 6

- Quasi-Newton (or) Variable Metric Methods 8.
 - Since Newton's method minimizes quadratic functions in one iteration, how about approximating inverse of Hessian or Hessian as a function of \underline{x}_k and $\nabla f(\underline{x}_k)$ etc.

INVERSE:
$$H_{k+1} = H_k + \frac{\underline{p}_k \underline{p}_k^T}{\underline{p}_k^T \underline{q}_k} - \frac{H_k \underline{q}_k \underline{q}_k^T H_k}{\underline{q}_k^T H_k \underline{q}_k}$$

Davidon-Fletcher-Powell (DFP) update

IN

HESSIAN: $B_{k+1} = B_k + \frac{\underline{q}_k \underline{q}_k^T}{\underline{p}_k^T \underline{q}_k} - \frac{B_k \underline{p}_k \underline{p}_k^T B_k}{\underline{p}_k^T B_k \underline{p}_k}$ $\underline{p}_{k} = \underline{x}_{k+1} - \underline{x}_{k} = \alpha_{k} \underline{d}_{k}$

Broyden-Fletcher-Goldfarb-Shanno (BFGS) update

$$\underline{q}_{k} = \nabla \underline{f}(\underline{x}_{k+1}) - \nabla \underline{f}(\underline{x}_{k}) = \underline{g}_{k+1} - \underline{g}_{k}$$

- Has quadratic termination property (converges in n iterations for quadratic functions
- Note: don't need second derivative information

What do we want to do with these?

Key questions:

- 1) Do the methods converge?
- 2) If so, do they converge to a local minimum or a stationary point (i.e., maximum, saddle point, minimum)?
- 3) What is the order (speed) of convergence ?
- 4) How does the choice of α_k affect convergence ?
- \Rightarrow We will focus on the problem of selecting α_k next.

Step Size Rules

- Step size rules (or) Line search methods:
 - Pick α_k to
 - Guarantee a reduction in function value $f(\underline{x}_{k+1}) < f(\underline{x}_k)$
 - Guarantee at least a specified reduction in the function value
 - Minimize $f(\underline{x}_k + \alpha \underline{d}_k)$ with respect to α such that $\alpha > 0$
 - Know that if $\nabla \underline{f}(\underline{x}_k) \neq 0$. Then \exists a sufficiently small $\alpha \ni f(\underline{x}_{k+1}) < f(\underline{x}_k)$ since $\nabla \underline{f}^T(\underline{x}_k) \underline{d}_k \neq 0$. We will show that a mere guarantee of reduction in *f* does not result in a reliable algorithm in the sense that the sequence $\{\underline{x}_k\}$ may converge to a nonstationary point !!
 - Consider steepest descent iteration

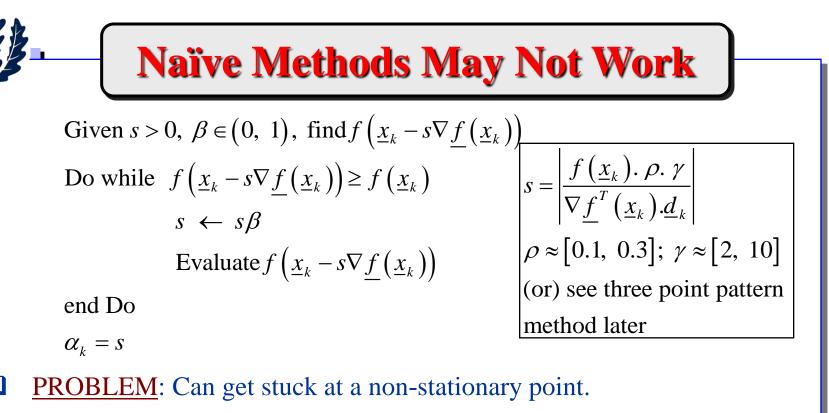
$$\underline{x}_{k+1} = \underline{x}_k - \alpha_k \nabla \underline{f}(\underline{x}_k)$$

