

Outline of Lecture 5

- What are Conjugate Directions?
- Conjugate Direction Methods
- Conjugate Gradient Methods
\square Convergence Analysis
\square Partial Conjugate Gradient Method
Application to Non-quadratic Problems
- Pre-conditioned Conjugate Gradient (Scaling)

Conjugate Directions - 1

- We will consider quadratic $\mathrm{f}^{\mathrm{n}}: f(\underline{x})=\frac{1}{2} \underline{x}^{T} Q \underline{x}-\underline{-}^{T} \underline{x}+c$ to develop these schemes.
- If $O K$ on a quadratic $f(\underline{x})$, probably $O K$ near minimum of general $f(\underline{x})$.
- Objective is to find "optimal" directions $\left\{\underline{d}_{k}\right\}$ to minimize $f(\underline{x})$ in as few steps as possible.
\square Recall that for a quadratic function
- Steepest descent $\Rightarrow \infty$ no. of steps except when $Q=\beta I \Rightarrow S L O W$
- Newton $\Rightarrow 1$ step, but needs Hessian \Rightarrow FAST but Expensive
- Conjugate direction $\&$ quasi-Newton $\Rightarrow n$ steps, $n=\operatorname{dim}(\underline{x}) \Rightarrow$ QUADRATIC TERMINATION
- Consider the contour curves of $f(\underline{x})$

What if we pick eigen vectors of Q as search directions (2-dimensional)

$$
\begin{aligned}
& \underline{d}_{0}= \pm \xi_{0} \\
& \underline{d}_{1}= \pm \underline{\xi}_{1} \perp \underline{d}_{0}
\end{aligned}
$$

Then, can obtain \underline{x}^{*} in two steps
(a) pick $\underline{d}_{0}= \pm \underline{\xi}_{0} \ni \underline{d}_{0}^{T} \underline{g}_{0}<0$, optimize α_{o}
(b) pick $\underline{d}_{1}= \pm \underline{\xi}_{1} \ni \underline{d}_{1}^{T} \underline{g}_{1}<0$, optimize α_{1}

NOTE: We can change the order of (a) and (b).

Conjugate Directions - 2

- But the evaluation of eigen vectors is a complex task $\approx \mathrm{O}\left(20 n^{3}\right)$. Can we get a property of \underline{d}_{1} in terms of \underline{d}_{0} (Note: $\underline{d}_{0} \perp \underline{d}_{1}$ in the eigen vector case).
\square Suppose take $\underline{d}_{0}=-g_{0}$ and optimize over α_{0} and get \underline{x}_{1}. What is the next best direction \underline{d}_{1} ?

$$
\underline{d}_{0}^{T} Q \underline{d}_{1}=0 \quad \text { (or) } \underline{d}_{0} \text { is } Q \text {-orthogonal to } \underline{d}_{1}
$$

NOTE: Eigen vectors of Q are Q-orthogonal (since they are \perp)

- Deft : A set of vectors $\left\{d_{i}\right\}_{i=0}^{k}, d_{i} \in R^{n}$ are Q-orthogonal (or mutually Q conjugate) if $d_{i}^{T} Q d_{j}=\delta_{i j}, \forall i, j=1,2, \ldots, k$
- Property: If $Q>0$ and the set $\left\{d_{i}\right\}_{i=0}^{n-1}$ are Q-orthogonal, then $\left\{d_{i}\right\}$ are linearly independent
- Proof: If not, $d_{k}=\alpha_{1} d_{1}+\alpha_{2} d_{2}+\ldots . .+\alpha_{k-1} d_{k-1}$

$$
d_{k}^{T} Q d_{k}=\alpha_{1} d_{k}^{T} Q d_{1}+\alpha_{2} d_{2}^{T} Q d_{k}+\ldots . .+\alpha_{k-1} d_{k}^{T} Q d_{k-1}=0
$$

$\Rightarrow Q$ is not PD - a contradiction
Orthogonal $\Rightarrow Q$-orthogonal
Q-orthogonal \nRightarrow Orthogonal

Conjugate Direction Method (CD) - 1

\square Basic idea of CD method

- Given a collection of mutually Q-conjugate directions $\left\{\underline{d}_{k}\right\}, k=0,1,2, \ldots, n-1$, the conjugate direction method generates the sequence $\left\{\underline{x}_{1}, \underline{x}_{2}, \ldots, \underline{x}_{n}\right\}$ via

$$
\underline{x}_{k+1}=\underline{x}_{k}+\alpha_{k} \underline{d}_{k}\left(\underline{x}_{0} \text { known }\right)
$$

where \underline{x}_{0} is a given vector in $R^{n} \& \alpha_{k}=\arg \min _{\alpha} f\left(\underline{x}_{k}+\alpha \underline{d}_{k}\right)$
\square Key property of CD method

- If $\underline{x}_{1}, \underline{x}_{2}, \ldots, \underline{x}_{n}$ are generated from the conjugate direction method, then

$$
\begin{equation*}
\mathrm{g}_{k+1} d_{i}=0 \forall i=0,1,2, \ldots, k \tag{1}
\end{equation*}
$$

