Lecture 12: Descent Methods for Constrained Minimization, Manifold Sub-optimization Methods, Problems with Simple Constraints

Prof. Krishna R. Pattipati
Dept. of Electrical and Computer Engineering
University of Connecticut

Contact: krishna@engr.uconn.edu (860) 486-2890
ECE 6437
Computational Methods for Optimization

Fall 2009 November 17, 2009

Outline of Lecture 12

\square Review: Multiplier (primal-dual and augmented Lagrangian methods) and Successive Quadratic Programming methods

- Feasible Direction Methods
- Rosen's Gradient Projection methods
- Reduced Gradient method
- Newton-type methods
- Updating QR decompositions
- Problems with Simple Constraints

Subgradient Methods for Discrete Optimization

- Cutting plane methods

Review of Multiplier and SQP Methods

\square Let us review the methods that we have discussed so far

Multiplier (primal-dual, AL)
methods
$\min f(\underline{x})$
s.t $\underline{h}(\underline{x})=\underline{0}$

$$
\underline{g}(\underline{x}) \leq \underline{0}
$$

Form augmented Lagrangian

$$
L_{c}(\underline{x}, \underline{\lambda}, \underline{\mu})=f(\underline{x})+\underline{\lambda}^{T} \underline{h}(\underline{x})+\underline{\mu}^{T} \underline{g}^{+}(\underline{x})
$$

$$
\frac{c}{2} \underline{h}^{T}(\underline{x}) \underline{h}(\underline{x})+\frac{c}{2} g^{+^{T}}(\underline{x}) \underline{g}^{+}(\underline{x})
$$

$$
g_{j}^{+}(\underline{x}, \underline{\mu})=\max \left(g_{j}(\underline{x}),-\mu_{j} / c\right)
$$

- Key: Solve an unconstrained problem at each step

Successive Quadratic programming methods
\bullet At each $\underline{x}_{k}, \underline{\lambda}_{k}, \underline{\mu}_{k}$ approximate Lagrangian function by a quadratic and constraints by a linear function

- Find direction $\underline{d}_{k} \ni$ it minimizes

$$
\underline{d}^{T} B \underline{d}+\nabla \underline{f}^{T}\left(\underline{x}_{k}\right) \underline{d}
$$

$$
\text { s.t. } \nabla \underline{h}^{T}\left(\underline{x}_{k}\right) \underline{d}+\underline{h}\left(x_{k}\right)=\underline{0}
$$

$$
\nabla \underline{g}^{T}\left(\underline{x}_{k}\right) \underline{d}+\underline{g}\left(\underline{x}_{k}\right) \leq \underline{0}
$$

$$
\Rightarrow \underline{d}_{k}, \lambda_{k+1}, \mu_{k+1}
$$

- Find stepsize α_{k} to

$$
\min f+c P \text { along } \underline{d}_{k}
$$

$$
\underline{x}_{k+1}=\underline{x}_{k}+\alpha_{k} \underline{d}_{k}
$$

- Key: Solve a special constrained problem at each step

Feasible Direction Methods

- Feasible Direction Methods

Manifold sub-optimization methods

Gradient projection Reduced gradient
Quadratic programming (Newton-type Methods)

Manifold Suboptimization Methods - 1

- These methods are good for linear equality and inequality constraints:

$$
\min f(\underline{x})
$$

s.t. $A_{1} \underline{x}=\underline{b_{1}} \quad \underline{b_{1}} \in R^{m} \Rightarrow \underline{a}_{i}^{T} \underline{x}=b_{i}, i=1,2, \ldots, m$

$$
A_{2} \underline{x} \leq \underline{b}_{2} \quad \underline{b}_{2} \in R^{r} \quad \Rightarrow \underline{a}_{j}^{T} \underline{x} \leq b_{j}, i=1,2, \ldots, r
$$

Suppose have a feasible \underline{x}_{k}. For example, such a point at $k=0$ can be obtained via the following phase I of $L P$

$$
\begin{array}{llc}
\min \sum_{i=1}^{m} y_{i}+\sum_{j=1}^{r} z_{j} & & \begin{array}{c}
\text { Optimal solution is such that } \\
\underline{y}=0
\end{array} \\
\text { s.t. } A_{1} \underline{x}+\underline{y}=\underline{b}_{1} \\
A_{2} \underline{x}+\underline{z}=\underline{b}_{2} & & \underline{z} \\
\text { and } \begin{array}{l}
\underline{y} \geq 0
\end{array} & & \text { Initial FS: } \underline{y}=0 \\
\underline{z} \geq 0 & & \text { assume WLOG } \underline{b}_{2} \geq \underline{b_{2}} \geq
\end{array}
$$