and the following algorithm for finding α_k

16

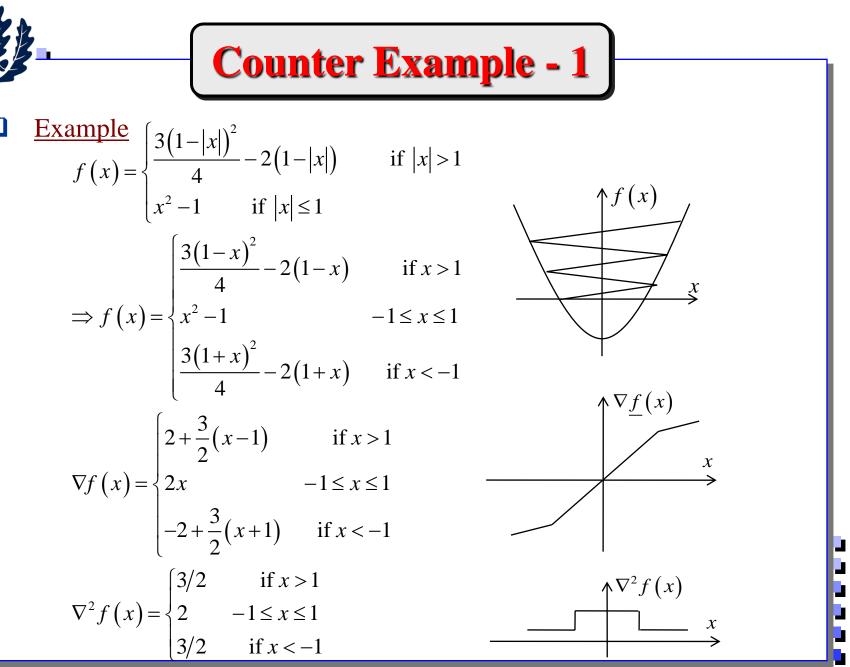
Increasing

complexity



Note:
$$g(0) = f(\underline{x}_k);$$

 $g(\alpha) = f(\underline{x}_k + \alpha \underline{d}_k) = g(0) + \alpha g'(0) + ...$
 $g'(\alpha) = \nabla \underline{f}^T (\underline{x}_k + \alpha \underline{d}_k) \underline{d}_k; g'(0) = \nabla \underline{f}^T (\underline{x}_k) \underline{d}_k$
 $g(\alpha) \cong f(\underline{x}_k) + \alpha \nabla \underline{f}^T (\underline{x}_k) \underline{d}_k$



Copyright ©1991-2009 by K. Pattipati

• Suppose
$$x_0 = 2 \Rightarrow x_0 - \nabla f(x_0) = 2 - 2 - \frac{3}{2} = -\frac{3}{2} \Rightarrow x_1 = -\frac{3}{2} = -(1 + \frac{1}{2})$$

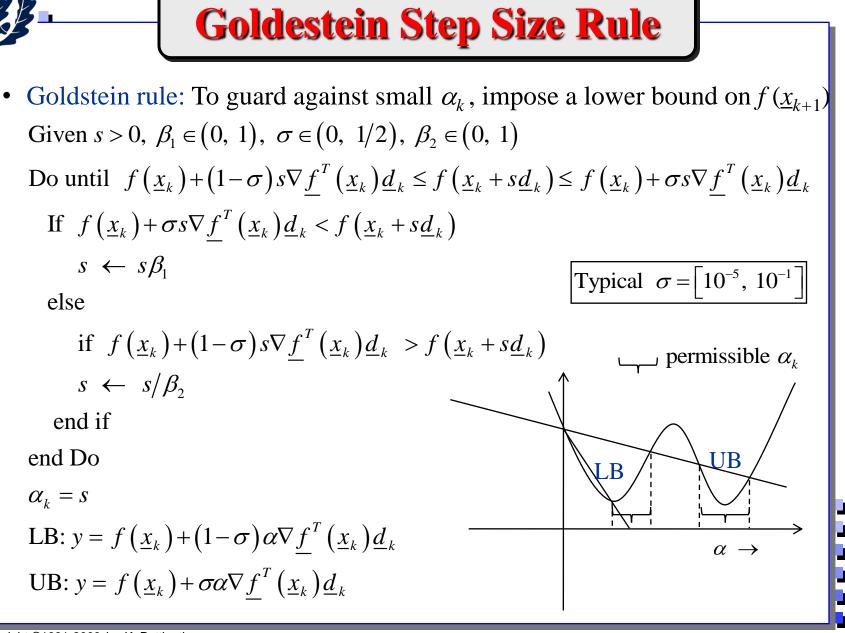
 $x_2 = x_1 - \nabla f(x_1) = -\frac{3}{2} + 2 + \frac{3}{4} = \frac{5}{4} = (1 + \frac{1}{4})$
 $x_3 = x_2 - \nabla f(x_2) = \frac{5}{4} - 2 - \frac{3}{8} = -\frac{9}{8} = -(1 + \frac{1}{8})$
• Pattern: $2 -(1 + \frac{1}{2}) (1 + \frac{1}{4}) -(1 + \frac{1}{8}) \dots (1 + \frac{1}{2^{2k}}) -(1 + \frac{1}{2^{2k+1}})$
converges ± 1 where $\nabla \underline{f}(x) = 2$. JAMMED!!
What is happening?