- Proof: Since $\alpha_{k}=\arg \min _{\alpha} f\left(\underline{x}_{k}+\alpha \underline{d}_{k}\right)$

$$
\left.\frac{\partial f\left(\underline{x}_{k}+\alpha \underline{d}_{k}\right)}{\partial \alpha}\right|_{\alpha=a_{k}}=0 \Rightarrow \nabla \underline{f}^{T}\left(\underline{x}_{k+1}\right) \underline{d}_{k}=\underline{g}_{k+1}^{T} \underline{d}_{k}=0 \forall k
$$

- Note that this property is true for any generalized gradient method
- To prove (1), we need to prove its validity for $i=0,1,2, \ldots, k-1$

$$
\begin{aligned}
\underline{g}_{k+1}^{T} \underline{d}_{i}=\left(Q \underline{x}_{k+1}-\underline{b}\right)^{T} \underline{d}_{i} & =\left(\underline{x}_{i+1}+\sum_{j=i+1}^{k} \alpha_{j} \underline{d}_{j}\right)^{T} Q \underline{d}_{i}-\underline{b}^{T} \underline{d}_{i} \\
& =\left(Q \underline{x}_{i+1}-\underline{b}\right)^{T} \underline{d}_{i}=\underline{g}_{i+1}^{T} \underline{d}_{i}=0
\end{aligned}
$$

Conjugate Direction Method (CD) -2

\square How to create Q - orthogonal (or Q-conjugate) directions?

- \exists many choices for $\left\{\underline{d}_{i}\right\}$. For example, $\underline{d}_{i}=\xi_{i}$ is one possibility.
- We can create $\left\{\underline{d}_{i}\right\}$ from any linearly independent set of vectors $\left\{\underline{p}_{0}, \underline{p}_{1}, \ldots\right.$, $\left.\underline{p}_{n-1}\right\}$. The process is termed GRAM SCHMIDT ORTHOGONALIZATION

$$
\begin{aligned}
& \underline{d}_{0}=\underline{p}_{0} \\
& \underline{d}_{i}=\underline{p}_{i}+\sum_{j=0}^{i-1} l_{i j} \underline{d}_{j}
\end{aligned}
$$

- From Q-orthogonality, need $\underline{d}_{i}^{T} Q \underline{d}_{k}=\underline{p}_{i}^{T} Q \underline{d}_{k}+\sum_{j=0}^{i-1} l_{i j} \underline{d}_{j}^{T} Q \underline{d}_{k}=0 ; k=0,1,2, \ldots, i-1$

$$
\left.\Rightarrow \begin{array}{lcc}
l_{i k}=\frac{-p_{i}^{T} Q \underline{d}_{k}}{\underline{d}_{k}^{T} Q \underline{d}_{k}} & \forall & i=1,2, \ldots, n-1 \\
k=1,2, \ldots, i-1
\end{array}\right] \quad L=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-l_{10} & 1 & 0 & 0 \\
-l_{20} & -l_{21} & 1 & 0 \\
-l_{n-1,0} & -l_{n-1,1} & 0 & 1
\end{array}\right]
$$

$$
d_{i}=\underline{p}_{i}-\sum_{j=0}^{i-1}\left(\frac{\underline{p}_{i}^{T} Q \underline{d}_{j}}{\underline{d}_{j}^{T} Q \underline{d}_{j}}\right) \underline{d}_{j} \quad \text { or } \quad\left(\underline{d}_{0}, \underline{d}_{1}, \ldots, \underline{d}_{n-1}\right) L^{T}=\left(\underline{p}_{0}, \underline{p}_{1}, \ldots, \underline{p}_{n-1}\right)
$$

- Indeed $\mathbb{R}\left(\underline{p}_{0}, \underline{p}_{1}, \ldots, \underline{p}_{n-1}\right)=\mathbb{R}\left(\underline{d}_{0}, \underline{d}_{1}, \ldots, \underline{d}_{n-1}\right)$

$$
L^{T}=\left[\begin{array}{cccc}
1 & -l_{10} & -l_{20} & -l_{n-1,0} \\
0 & 1 & -l_{21} & -l_{n-1,1} \\
0 & 0 & 1 & \cdot \\
0 & 0 & & 1
\end{array}\right]
$$

Conjugate Gradient Method (CG) - 1

- Ultimate goal:
- Generate a set of Q - orthogonal directions $\left\{\underline{d}_{i}\right\}$ without the explicit knowledge of Q. A method that accomplishes this is the Conjugate Gradient (CG) method that takes $p_{i}=-g_{i}$

$$
\begin{aligned}
& \underline{d}_{0}=-\underline{g}_{0} ; \quad \underline{x}_{1}=\underline{x}_{0}+\alpha_{0} \underline{d}_{0} \\
& \underline{d}_{1}=-\underline{g}_{1}+\frac{\underline{g}_{1}^{T} Q \underline{d}_{0}}{\underline{d}_{0}^{T} Q \underline{d}_{0}} \cdot \underline{d}_{0}
\end{aligned}
$$

- Note that $\underline{g}_{1}-\underline{g}_{0}=Q\left(\underline{x}_{1}-\underline{x}_{0}\right)=\alpha_{0} Q \underline{d}_{0}$

$$
\underline{d}_{1}=-\underline{g}_{1}+\frac{\underline{g}_{1}^{T}\left(\underline{g}_{1}-\underline{g}_{0}\right)}{\underline{d}_{0}^{T}\left(\underline{g}_{1}-\underline{g}_{0}\right)} \cdot \underline{d}_{0} \text { (or) } \underline{d}_{1}=-\underline{g}_{1}+\beta_{1} \underline{d}_{0}
$$

