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(I Outline of Lecture 11 l

Motivation for Successive Quadratic Programming (SQP)
Methods
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L

Key SQP ldeas
Newton Version of SQP
Descent Property of Merit Function f+cP

Quasi-Newton Version of SQP

U O O O O

SQP with second order correction
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VE(x)=0

» Consider scalar iteration first;
Consider

Solving g(x) =0, a scalar non-linear function

0=g(X)=0g(x)+9'(X)(X —X.) LINEARIZATION

g(x,)
= Xea =X "«

9'(x)
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' (l Motivation for SQP - 1 l

 Consider unconstrained minimization problem: min f (x)

g(x)

* Given the current estimate X, the next estimate X.. 1S obtained via
a quadratic approximation of f (x")around x,

f(x)= f(&)Wf(&)(i—xk)%(x*—zkfvzf(xk)({—xk) min at X, =X

Xy = X —[V°f (gk)]‘1V1(§k) "PURE NEWTON ITERATION"
An alternate viewpoint is to consider solving the first order necessary condition :

»

<&
<«

/// g
Series of straight line
approximations
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N 4 (l Motivation for SQP - 2 l

d Now consider solving the necessary conditions: 1

Vi()_(*) ~ Vi()_(k) +V* o ()_(k)()_(* —-X)=~0

FEF O DL L

) !
= X =% —[V T (X )TV (%) L/

v

Quadratic approximations of f (x) around x, <> linearization of first
order necessary conditions around X,

* Also, know that Newton’s method is locally convergent and that we
need to modify it via step size selection or trust region approach and
employ strategies for indefinite Hessian (e.g., modified Cholesky,
Levenberg-Marquardt, double dog-leg, trust region)

 Quasi-Newton methods to avoid having to compute the Hessian
(= secant approximation)

Lk L L
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SQP for Constrained Optimization

O Can we extend this idea to constrained minimization problems: Yes!

 Consider min f(x) such that h(x) =0. Lagrangian function is given as:
L(x,2) = f(x)+A"h(x) . First order necessary conditions of optimality:

n equations: V,L(x",47) = Vf (X)) +Vh(x)A =V (X)+ > A4Vh;(x) =0
- o - i=1

FEF O DL L

m equations: V,L(x",A7)=h(x")=0; (m+n) unknowns:x",A"
« Recall Newton’s method for solving a system of non-linear equations:
Given (x,,4, ), the current estimates, want to find new estimates (X,, 4.;)
= V, L%, ) + Vi L, 20 (K = %) + Vi L% A) (A = 4) =0
VoL (R 4D+ Vo L% A) (X —X) =0
Using: V,L(X, 4) = VI (x)+Vh(X%)A4.V,L(%. 4) =h(x)
VEL(X, &)=V (%) + 20 () VPhi(%) = H,
Vi k(% 4) = Vh(x) =[V, L%, A" =N,

o

V2 L(X,, Vh(x _ Vi (x,)-Vh(x 1 -

:[ k080 2) (J)MM &H _(J)h g)ﬂ a6 1110 (22) ook |32

Vh' (X 0 - —n(X K ey

= (%) by~ e h(x) if N, is not full rank o
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4 Solution of Linearized Equations = QPP
j * Let %, —X =d, and add vh(x)4, to first equation:
a
n Vial(X%,4) Vh(x) { d, } {—Vf (zk)} )
‘ = =
3 vh'(x) 0 Aeal | —h(%)
Claim: These are the necessary conditions of optimality for the
following quadratic programming problem:
min 7 A7 V2 L(%,, 4 )d, + VI (x)d,
G 2 B (QPP)
st. Vh' (x)d, +h(x) =
First order necessary conditions of optimality:
Define:L(d,7) =>-0"VL(x, 4)d + VI (4)d, +7" VA" (%) + h(x)
Optimality Conditions of (d,,7” = 4..,) a2
VZL04 A0, + VA )4 =-VE (%) T
Same as * < d
Vh'(x)d, =-h(x,) r
r
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@ ' (I Summary of SQP Ideas - 1 l
 Let us summarize results So 1ar and NSt unresolved ISSUes:

1) Can obtain d, and the multiplier vector 4., form the solution of a
quadratic programming problem with linear equality constraints.
2) Inessence, we are approximating the nonlinear equality problem by a
series of quadratic programming problems, one at each iteration.
3) Again, can get only local convergence. Need strategies for:
a) Indefinite v2 L = Modified Cholesky, Quasi-Newton, Augmented
Lagrangian
b)Global convergence — Line search. Q: Line Search on What?
4) What about inequality constraints?
» One way of ensuring positive definiteness of y2 | is to convexify the
Lagrangian by adding a quadratic penalty term:

«d

L.(x,4) = f(§)+/_1TD(Z)+EChT (x)h(x) 42

2 < 'd

2 2 - 2 T 4

Use VLo (X, 4) = Vil (%, 40 + 26 h (X)Vh (%) + ¢, Vh(x)Vh' (%) r
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@ ' (l Summary of SQP Ideas - 2 l
* Alternatively,

Vil (%, 4) = Vi L (%, 4) +CkVQ(z<k)VQT (%),
RHS will be modified as: —V f (x.) > —[Vf (%) + ¢, Vh(x)h(%)]
 Extension to inequality constraints:
minf(x), st. h(x)=0; heR™;g(x)<0; geR’
Lagrangian Function: L(x,4, )= f(x)+A"h(X)+4' g(x)

Necessary Conditions:
VE(x") +Vh(x)A +Vg(x)# =0

FEF O DL L

h(x")=0
#9,(x)=0  i=12..r (or) g(x) <0
1>0
Linearization leads to:
VL% Ao ) VR VI, T=[-V (%)
Vh' (%) 0 0 Aea |=| —h(X)
VQT (%) 0 0 i S_ _g(lk)J

8 Copyright ©1991-2009 by K. Pattipati

where V2, L(X. A £4,) = V2 T (x)+ D (2, V2h (%) + D (4), V29, (%)
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N 4 (I Surmrary of SQP Ideas - 3 l

This is equivalent to the following QPP with linear equality and
inequality constraints :

Questions:

* How to ensure

Step 2: Solve the QPP

Copyright ©1991-2009 by K. Pattipati

min diV2,L0%. A )0, + VT (%),

s.t. Vh' (x)d, +h(x) =0
vg' (x)d, +9(x)<0

« How do we use this idea in a general SQP algorithm?
« Need to solve a quadratic programming problem at each iteration.
How to solve QPP?

global convergence? Line search on what function?

O General Algorithm: Newton Version
Step 1: Given an initial estimate X,, 4,, 4 compute ViXL(go,go,/_to),Vn(go),Vg(go). Setk =0

min IV L0 A )0, + VET (56,

s.t. Vh' (x)d, +h(x) =0 » = RESULT: dy, Ay M
vg' (%), +9(x)<0

L L L L
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Y5 (l General SQP Algorithm l

O General Algorithm: Newton Version (continued)

Step 3: Select a step size ¢, along d, to minimize a penalty (merit) function = f +cP
Choices for P: 1. P =max{0, g,(X), g, (X). .-, 9, (X),| () L.l By (X) [,.... | h (x) [}

2.P =Y max(0,9,(x)+ > I ()]

FEF O DL L

3. +0P = 100+ Ah(x) + 4 900 +2 ¢ [max(0, 6, (NI + ch” (N(Y

L(x.2,1)

4. £ 40P =L(x 2.+ ch" (O + |V, L(x, 20 |

5. +6P =0.F (x)+ VI L(X AV, L(x,2)+ > ch” (0h(x)

In any case, o, =arg min{f (x, +«d,)+cP(x +ad,)}

Note that some of the Penalty functions are non-differentiable.