Although $f(x_{k+1}) < f(x_k)$, the difference $f(x_{k+1}) < f(x_k) \to 0$ as $|x_k| \to 1$

A possible way out: Need a step size rule that not only guarantees a decrease but also ensures that the function decrease $f(\underline{x}_{k+1}) - f(\underline{x}_k)$ <u>never</u> tends to zero as $\{\underline{x}_k\}$ tends to <u>a nonstationary point</u> (i.e., a nonoptimal point). There are three such rules: Armijo, Goldstein and Wolf's rules. We will discuss the first two here. **Armijo Step Size Rule**

Armijo rule

Given
$$s > 0$$
, $\beta \in (0, 1)$, $\sigma \in \left(0, \frac{1}{2}\right)$ admissible α_k^s
Do while
 $f\left(\underline{x}_k + s\underline{d}_k\right) - f\left(\underline{x}_k\right) \ge \sigma s \nabla \underline{f}^T\left(\underline{x}_k\right) \underline{d}_k$
 $s \leftarrow s\beta$
Evaluate $f\left(\underline{x}_k + s\underline{d}_k\right)$
end Do
 $\alpha_k = s$
Note that the method guarantees
 $f\left(\underline{x}_k + \alpha_k \underline{d}_k\right) \le f\left(\underline{x}_k\right) + \sigma \nabla \underline{f}^T\left(\underline{x}_k\right) \left[\underline{x}_{k+1} - \underline{x}_k\right]$
(or) $f\left(\underline{x}_k + \alpha_k \underline{d}_k\right) \le f\left(\underline{x}_k\right) + \sigma \alpha_k \nabla \underline{f}^T\left(\underline{x}_k\right) \underline{d}_k$ = UPPER BOUND
Works well in practice, but may result in small α_k