By repeating the process for $j=0,1,2, \ldots, k$, we have

$$
\underline{d}_{k}=-\underline{g}_{k}+\sum_{j=0}^{k-1} \frac{\underline{g}_{k}^{T} Q \underline{d}_{j}}{\underline{d}_{j}^{T} Q \underline{d}_{j}} \cdot \underline{d}_{j}=-\underline{g}_{k}+\sum_{j=0}^{k-1} \frac{\underline{g}_{k}^{T}\left(\underline{g}_{j+1}-\underline{g}_{j}\right)}{\underline{d}_{j}^{T}\left(\underline{g}_{j+1}-\underline{g}_{j}\right)} \cdot \underline{d}_{j}
$$

- We know: (1) $\mathbb{R}\left\{\underline{g}_{0}, \underline{g}_{1}, \ldots, \underline{g}_{k-1}\right\}=\mathbb{R}\left\{\underline{d}_{0}, \underline{d}_{1}, \ldots, \underline{d}_{k-1}\right\} \Rightarrow \underline{d}_{j}=\sum_{i=0}^{j} \alpha_{j i} \underline{g}_{i}$
(2) $\underline{g}_{k}^{T} \underline{d}_{j}=0 ; \quad \forall i=0,1,2, \ldots, k-1$

Conjugate Gradient Method (CG) -2

(1) $\&(2) \Rightarrow \underline{g}_{k}^{T} \underline{g}_{i}=0 \quad \forall i=0,1,2, \ldots, k-1$

$$
\text { (or) } \underline{d}_{k}=-\underline{g}_{k}+\beta_{k} \underline{d}_{k-1}
$$

$$
\text { where } \beta_{k}=\frac{g_{k}^{T}\left(\underline{g}_{k}-\underline{g}_{k-1}\right)}{d_{k-1}^{T}\left(\underline{g}_{k}-\underline{g}_{k-1}\right)} \quad \text { Sorensen-Wolfe (SW) form }
$$

- Since $\underline{d}_{k-1}^{T}\left(\underline{g}_{k}-\underline{g}_{k-1}\right)=\left(-\underline{g}_{k-1}+\beta_{k-1} \underline{d}_{k-2}\right)^{\mathrm{T}}\left(\underline{g}_{k}-\underline{g}_{k-1}\right)=\underline{g}_{k-1}^{T} \underline{g}_{k-1}$

$$
\Rightarrow \beta_{k}=\frac{\underline{g}_{k}^{T}\left(\underline{g}_{k}-\underline{g}_{k-1}\right)}{\underline{g}_{k-1}^{T} \underline{g}_{k-1}} \quad \text { Polak-Ribiere-Poljak (PRP) form }
$$

Since $\underline{g}_{k}^{T} \underline{g}_{k-1}=0 \Rightarrow \beta_{k}=\frac{\underline{g}_{k}^{T} \underline{g}_{k}}{\underline{g}_{k-1}^{T} \underline{g}_{k-1}} \quad$ Fletcher-Reeves (FR)form

- Remarks:

1) To compute \underline{d}_{k}, need only $\underline{d}_{k-1}, g_{k-1-1}$ and g_{k}

$$
\underline{d}_{k}=-g_{k}+\beta_{k} \underline{d}_{k-1}=\mathfrak{J}\left(g_{0}, g_{1}, \ldots, g_{k}\right)
$$

2) Various forms will be useful for NL function minimization. We will discuss some modifications to these later.

Quadratic Termination Property - 1

- Quadratic termination property
- Note that $Q \underline{x}^{*}=\underline{b}$
- At step k
- Also

$$
\begin{aligned}
& \underline{x}_{k}=\underline{x}_{0}+\sum_{i=0}^{k-1} \alpha_{i} \underline{d}_{i} \\
& \underline{x}_{k+1}=\underline{x}_{k}+\alpha_{k} \underline{d}_{k}
\end{aligned}
$$

- To find step size α_{k}, note that $\underline{g}_{k+1}^{T} \underline{d}_{k}=0$

$$
\begin{aligned}
& \Rightarrow\left[Q\left(\underline{x}_{k^{-}} \underline{x}^{*}+\alpha_{k} \underline{d}_{k}\right)\right]^{T} \underline{d}_{k}=0 \\
& \text { (or) } \alpha_{k}=\frac{-g_{k}^{T} \underline{d}_{k}}{\underline{d}_{k}^{T} Q \underline{d}_{k}}
\end{aligned}
$$

- Note that

$$
\underline{g}_{k}=\underline{g}_{0}+Q \sum_{i=0}^{k-1} \alpha_{i} \underline{d}_{i}
$$

Since \underline{d}_{i}^{s} are Q-conjugate, we have

$$
\alpha_{k}=\frac{-g_{0}^{T} \underline{d}_{k}}{\underline{d}_{k}^{T} Q \underline{d}_{k}}
$$