DO NOT USE LINE SEARCH TECHNIQUES THAT USE DERIVATIVE INFO.
ONLY THOSE THAT USE FUNCTION EVALUATIONS (e.g., GS+QI)

Step 4: Check for convergence. If not converged, k =k +1 and go back to Step 2

L L L L
[
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(l Descent Property of f+elP - 1 l

O Descent Property of f+cP r
Consider the inequality constrained case: f+cP=f(x)+c> [g,(X)]"
j=1

h(x)<0
—h (x) <0

FEF O DL L

No loss of generality since h (x)=0 :{
Proof: a(x) = f(x>+cjzr;[g,-(x)]+, Let 3()={i:g;(x) >0}
a(x+ad) = f(x+ag)+cji_1[g,-(x+am]+

— f () +aViT ()d +cjzr;[g,-(x> +avgl (0d)]" +0(e)

— f(x)+aVET(x)d +c> [0, (] +ac Y Vgl (x)d +0()
=1

jed(x)
This is because Vgj (x)d +g;(x)<0=Vg] (x)d <0 if g;(x) =0
So, a(x+ad) =a(x)+a[VIT(x)d+c > Vg (x)d]

jed(x)

L L L L
[

sincec Y vgTl(ad<c Y —g;(x) =—>[g; (T
J=1

jed(x) jed (x)
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j=1

= _gTving+Zﬂjgj (x)
j=1

12 Copyright ©1991-2009 by K. Pattipati

Y5 (I Descent Property of f+elP - 2 l

O Descent Property of f+cP (continued)
So, a(x+ead) <a(x)+aVi'(x)d - CZr: [9; ()]

=

From the necessary conditions of optimality, we have

VET(x)d =-d"VLLd =) Vg (x)d

1;IVg; (¥)d +9;(X)] = 0= —;Vg; (\)d = 1,9, (x)

« What if ViL isnot PD? Use Augmented Lagrangian
 If don’t want to compute Hessian, use Quasi-Newton Method

<—d"V Ld + m?x(yj)Z[g,- (xX)I"
=1

a(x+ad) <a(x) +a{-d"V, Ld —[c - max(y, )]Zr:[g,- (X)]"}+0(a)

Since V2, Lis PD and if c>max x;,3 an a> a(x+ad) <a(x)
J

L L L L
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minZd/Bd, + VI ()¢,
Step 2: Solve the QPP: s.t. Vh' (x)d, +h(x,) =0
Vg' (x)d, +9(x)<0

Step 4: Check for convergence. If not go to Step 5

A AT T
O W BkEkEkBk .
AT A

P @ El B, Py

B, =B+

3

Y5~ rQuas'i-Newton Version of SQP - 1

O General Algorithm: Quasi-Newton \Version

Step 1: Given an initial estimate of x, and a PD matrix B,
(approximation to the Hessian) or its square root L, for square root version

F= Get gk+l’ ik+1’ Hk+1

J

oy :Qkﬂk +(1_0k)BkEk;

suggested value of &, (empirical): 6 =< 0.8p;B, p,

Step 3: Perform Line search to obtain «, , where o, =arg min{f +cP}

Step 5: Update B, (or L, ) via generalized BFGS update

P =X — X = a,d,

gk = Vx L(Xkﬂ’ i’kﬂ’ /;lk+1) - VXL(XK ’ ﬁ'kﬂ’ ’l_lkﬂ-)

1if p.g, 20.2p,B, p,

13 Copyright ©1991-2009 by K. Pattipati

P B Py — PG,

ifEIgk < O.ZEI B, P,
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Y5~ rQuas'i-Newton Version of SQP - 2

O General Algorithm: Quasi-Newton Version (continued)
6, is used to ensure p, @, > 0= VI (x)d, <Vf'(x_,)d,

T B TB
6, =1= BFGS update B, , =B, + GG By P« PyBx

PG PBP
0.8pBp, ,  02pB.p — PG
T T POt T
EkBkEk —Ekﬂk EkBkEk _Ekgk

=0.2p, B, p, >0

O, #1= Ek@k = -_plBkEk

« Powell (Math Programming, Vol. 15, 1978) shows that if «, ~1, the
method has super linear convergence. However, one can find problems
where o, =1 for X, arbitrarily close to X . Known as Maratos effect

T A
f+cP
fx+d)+cy | g;(x+d) > (x)+c) |9 (X)] \/

P »
<« »