Application to Quadratic Function
Example: quadratic function:
$$f(\underline{x}) = \frac{1}{2} \underline{x}^T Q \underline{x}$$
; $Q > 0$
 $f(\underline{x}_k + \alpha_k \underline{d}_k) = \frac{1}{2} (\underline{x}_k + \alpha_k \underline{d}_k)^T Q(\underline{x}_k + \alpha_k \underline{d}_k); \quad \alpha_k^* = \frac{-\underline{d}_k^T Q \underline{x}_k}{\underline{d}_k^T Q \underline{d}_k}$
From Goldstein rule: $f(\underline{x}_{k+1}) - f(\underline{x}_k) = \frac{1}{2} (\underline{x}_k + \alpha \underline{d}_k)^T Q(\underline{x}_k + \alpha \underline{d}_k) - \frac{1}{2} \underline{x}_k^T Q \underline{x}_k$
 $= \alpha \underline{d}_k^T Q \underline{x}_k + \frac{\alpha^2}{2} \underline{d}_k^T Q \underline{d}_k$
 $\Rightarrow (1 - \sigma) \alpha \underline{d}_k^T Q \underline{x}_k \le \alpha \underline{d}_k^T Q \underline{x}_k + \frac{\alpha^2}{2} \underline{d}_k^T Q \underline{d}_k \le \sigma \alpha \underline{d}_k^T Q \underline{x}_k$
 $\Rightarrow (1 - \sigma) \alpha \underline{d}_k^T Q \underline{x}_k \le \alpha \underline{d}_k^T Q \underline{x}_k + \frac{\alpha^2}{2} \underline{d}_k^T Q \underline{d}_k \le \sigma \alpha \underline{d}_k^T Q \underline{x}_k$
 $\Rightarrow (1 - \sigma) \underline{d}_k^T Q \underline{x}_k \le d_k^T Q \underline{x}_k + \frac{\alpha}{2} \underline{d}_k^T Q \underline{d}_k \le \sigma \alpha \underline{d}_k^T Q \underline{x}_k$
 $-(1 - \sigma) \alpha_k^* \le -\alpha_k^* + \frac{\alpha}{2} \le -\sigma \alpha_k^* \Rightarrow 2\sigma \alpha_k^* \le \alpha \le 2(1 - \sigma) \alpha_k^*$
 $\sigma = \frac{1}{2} \Rightarrow \alpha = \alpha_k^*$
Armijo $\Rightarrow \alpha \le 2(1 - \sigma) \alpha_k^*$

Line Search for Optimal Step Size

Minimize $f(\underline{x}_k + \alpha \underline{d}_k)$ with respect to α such that $\alpha \ge 0$

Pick α_k to minimize $g(\alpha) = f(\underline{x}_k + \alpha \underline{d}_k)$, i.e., get the most decrease in the direction \underline{d}_k

From the optimality condition $\frac{\partial g(\alpha)}{\partial \alpha}\Big|_{\alpha^*} = 0 \implies \nabla \underline{f}^T (\underline{x}_k + \alpha^* \underline{d}_k) \underline{d}_k = 0$

 $\square \quad \underline{\text{What do we know}}? \ g(0) = f(\underline{x}_k); \ \frac{\partial g(\alpha)}{\partial \alpha} \bigg|_{\alpha=0} = g'(0) = \nabla \underline{f}^T(\underline{x}_k) \underline{d}_k$

For Newton type methods, also knows $\frac{\partial^2 g(\alpha)}{\partial \alpha^2} \bigg|_{\alpha=0} = g''(0) = \underline{d}_k^T \nabla^2 f(\underline{x}_k) \underline{d}_k > 0$

• We will use g(0), g'(0) and possibly g''(0) to limit the range $(0, \infty)$ for α to a finite range (l_1, r_1) later.

 $g(\alpha)$

• We assume that $g(\alpha) \to \infty$ as $\alpha \to \infty \Rightarrow$ Existence of minimum guaranteed by Weirstrauss' theorem.

Schemes to Find α*

 \exists many schemes to find α^* . They can be broadly divided into three categories

Those that use function evaluations only

Fibonacci search

 $g(\alpha) = f(\underline{x}_k + \alpha \underline{d}_k)$ \longleftrightarrow Golden section search

[▶] Quadratic interpolation

Combined Golden section and Quadratic interpolation is the best

□ Those that use function and derivative information

 $g(\alpha) = f(\underline{x}_k + \alpha_k \underline{d}_k); g'(\alpha) = \nabla \underline{f}^T (\underline{x}_k + \alpha_k \underline{d}_k) \underline{d}_k \checkmark$ Secant method Cubic interpolation

□ Those that use function, derivative and second derivative info → Newton's method (rarely used for line serach)