Quadratic Termination Property - 2

- $\underline{x}_{n}=\underline{x}_{0}+\sum_{k=0}^{n-1} \alpha_{k} \underline{d}_{k}$
$=\underline{x}_{0}-\sum_{k=0}^{n-1} \frac{\underline{g}_{0}^{T} \underline{d}_{k}}{\underline{d}_{k}^{T}} \underline{d}_{k} \underline{d}_{k}$
$=\underline{x}_{0}-\sum_{k=0}^{n-1} \underline{\underline{d}}_{k}^{T} Q \underline{x}_{k}^{T} Q \underline{d}_{k} \underline{d}_{k}+\sum_{k=0}^{n-1} \underline{\underline{d}}_{k}^{T} Q \underline{x}_{k}^{*} Q \underline{d}_{k}^{*} \underline{d}_{k}$
$=\underline{x}_{0}-\underline{x}_{0}+\underline{x}^{*} \quad$ since $\underline{x}_{0}=\sum_{k=0}^{n-1} \gamma_{k} \underline{d}_{k} \Rightarrow \gamma_{k}=-\frac{\underline{d}_{k}^{T} Q \underline{x}_{0}}{\underline{d}_{k}^{T} Q \underline{d}_{k}}$
$=\underline{x}^{*}$
\square Convergence analysis for $f(\underline{x})=\frac{1}{2}\left(\underline{x}-\underline{x}^{*}\right)^{T} Q\left(\underline{x}-\underline{x}^{*}\right)$
- Consider algorithms of the form

$$
\begin{aligned}
& \underline{x}_{1}=\underline{x}_{0}+\gamma_{00} \underline{g}_{0} \\
& \underline{x}_{2}=\underline{x}_{1}+\alpha_{1} \underline{d}_{1}=\underline{x}_{0}+\gamma_{10} \underline{g}_{0}+\gamma_{11} \underline{g}_{1} \\
& \underline{x}_{k+1}=\underline{x}_{0}+\gamma_{k 0} \underline{g}_{0}+\gamma_{k 1} \underline{g}_{1}+\ldots+\gamma_{k k} \underline{g}_{k} \\
& \text { or } \underline{x}_{k+1}=\underline{x}_{0}+\sum_{l=0}^{k} \gamma_{k l} \underline{g}_{l}
\end{aligned}
$$

Convergence Analysis -1

- We can express g_{i} in terms of $\underline{x}_{i}-\underline{x}^{*}$ as follows

$$
\begin{aligned}
& \underline{g}_{i}=Q\left(\underline{x}_{i}-\underline{x}^{*}\right)=Q\left(\underline{x}_{i}-\underline{x}_{i-1}\right)+Q\left(\underline{x}_{i-1}-\underline{x}^{*}\right) \\
& \text { or } \underline{g}_{i}=\underline{g}_{i-1}+\alpha_{i-1} Q \underline{d}_{i-1}, \underline{d}_{0}=-\underline{g}_{0} \\
& \Rightarrow \underline{g}_{1}=\underline{g}_{0}-\alpha_{i-1} Q \underline{g}_{0}=Q\left(\underline{x}_{0}-\underline{x}^{*}\right)-\alpha_{i-1} Q^{2}\left(\underline{x}_{0}-\underline{x}^{*}\right)
\end{aligned}
$$

- Similarly $\underline{g}_{i}=\beta_{i 1} Q\left(\underline{x}_{0}-\underline{x}^{*}\right)+\beta_{i 2} Q^{2}\left(\underline{x}_{0}-\underline{x}^{*}\right)+\ldots+\beta_{i, i+1} Q^{i+1}\left(\underline{x}_{0}-\underline{x}^{*}\right)$
- So,

$$
\begin{aligned}
\underline{x}_{k+1}-\underline{x}^{*} & =\underline{x}_{0}-\underline{x}^{*}+\sum_{l=0}^{k} \gamma_{k l} \sum_{j=1}^{l+1} \beta_{l j} Q^{j}\left(\underline{x}_{0}-\underline{x}^{*}\right) \\
& =\left(\underline{x}_{0}-\underline{x}^{*}\right)+\sum_{j=1}^{k+1}\left(\sum_{l=j-1}^{k} \gamma_{k l} \beta_{l j}\right) Q^{j}\left(\underline{x}_{0}-\underline{x}^{*}\right) \\
& =\left(\underline{x}_{0}-\underline{x}^{*}\right)+\sum_{j=1}^{k+1} \xi_{k j} Q^{j}\left(\underline{x}_{0}-\underline{x}^{*}\right)
\end{aligned}
$$

Final result $\left(\underline{x}_{k+1}-\underline{x}^{*}\right)=\left[I+Q P_{k}(Q)\right]\left(\underline{x}_{0}-\underline{x}^{*}\right)$
Matrix polynomial of degree k
where $P_{k}(Q)=\xi_{k 1}+\xi_{k 2} Q+\xi_{k 3} Q^{2}+\ldots .+\xi_{k(k+1)} Q^{k}$

Convergence Analysis - 2

- Among all algorithms of the form $\underline{x}_{k}=\underline{x}_{0}+\sum_{i=0}^{k} \gamma_{k i} \underline{g}_{i}$, the conjugate gradient method is optimal in the sense that $\forall k$, it minimizes $f\left(\underline{x}_{k+1}\right)$ over all sets of coefficients $\gamma_{k 0}, \gamma_{k 1}, \ldots, \gamma_{k k}$
- Let us consider the function value at \underline{x}_{k+1}

$$
\begin{aligned}
f\left(\underline{x}_{k+1}\right) & =\frac{1}{2}\left(\underline{x}_{k+1}-\underline{x}^{*}\right)^{T} Q\left(\underline{x}_{k+1}-\underline{x}^{*}\right) \\
& =\min _{P_{k}} \frac{1}{2}\left(\underline{x}_{0}-\underline{x}^{*}\right)^{T} Q\left[I+Q P_{k}(Q)\right]^{2}\left(\underline{x}_{0}-\underline{x}^{*}\right)
\end{aligned}
$$