L L L L
[
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d Maratos Effect

min f(x) = 2(x} + X —1) — x, subject to (x{ +x. —1) =0
Optimal solution: X" =(1,0), A" =15, V2L (x ,A") = |
At iteration k, x, = (cos@,sin#)" = Feasible

4cosf -1 2C0S6
f(x,)=-cos@;VTf(x,)= ] Vh(x,) = ]
(%) 1) { 4sin @ } (%) {Zsmﬁ}

QPP : min —cos &+ (4cos @ -1)d, + 4sin &d, +%d i+%d§

subject to: d, cos@#+d,sin@ =0

) a2
d, - _sm 0 A =C0sO=> X, +d, = (_:050+sm 0
—sinédcosé sin 8(1—cos )
el 217G g
Can show ~=¢172 — =| sin(—) |<1=> converging
e ll; 2|Sin(§)|

However, f(x, +d,)=sin*@-cosd >-cosd = f(x,)
h(x, +d,)=sin®0>h(x,)=0

Copyright ©1991-2009 by K. Pattipati

Maratos Effect

Solutions:
1. Use Augmented Lagrangian-based Merit Function
2. Second order correction

3. Allow merit function to increase in some iterations

|
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i': QP Algorithm with 27 Order Correction - :

o

o

:  Solve two quadratic frograms to Improve convergence rate:

. @minVIT(x)d +2 diBd  (Imin pep,

. st h(x)+Vh' (x)d, =0 st h(X +d)+Vh (x)p, =0
g(%)+Vg (x)d, <0 g(x +d)+Vg' (x)p, <0

X = X T 44y +ak2_pk;ak =arg min (f +cP)

 Solution of QPP: At step k, we have
mingid+=d'Bd %~ VIC
o = 2 B, ~ V2L, QN, VZL+c,Vhvh'
st. Ald =b, A ~Vh, A ~Vg
Ayd <b, b, =—h, b, =—g
Suppose we have a feasible point d,,
Solve Phase | LP

4l
d 3A1TC_I|:Q1 o i Zr: d
Y min » z. + Y. 4 'd
AzTc_i,ggz i1 = d J
st.Ald,+z=b, Ajd,+y=b, y>0 .

16 Copyright ©1991-2009 by K. Pattipati ‘ ‘ ‘ ‘ . ‘
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i': SQP Algorithm with 27 Order Correction - 2

 Solution of QPP (continued):

At d, : Equality constraints are satisfied and some inequality constraints

Define AT =

AT |r” active inequality

A m equality
A

Atoptimum g, +Bd" =—-A1" - A’

If we know active constraints at d”, we can actually solve an equality constrained

problem: min

Unfortunately don't know r*, so our procedure is iterative:

Repeat until —

Convergence L,

Copyright ©1991-2009 by K. Pattipati

T 1 T AT A Ql

e Start with the current working set S,
e Go to the next pointd, , =d, + p,

o See if we need to update S, —» S, ,

L L L L
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i QP Algorithm with 2" Order Correction - 3
O How to get the best P ?

n A n —_|R n

A=[A AJ; Suppose A=[Q QI]{ 0'}=Q|R| = Q' A=R,

Q, = R(A) column space of A

Q, = Orthogonal to A= Q A=0= A'Q, =0

Also, Q'Q, =0; Since d, and d,,, are feasible

ATC_I|+1 = ATC_Il T ATB =0= ATB =0

Since columns of Q, and Q, span R", we can write

P =QY, +Q
ATplz'a‘TQ|y|""8‘T(§|Z|:Q:>R|T)’|:():>y|zg 44
o o o o od o
“ By =Q z j :
o
L
Copyright ©1991-2009 by K. Pattipati ‘ ‘ ‘ ‘ . ‘



FEF O DL L

19

i': QP Algorithm with 2" Order Correction - 4

* The problem of finding P, can be written as:

min g} @ +p.)* > (¢ #9,) B, (6, +p)

st.A'p =0

= min(g, +B,d,)" p, +%E.T B, P,
stATp =0

= ming, p, +%E|TB|<E|

st.ATp =0
where g, =g, + B,d,
So, the problem of finding p, Is another QPP, but simpler

constraints = can solve very easily!!!