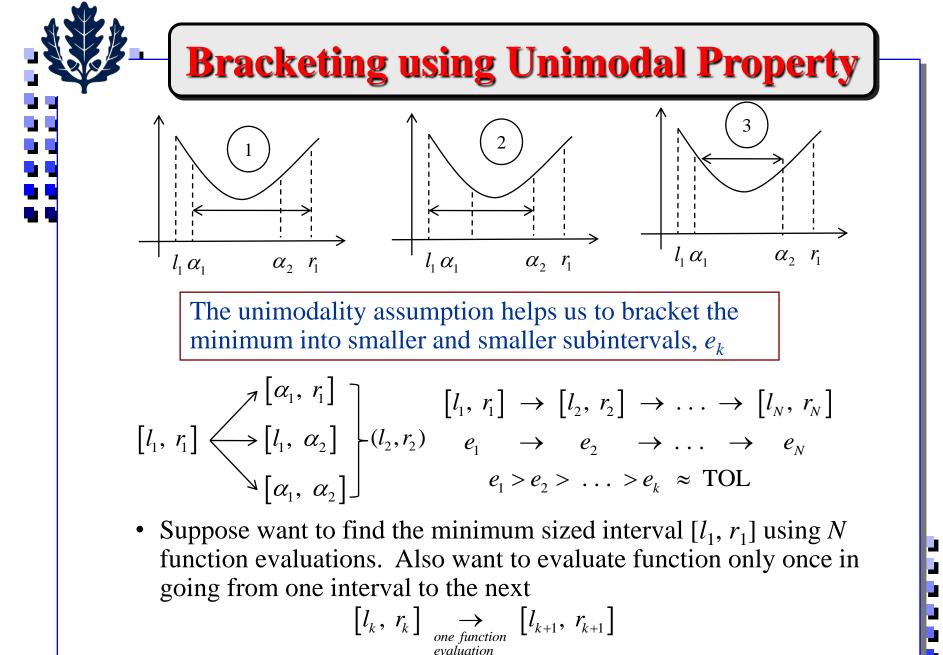
Key Idea: Unimodality of Functions

Assume g (α) is a strictly *unimodal* function on an interval L₁ = [l₁, r₁], i.e., a single global minimum. Unimodal functions need not be smooth.
 Def ⁿ: A function g(α) is unimodal over an interval L₁ = [l₁, r₁] if α₁ and α₂ are two points in L₁ s.t. α₁ < α₂ < α* or α* < α₁ < α₂. Then g (α₁) > g (α₂) > g (α*) (or) g (α*) < g (α₁) < g (α₂)

A unimodal function is monotonic on either side of α^*

Discrete

Note: a strictly convex function is unimodal
How to use it?: Suppose \$\alpha_1\$, \$\alpha_2\$ ∈ [\$l_1\$, \$r_1\$] with \$\alpha_1\$ < \$\alpha_2\$ and we find
1. \$g(\$\alpha_1\$) > g(\$\alpha_2\$) then \$\alpha^*\$ ∈ [\$\alpha_1\$, \$r_1\$]
2. \$g(\$\alpha_1\$) < g(\$\alpha_2\$) then \$\alpha^*\$ ∈ [\$\alpha_1\$, \$\alpha_2\$]
3. \$g(\$\alpha_1\$) = g(\$\alpha_2\$) then \$\alpha^*\$ ∈ [\$\alpha_1\$, \$\alpha_2\$]



Fibonacci Search - 1

- We can accomplish this using Fibonacci search first discovered by Leonardo of Pisa (1202). Independent of g (α) as long as g (α) is unimodal
 - If N = 2, pick α_1 and α_2 at center and close to each other