- To simplify, let $\zeta_{1}, \zeta_{2}, \ldots, \zeta_{n}$ be eigen vectors and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be eigen values of Q. Note that ζ_{i} are orthonormal

$$
\begin{aligned}
& \text { Let }\left(\underline{x}_{0}-\underline{x}^{*}\right)=\sum_{i=1}^{n} \gamma_{i} \underline{\varsigma}_{i} \Rightarrow Q\left(\underline{x}_{0}-\underline{x}^{*}\right)=\sum_{i=1}^{n} \lambda_{i} \gamma_{i} \underline{\varsigma}_{i} \\
& \text { Then } \begin{aligned}
f\left(\underline{x}_{0}\right) & =\frac{1}{2}\left(\sum_{i=1}^{n} \lambda_{i} \gamma_{i} \underline{\varsigma}_{i}\right)^{T}\left(\sum_{j=1}^{n} \gamma_{j} \underline{\varsigma}_{j}\right)=\frac{1}{2} \sum_{i=1}^{n} \lambda_{i} \gamma_{i}^{2} \\
f\left(\underline{x}_{k+1}\right) & =\min _{P_{k}} \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \lambda_{i} \gamma_{i} \gamma_{j} \underline{\varsigma}_{i}^{T} Q\left[I+Q P_{k}(Q)\right]^{2} \underline{\varsigma}_{j} \\
& \leq \frac{1}{2} \sum_{i=1}^{n} \lambda_{i} \gamma_{i}^{2}\left[1+\lambda_{i} P_{k}\left(\lambda_{i}\right)\right]^{2}
\end{aligned}
\end{aligned}
$$

Convergence Analysis - 3

- Since $\lambda_{i}>0$

$$
f\left(\underline{x}_{k+1}\right) \leq \max _{\lambda_{i}}\left[1+\lambda_{i} P_{k}\left(\lambda_{i}\right)\right]^{2} f\left(\underline{x}_{0}\right)
$$

- NOTE: P_{k} is any polynomial of degree k. Examine implications

1. I am still free to pick $P_{k}(\lambda)$.
2. $1+\lambda P_{k}(\lambda)$ is a $(k+1)^{\text {st }}$ order polynomial in λ.
3. If $k=n-1$, then pick n coefficients of $P_{n-1} \ni 1+\lambda P_{n-1}(\lambda)$ has its roots at $\lambda_{i}(Q) \Rightarrow$ $f\left(x_{n}\right)=0$ as we know it should since CG method exhibits quadratic termination.
4. Suppose Q has only $r<n$ distinct eigen values λ_{i}. Then note that we can select $P_{r-1} \ni 1+\lambda P_{r-1}(\lambda)$ has roots at $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}($ distinct $) \Rightarrow$ get termination in r steps with CG method.

- Now, we are in a position to ascertain the convergence rate of CG method.
- Pick $P_{k}(\lambda) \ni 1+\lambda P_{k}(\lambda)$ most closely approximates 0 over the interval $\lambda_{\text {min }}(Q)$ and $\lambda_{\text {max }}(Q)$. Such a polynomial is the following Chebyshev polynomial

$$
\begin{aligned}
& 1+\lambda P_{k}(\lambda)=\frac{T_{k+1}\left(\frac{\lambda_{\min }+\lambda_{\max }-2 \lambda}{\lambda_{\max }-\lambda_{\min }}\right)}{T_{k+1}\left(\frac{\lambda_{\max }+\lambda_{\min }}{\lambda_{\max }-\lambda_{\min }}\right)} \\
& \text { where } T_{k}(\lambda)=\cos \left(k \cos ^{-1} \lambda\right)
\end{aligned}
$$

Partial Conjugate Gradient Method (PCG)

- Can show (Problem 8.10 of Luenberger) that

$$
f\left(\underline{x}_{k+1}\right) \leq 4\left(\frac{\sqrt{k}-1}{\sqrt{k}+1}\right)^{2} f\left(\underline{x}_{k}\right) \quad k=\frac{\lambda_{\max }}{\lambda_{\min }}
$$

\Rightarrow Linear convergence, but convergence ratio $\beta_{\mathrm{CG}} \approx 2 \sqrt{\beta_{\mathrm{SD}}}$
[Partial Conjugate Gradient (PCG) method

- Suppose go n-steps and compute $g_{n}=-\nabla f\left(\underline{x}_{n}\right) \neq 0$. We missed the minimum due to inaccurate $\alpha_{k}, \underline{d}_{k}, g_{k}$, etc. Then, what?
- Best to start over $\underline{x}_{n} \rightarrow \underline{x}_{0}$

$$
g_{n} \rightarrow g_{0}
$$

That is, apply CG method for n-steps $\underline{x}_{k+1}=\underline{x}_{k}+\alpha_{k} \underline{d}_{k}, k=0,1,2, \ldots, n-1 \&$ redo with a gradient step. But, we could restart after $m<n$ steps also
\Rightarrow PCG. Are there advantages to this approach?