Copyright ©1991-2009 by K. Pattipati
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d

Optimality Conditions:

L\: OLH o k_l}

of QPP

or B, A {djm}: -9,
AT O il+l QA

Sinced,,, =Q, ¢, +Qa.,

9I+1

|: BkQI Bk(jl QI RI :| |:_
— aI |~
R'QQ 0 Of 7

ﬂ

1> |«

~

_&I+1_

2

~ : n .
= R'c,,, =b =solve forc,, in O(?) operations.

Q' BQa,, =—Qf [9 +BQ,C,.1]

Copyright ©1991-2009 by K. Pattipati

@ SQP Algorithm with 2°¢ Order Correction - 5
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Y5 [SQP Algorithm with 2" Order Correction - 6

Do Cholesky on Q[ B,Q, =UU;",s0 &, =—[U,U;"T"Q[[g, + B,Q,C,..]
— gl+1 = QI 9I+1 B (_gl [UI UIT]_lc_g-lr [gk + Bk(?I gl+1]

Fina”yl R ﬂ'l - _Q-Ir[gk +B QI CI+1 +B (jlglﬂ] - _Q:—[gk +B dI+1]

or 4, =-R7Q/ [9, + B,d,.,] Multiplier vector in O(n?) operations.

FEF O DL L

O Update of working set:
e Ifd,, =d = p,=0=d, isoptimal w.r.t current set of constraints S,

e If p, #0 but s feasible for all constraints, d,,; =d, + p, Is the new point.
If 11, >0Vq of inequality constraints, stop = Optimal
e Ifd,, isnotfeasible = some constraint is voilated. So, let d, , =d, + o, p,

where: o, = min{l, b g‘Q'}

31 p>0
|$S| _I pl

: b —a'd,
| rg min{l,— 2 ——}=7S5,,, =5 U{i,}
éu p>0 Q.. pl

igS

L L L L
[
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Y% SOP Algorithm with 27 Order Correction - 7

« How to drop active inequality constraints:
— d,, Is feasible for all constraints in S,

— Ifall 4, > 0= Optimal
— Find iy =arg min{s,},S,,, =S, —{i;}
q
« Algorithm:

Stepl: Start with an initial feasible d, and the corresponding working set S,. Set | =0.

Step2: Solve forp, = d,.,
Step3: Find step length ¢,. If ¢, <1, append corresponding constraint i,. So

A=[A a]=Q(§ ij=c§[§]

Q:QQI’ NeWQI :[leq

“m+r, +1]
New Q, complete change
Return to Step 2 ; else go to Step 4

Copyright ©1991-2009 by K. Pattipati
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Y5 SQP Algorithm with 2° Order Correction - 8

 Algorithm (continued)

Step 4: If «; =1, compute A (last r components are )
Find 44, = miin(yi)
If 14, >0 Stop
else drop constraint corresponding to i,

AI[Ql Q-g---@-id_1 Qid+1"'§m+f’]

~ |M
TA:
M = upper triangular cols. 1 to i, —1 . Has elements in subdiagonals for columns

Iy tom+r-1

New Q| = [91 9, "'gid —1'(5]’

New Q, =[G, Q o] 1

Go to Step 2 a3

d 'd

=

|

Copyright ©1991-2009 by K. Pattipati CLLLLL



@ SQP Algorithm with 2" Order Correction - ¢

« What if QPP is infeasible? Add artificial variables to detect it.

FEF O DL L

min%gT Bd+g,d+C&' 1

s.t. Vh' (x)d +h(%) =0 | Ajways feasible
Vg' (%), +9(x)<¢

£20

d Other Methods:
« M.JD Powell, “On the QP Algorithm of Goldfarb and Idnani’, MP,
1985, pp.46-61

« Goldfarb and Idnani, “A numerically stable dual method for solving e

strictly quadratic programs convex”MP,1983,pp. 1-33 1%

am

o

L
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(I Summary I

Motivation for Successive Quadratic Programming (SQP)
Methods

U

Key SQP ldeas
Newton Version of SQP
Descent Property of Merit Function f+cP

Quasi-Newton Version of SQP

U O O O O

SQP with second order correction
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