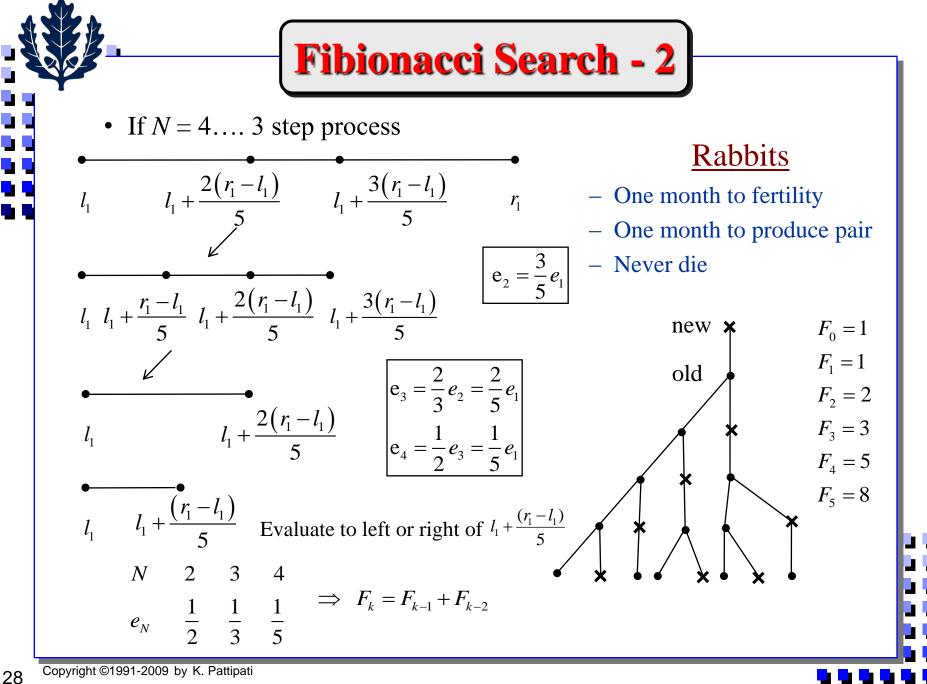
$$\underbrace{l_{1}}_{l_{1}} \underbrace{l_{1}+r_{1}}_{2}-\varepsilon \qquad \underbrace{l_{1}+r_{1}}_{2}+\varepsilon \qquad r_{1} \qquad [l_{1}, r_{1}] \swarrow \begin{bmatrix} l_{1}+r_{1}}{2}+\varepsilon \end{bmatrix} \text{ if } g(\alpha_{1}) < g(\alpha_{2}) \\ \underbrace{l_{1}, r_{1}}_{2}-\varepsilon, r_{1} \end{bmatrix} \text{ if } g(\alpha_{1}) > g(\alpha_{2}) \\ e_{2} \approx \frac{e_{1}}{2}$$

• If
$$N = 3$$
 ... two step process
Note: α_1 or α_2 are in place
 α_1 α_2
 α_2
 α_1 α_2
 α_2
 α_1 α_2
 α_1 α_2
 α_2
 α_3
 α_3
 α_1 α_2
 α_2
 α_3
 α_3
 α_1 α_2
 α_3
 α_1 α_2
 α_2
 α_3
 α_1 α_2
 α_2
 α_3
 α_1 α_2
 α_2
 α_3
 α_3
 α_1
 α_2
 α_3
 α_3
 α_1
 α_2
 α_3
 α_1
 α_2
 α_3
 α_1
 α_2
 α_3
 α_3
 α_1
 α_2
 α_3
 α_3
 α_4
 α_1
 α_2
 α_3
 α_1
 α_2
 α_1
 α_2
 α_3
 α_1
 α_2
 α_3
 α_1
 α_2
 α_1
 α_2
 α_3
 $\alpha_$

First isolate which $\frac{2}{2}$ of interval α^* lies in $[l_1, \alpha_2]$ or $[\alpha_1, r_1]$ Then, reduce $[l_1, \alpha_2] \sim [\alpha_1, r_1]$ by $\frac{1}{2}$

if $g(\alpha_1) < g(\alpha_2)$

$$\Rightarrow e_3 = \frac{e_2}{2} = \frac{2}{3} \cdot \frac{1}{2} \cdot e_1 = \frac{e_1}{3}$$



Fibionacci Search - 3

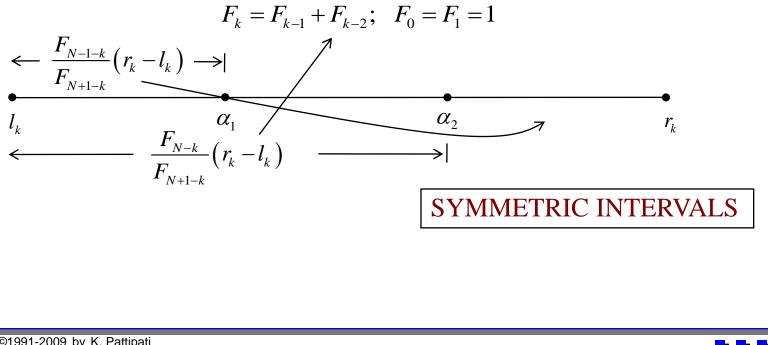
• For general N, let k = 1, 2, ..., N-1. The Fibionacci method uses at step k