- Recall that $\mathrm{SD} \equiv \mathrm{PCG}$ with $m=0$. Can we reduce the effective condition number k_{e} by restarting at $m>1$? For quadratic, we can restart with $m=n \Rightarrow k_{e}=1$.

Convergence Analysis of PCG - 1

Theorem:

- Suppose $Q>0$ and has (n-m) eigen values in the interval $[a, b], a>0$ and the remaining m eigen values are $>b$, then for every \underline{x}_{0} the vector \underline{x}_{m+1} generated after ($m+1$) steps of the CG method satisfies.

$$
f\left(\underline{x}_{m+1}\right) \leq\left(\frac{k_{e}-1}{k_{e}+1}\right)^{2} f\left(\underline{x}_{0}\right) ; k_{e}=\frac{b}{a}
$$

- Proof:

Let $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{m}>b$. Can select any P_{m} we like
We know,

$$
f\left(\underline{x}_{m+1}\right) \leq \max _{\lambda_{i}}\left[1+\lambda_{i} P_{m}\left(\lambda_{i}\right)\right]^{2} f\left(\underline{x}_{0}\right)
$$

Define $P_{m}(\lambda)$ by

$$
1+\lambda P_{m}(\lambda)=\frac{2}{(a+b) \lambda_{1} \ldots . \lambda_{m}}\left(\frac{a+b}{2}-\lambda\right)\left(\lambda_{1}-\lambda\right)\left(\lambda_{2}-\lambda\right) \ldots\left(\lambda_{m}-\lambda\right)
$$

Since $1+\lambda_{i} P_{m}\left(\lambda_{i}\right)=0 \forall i=1,2, \ldots, m$ we have

$$
f\left(\underline{x}_{m+1}\right) \leq \max _{a \leq \lambda \leq b}\left[1+\lambda P_{m}(\lambda)\right]^{2} f\left(\underline{x}_{0}\right)
$$

Convergence Analysis of PCG - 2

$$
f\left(\underline{x}_{m+1}\right) \leq \max _{a \leq \lambda \leq b}\left[1+\lambda P_{m}(\lambda)\right]^{2} f\left(\underline{x}_{0}\right)
$$

$$
\leq \max _{a \leq \lambda \leq b} \frac{\left(\lambda-\frac{a+b}{2}\right)^{2}}{\left(\frac{a+b}{2}\right)^{2}} f\left(x_{0}\right)
$$

$$
=\left(\frac{b-a}{b+a}\right)^{2} f\left(\underline{x}_{0}\right)
$$

$$
=\left(\frac{k_{e}-1}{k_{e}+1}\right)^{2} f\left(\underline{x}_{0}\right)
$$

\square Application to non-quadratic problems

$$
\begin{aligned}
& \underline{x}_{k+1}=\underline{x}_{k}+\alpha_{k} \underline{d}_{k} \\
& \alpha_{k}=\arg \min _{\alpha} f\left(\underline{x}_{k}+\alpha \underline{d}_{k}\right) \\
& \underline{d}_{k}=-\underline{g}_{k}+\beta_{k} \underline{d}_{k-1}
\end{aligned}
$$

Application to Non Quadratic Problems－2

$$
\begin{aligned}
& \text { small } \underline{d}_{k}^{T} \underline{g}_{k} \Rightarrow \underline{x}_{k+1} \approx \underline{x}_{k} \Rightarrow \underline{g}_{k+1} \approx \underline{g}_{k} \ldots . . \text { recall } \alpha_{k}=\frac{-\underline{g}_{k}^{T} \underline{d}_{k}}{\underline{d}_{k}^{T} Q \underline{d}_{k}} \\
& \Rightarrow \beta_{k+1} \approx 1 \text { for FR } \\
& \quad \beta_{k+1} \approx 0 \text { for PRP } \\
& \Rightarrow\left\|\underline{d}_{k+1}\right\| \approx\left\|\underline{d}_{k}\right\| \text { for FR } \\
& \quad\left\|\underline{d}_{k+1}\right\| \approx\left\|\underline{g}_{k+1}\right\| \text { for PRP gets out of jamming }
\end{aligned}
$$

－Powell suggests using $\max \left(0, \beta_{k}\right)$ for PRP
－When should you restart or reset
－Restart with SD after n steps or if $\left|\underline{g}_{k}^{T} \underline{g}_{k-1}\right|>\gamma \underline{g}_{k}^{T} \underline{g}_{k} ; 0<\gamma<1, \gamma=0.2$
－If conjugate，we will have $\underline{g}_{k}^{T} \underline{g}_{k-1} \approx 0$
－\quad very useful methods for large n

CG for Quadratic Functions

- Conjugate gradient for minimizing quadratic functions
- Given \underline{x}_{0}

$$
\begin{aligned}
& g_{0}=Q \underline{x}_{0}-b \\
& d_{0}=-g_{0} \\
& k=0
\end{aligned}
$$

Do while $\underline{d}_{k} \neq \underline{0}$

$$
\begin{array}{cc}
\alpha_{k}=\frac{\underline{g}_{k}^{T} \underline{g}_{k}}{\underline{d}_{k}^{T} Q d_{k}} & \text { for NL fn.'s do line search } \\
\underline{x}_{k+1}=\underline{x}_{k}+\alpha_{k} \underline{d}_{k} & \alpha_{k}=\arg \min _{\alpha} f\left(\underline{x}_{k}+\right. \\
\underline{g}_{k+1}=\underline{g}_{k}+\alpha_{k} Q \underline{d}_{k} & \text { for NL fn.'s evaluate gradient }
\end{array}
$$

$$
\left(\begin{array}{c}
\frac{\underline{g}_{k+1}^{T} \underline{g}_{k+1}}{\underline{g}_{k}^{T}} \\
\underline{\underline{g}}_{k} \underline{g}_{k}
\end{array}\right.
$$

$$
\beta_{k+1}=\left\{\begin{array}{l|r}
\underline{\underline{g}} T+1 \\
\frac{\underline{g_{k+1}}\left(\underline{g}_{k+1}-\underline{g}_{k}\right)}{g_{k}^{T} g_{k}} & \text { PRP } \quad \text { Solves } Q \underline{x}=\underline{b} \\
\end{array}\right.
$$

Good for sparse problems

Pre-conditioning to Improve Conditioning - 1

- Pre-conditioned CG
- Change of variable $\underline{x}=S \underline{y}$

$$
\begin{aligned}
& h(\underline{y})=f(S \underline{y})=\frac{1}{2} \underline{y}^{T} S^{T} Q S \underline{y}-\underline{b}^{T} S \underline{y} \\
& \underline{y}_{k+1}=\underline{y}_{k}+\alpha_{k} \underline{\tilde{d}}_{k} \quad \alpha_{k}=\min _{\alpha} h\left(\underline{y}_{k}+\alpha_{k} \underline{\tilde{d}}_{k}\right) \\
& \tilde{d}_{k}=-\nabla \underline{h}\left(\underline{y}_{k}\right)+\beta_{k} \underline{\tilde{d}}_{k-1} ; \quad \tilde{d}_{0}=-\nabla h\left(\underline{y}_{0}\right) \\
& \beta_{k}=\frac{-\nabla \underline{h}^{T}\left(\underline{y}_{k}\right) \nabla \underline{h}\left(\underline{y}_{k}\right)}{\nabla \underline{h}^{T}\left(\underline{y}_{k-1}\right) \nabla \underline{h}\left(\underline{y}_{k-1}\right)}
\end{aligned}
$$

- But can do all computations in \underline{x} domain:

$$
\begin{aligned}
& \nabla h\left(\underline{y}_{k}\right)=S^{T} Q S \underline{y}_{k}-S^{T} \underline{b}=S^{T} \nabla f\left(\underline{x}_{k}\right)=S^{T} \underline{g}_{k} \\
& \tilde{d}_{0}=-S^{T} \nabla f\left(\underline{x}_{k}\right)=-S^{T} \underline{g}_{k}
\end{aligned}
$$

So,

$$
\begin{aligned}
& \underline{y}_{k+1}=\underline{y}_{k}+\alpha \underline{\tilde{d}}_{k} \underline{d}_{k} \\
& \underline{x}_{k+1}=\underline{x}_{k}+\alpha_{k} \underline{d}_{k} \quad \underline{d}_{k}=S \underline{\tilde{d}}_{k} \\
& d_{k+1}=S S^{T} \underline{g}_{k}+\beta_{k+1} \underline{d}_{k}
\end{aligned}
$$

Pre-conditioning to Improve Conditioning - 2

$$
\begin{aligned}
& \beta_{k+1}=\frac{\underline{g}_{k+1}^{T} S S^{T} \underline{g}_{k+1}}{\underline{g}_{k}^{T} S S^{T} \underline{g}_{k}} \\
& \alpha_{k}=\arg \min f\left(\underline{x}_{k}+\alpha_{k} \underline{d}_{k}\right)
\end{aligned}
$$

- Note that $S S^{T}$ always occurs as an entity
- $\quad S$ via incomplete cholesky of $Q \Rightarrow S=\left(L^{-1}\right)^{T}$

$$
\text { incomplete } \Rightarrow \text { if } q_{i j}=0, \text { set } l_{i j}=0 \Rightarrow \text { skip or maintain sparsity of } L
$$

Pre-conditioned CG

- Given \underline{x}_{0}, pre-conditioner $M=\left(S^{-1}\right)^{T} S^{-1}=L L^{T}$

$$
\underline{g}_{0}=Q \underline{x}_{0}-\underline{b}
$$

Solve $M \underline{z}_{0}=\underline{g}_{0} \Rightarrow \underline{z}_{0}=S S^{T} \underline{g}_{0}$

$$
\underline{d}_{0}=-\underline{g}_{0} \quad k \leftarrow 0
$$

while $\left\|\underline{g}_{k}\right\| \neq 0$

$$
\begin{array}{ll}
\alpha_{k}=\frac{g_{k}^{T}}{\underline{g}_{k}} \underline{\underline{g}}_{k}^{T} Q \underline{d}_{k} & \text { For NL functions, do line search } \\
\underline{x}_{k+1}=\underline{x}_{k}+\alpha_{k} \underline{d}_{k} & \\
\underline{g}_{k+1}=\underline{g}_{k}+\alpha_{k} Q \underline{d}_{k} & \text { For NL functions, evaluate gradient }
\end{array}
$$