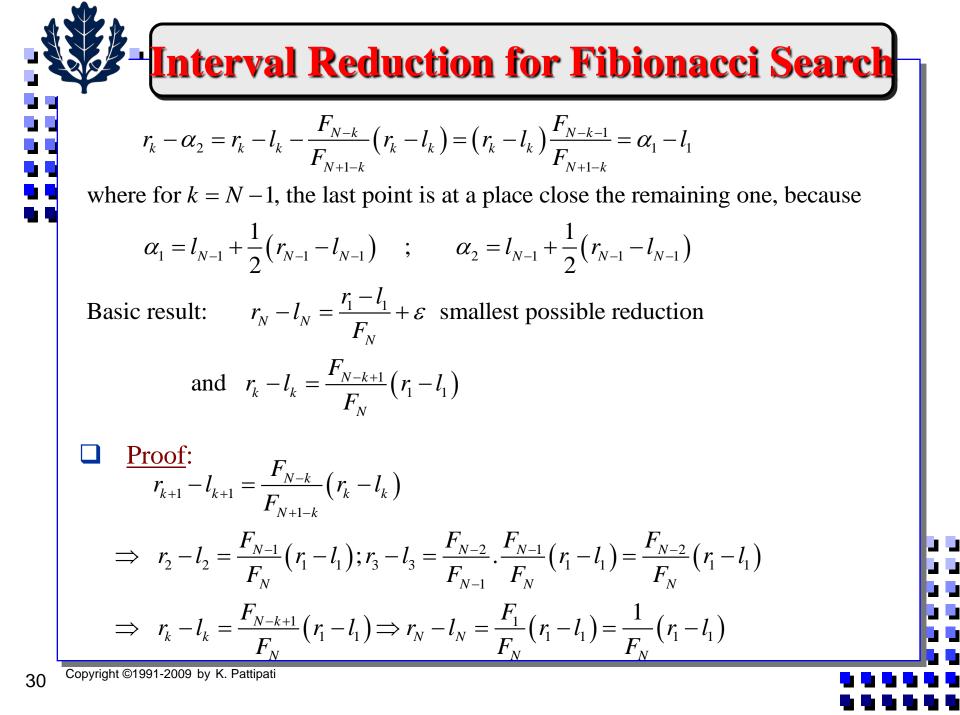
$$\alpha_{1} = l_{k} + \frac{F_{N-1-k}}{F_{N+1-k}} (r_{k} - l_{k})$$

$$\alpha_2 = l_k + \frac{F_{N-k}}{F_{N+1-k}} (r_k - l_k)$$

where except for k = 1, one of the points α_1 or α_2 was already evaluated at a previous iteration.