Solve $M \underline{z}_{k+1}=g_{k+1}$

$$
\begin{aligned}
& \qquad \begin{array}{l}
\beta_{k+1}=\frac{g_{k+1}^{T} \underline{z}_{k+1}}{\underline{g}_{k}^{T} \underline{z}_{k}} \quad \text { FR used here. PRP and SW are possible } \\
\\
\underline{d}_{k+1}=-\underline{g}_{k+1}+\underline{\beta}_{k+1} \underline{d}_{k} \\
k \leftarrow k+1
\end{array} \\
& \text { end DO }
\end{aligned}
$$

CG in Trust Region Method -1

- Use of CG in trust region method
- Recall that in trust region method, we want \underline{d}_{k} Э

$$
\begin{gathered}
\min _{\underline{d}_{k}} f_{k}+\underline{g}_{k}^{T} \underline{d}_{k}+\frac{1}{2} \underline{d}_{k}^{T} F_{k} \underline{d}_{k} \quad f_{k}=f\left(\underline{x}_{k}\right) \\
\text { s.t. }\left\|\underline{d}_{k}\right\| \leq \delta
\end{gathered}
$$

remove subscript k for simplicity.

- In this problem $\underline{x} \sim \underline{d}$

See Nocedal's Book

so, we use \underline{p} for directions

- Given $\varepsilon>0$

$$
\begin{aligned}
& \text { Set } \underline{d}_{0}=\underline{0}, \underline{p}_{o}=-\mathrm{g} \\
& \text { If }\|\underline{\mathrm{g}}\|<\varepsilon \\
& \quad \text { return } \underline{d}=\underline{d}_{0} \Rightarrow \text { stop } \\
& \text { for } k=0,1,2, \ldots \\
& \quad \text { If } \underline{p}_{k}^{T} F \underline{p}_{k} \leq 0
\end{aligned}
$$

$$
\text { find } \tau \text { such that } \underline{d}=\underline{d}_{k}+\tau \underline{p}_{k} \text { minimizes }
$$

$$
f+\underline{g}^{T} \underline{d}+\frac{1}{2} \underline{d}^{T} F \underline{d} \text { and }\|\underline{d}\|=\delta
$$

CG in Trust Region Method -2

$$
f+\underline{g}^{T}\left(\underline{d}_{k}+\tau \underline{p}_{k}\right)+\frac{1}{2}\left(\underline{d}_{k}+\tau \underline{p}_{k}\right)^{T} F\left(\underline{d}_{k}+\tau \underline{p}_{k}\right)
$$

$\Rightarrow \tau$ is the solution of
$\underline{d}_{k}^{T} \underline{d}_{k}+2 \tau \underline{d}_{k}^{T} \underline{p}_{k}+\tau^{2} \underline{p}_{k}^{T} \underline{p}_{k}=\delta^{2}$
return $\underline{d}_{k}+\tau \underline{p}_{k}=\underline{d}$
else

$$
\text { set } \alpha_{k}=\frac{\underline{g}_{k}^{T} \underline{g}_{k}}{\underline{p}_{k}^{T} F \underline{p}_{k}}
$$

CG in Trust Region Method -3
Set $\underline{d}_{k+1}=\underline{\underline{a}}_{k}+\alpha_{k} \underline{p}_{k}$
If $\left\|\underline{d}_{k+1}\right\| \geq \delta$
Find τ such that $\left\|\underline{d}_{k}+\tau \underline{p}_{k}\right\|=\delta$
return $\underline{d}=\underline{d}_{k}+\tau \underline{p}_{k}$
end if
Set $\underline{g}_{k+1}=\underline{g}_{k}+\alpha_{k} F \underline{p}_{k}$
If $\left\|\underline{g}_{k+1}\right\|<\varepsilon\left\|\underline{g}_{0}\right\|$
return $\underline{d}=\underline{d}_{k+1}$
end if

References

1. D. F. Shanno, "Conjugate gradient methods with inexact searches", Mathematics of OR, Vol. 3, No. 3, August 1978, pp.244-256
2. M. J. D. Powell, "Restart procedures for conjugate gradient method", Math. Programming, Vol. 12, 1977, pp.241-254.
3. M. J.D. Powell, "Some convergence properties of the conjugate gradient method", Math. Programming, Vol. 11, pp. 42-49, 1976.
4. M.Al-Baali, "Descent property and global convergence of the FletcherReeves method with inexact line searches", IMA J. Numerical Analysis, Vol.5, 1985, pp. 121-124.
5. M.J.D. Powell, " Nonconvex minimization calculations and the conjugate gradient method", in Numerical analysis proceedings, Dundee 1983, D.F. Griffiths, ed., springer-verlag, Berlin 1984.
6. M.J.D. Powell, " Convergence properties of Algorithms for non linear optimization", SIAM Review, Vol. 28, No. 4, pp. 487-500, Dec 1986.

Summary

- What are Conjugate Directions?
\square Conjugate Direction Methods
- Conjugate Gradient Methods
\square Convergence Analysis
\square Partial Conjugate Gradient Method
\square Application to Non-quadratic problems
- Pre-conditioned Conjugate Gradient (Scaling)