where F_k are the Fibionacci numbers



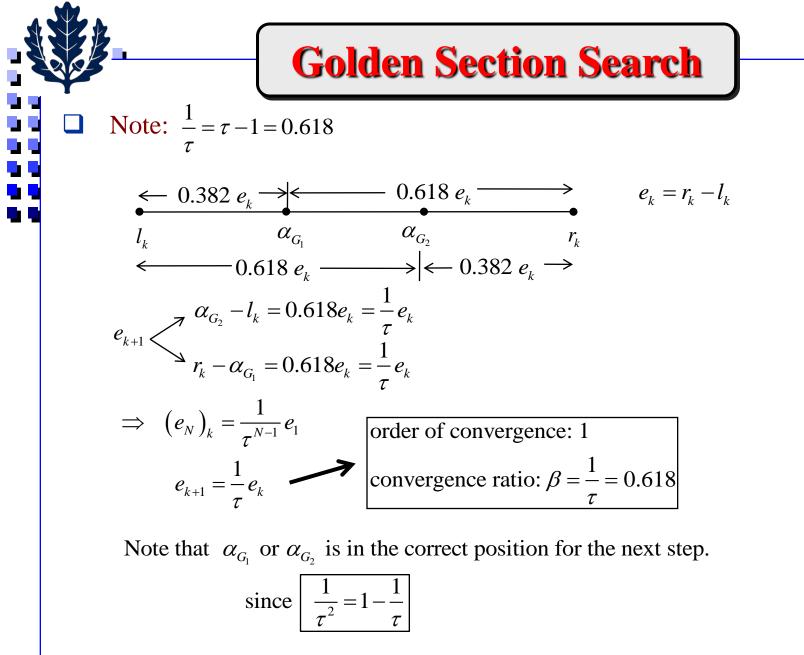


- Advantages of Fibionacci method:
 - Smallest interval for a given N
 - No derivative information
 - Simple to implement
- Disadvantages of Fibionacci method:
 - Need to prespecify *N*. Also need to compute (or store) Fibionacci numbers. Luckily, don't have to if *N* is large. Leads to GOLDEN SECTION SEARCH

Golden section search retains

- a) Symmetry of interval reduction
- b) Only one function evaluation per step Consider the limiting ratio of $\frac{F_N}{F_{N-1}} \triangleq \tau$ as $N \to \infty$ $F_N = F_{N-1} + F_{N-2} \implies \frac{F_N}{F_{N-1}} = 1 + \frac{F_{N-2}}{F_{N-1}}$

As
$$N \to \infty \implies \tau = 1 + \frac{1}{\tau} \implies \tau^2 - \tau - 1 = 0$$
 (or) $\tau = 1.618$



Golden Section vs. Fibionacci Search

Golden section method yields 17% larger interval than Fibionacci for the same

$$N \implies \lim_{N \to \infty} \frac{F_N}{\tau^{N-1}} = 1.17$$
Characteristic Equation: $z^2 - z - 1 = 0$

$$\implies z = \frac{1 \pm \sqrt{5}}{2}$$

$$F_k = F_{k-1} + F_{k-2}$$

$$F_k = A\tau_1^k + B\left(\frac{-1}{\tau}\right)^k$$

$$F_0 = F_1 = 1 \implies \frac{A + B = 1}{A\tau - \frac{B}{\tau} = 1} \implies A = \frac{1 \pm 1/\sqrt{5}}{2}$$

$$F_N = \left[\tau^{N+1} - \left(\frac{-1}{\tau}\right)^{N+1}\right] / \sqrt{5}$$
Characteristic Equation: $z^2 - z - 1 = 0$

$$\implies z = \frac{1 \pm \sqrt{5}}{2}$$

$$z_1 = \frac{1 \pm \sqrt{5}}{2} = \tau, \quad z_2 = \frac{1 - \sqrt{5}}{2} = \frac{-1}{\tau}$$

$$B = \frac{1 \pm 1/\sqrt{5}}{2}$$

$$B = \frac{1 \pm 1/\sqrt{5}}{2}$$

$$B = \frac{1 \pm 1/\sqrt{5}}{2}$$
Golden section search is 17% less efficient than Fibionacci search, but is much easier

Golden section search is 17% less efficient than Fibionacci search, but is much easier to implement.

 $\lim_{N \to \infty} \frac{F_N}{\tau^{N-1}} = \frac{\tau^2}{\sqrt{5}} = 1.17$

Summary

Reviewed necessary and sufficient conditions of optimality

Gradients and Contour Maps

- Gradient is orthogonal to contour curves
- Descent directions

□ Algorithms for Unconstrained Minimization

- Steepest descent, Diagonally scaled steepest descent, Newton, Discretized Newton, Gauss-Newton, Conjugate gradient, Quasi-Newton
- □ Step Size Rules (or) Line Search Methods
 - Armijo, Goldstein, Fibionacci search and Golden section search
 - Next: combine Golden section with quadratic interpolation