Manifold Suboptimization Methods - 2

\Rightarrow In the process, we get $A_{1} \underline{x}=\underline{b}$

$$
\hat{A}_{2} \underline{x}=\underline{b}_{2} \text { for a subset of inequality constraints }
$$

Let $\mathcal{A}(\underline{x})=\left\{\underline{x} \mid \underline{a}_{j}^{T} \underline{x}=b_{j}, j=1,2, \ldots, r\right\}$ Active set
Suppose we are given a feasible $\underline{x}_{k} \ni A_{1} \underline{x}_{k}=\underline{b}_{1} \& \hat{A}_{2} \underline{x}_{k}=\underline{b}_{2}$ for some active inequality constraints. What are the feasible directions, \underline{d}_{k} ?
If the new point is \underline{x}_{k+1}, then

$$
\begin{aligned}
\underline{x}_{k+1}=\underline{x}_{k}+\alpha_{k} \underline{d}_{k} \\
\text { Know } \underbrace{\binom{A_{1}}{\hat{A}_{2}}}_{A_{1}} \underline{x}_{k}=\underbrace{\binom{\underline{b}_{1}}{\hat{b}_{2}}}_{\underbrace{}_{k}} \\
A_{k} \\
A_{k} \underline{x}_{k}=\underline{b}_{k} \\
A_{k} \underline{x}_{k+1}=A_{k} \underline{x}_{k}+\alpha_{k} A_{k} \underline{d}_{k}
\end{aligned}
$$

Manifold Suboptimization Methods - 3

Since \underline{x}_{k+1} is feasible

So, feasible directions must satisfy

$$
\binom{A_{1}}{\hat{A}_{2}} \underline{d}_{k}\binom{=\underline{0}}{\leq \underline{0}}
$$

In manifold suboptimization methods, we pick \underline{d}_{k} such that

$$
A_{k} \underline{d}_{k}=\underline{0}, \mathcal{A}\left(\underline{x}_{k}\right) \sim \text { active set on working set }
$$

- Basic idea: Given a feasible point \underline{x}_{k} and working set $\mathcal{A}\left(\underline{x}_{k}\right)$

$$
\left[\begin{array}{c}
\longrightarrow \text { find } \underline{d}_{k} \ni A_{k} \underline{d}_{k}=\underline{0} \text { and } \underline{g}_{k}^{T} \underline{d}_{k}<0 \\
\underline{x}_{k+1}=\underline{x}_{k}+\alpha_{k} \underline{d}_{k} \\
\text { Update } \mathcal{A}\left(\underline{x}_{k}\right) \rightarrow \mathcal{A}\left(\underline{x}_{k+1}\right) \Rightarrow A_{k+1}
\end{array}\right.
$$

Directions via QPP

- Key question:

1. How to find \underline{d}_{k} ? The problem is more general than just $\underline{g}_{k}^{T} \underline{d}_{k}<0$
2. How to update working sets?

Most of the methods based on this idea can be viewed as one of solving a quadratic programming problem (QPP) of the form:

$$
\begin{aligned}
& \min _{\underline{d}} \underline{g}_{k}^{T} \underline{d}+\frac{1}{2} \underline{d}^{T} M_{k} \underline{d}_{k} \\
& \text { s.t. } \quad A_{k} \underline{d}=\underline{0} \\
& \text { Choice of } M_{k} \text { determines } \\
& \text { the type of projection } \\
& \text { algorithm } \\
& L(\underline{d}, \underline{\mu})=\underline{g}_{k}^{T} \underline{d}+\frac{1}{2} \underline{d}^{T} M_{k} \underline{d}_{k}+\underline{\mu}^{T} A_{k} \underline{d} \\
& \underline{d}_{k}=-M_{k}^{-1}\left(\underline{g}_{k}+A_{k}^{T} \underline{\mu}\right) \\
& \underline{\mu}=-\left(A_{k} M_{k}^{-1} A_{k}^{T}\right)^{-1} A_{k} M_{k}^{-1} \underline{g}_{k} \\
& \underline{d}_{k}=-M_{k}^{-1}\left[I-A_{k}^{T}\left(A_{k} M_{k}^{-1} A_{k}^{T}\right)^{-1} A_{k} M_{k}^{-1}\right] \underline{g}_{k} \begin{array}{l}
\text { Use QR decomposition } \\
\text { for numerical stability }
\end{array}
\end{aligned}
$$

Updating Working Set - 1

$$
\begin{aligned}
& \underline{d}_{k} \neq 0 \Rightarrow \underline{g}_{k}^{T} \underline{d}_{k}+\frac{1}{2} \underline{d}_{k}^{T} M_{k} \underline{d}_{k} \leq 0 \\
& \Rightarrow \underline{g}_{k}^{T} \underline{d}_{k} \leq-\frac{1}{2} \underline{d}^{T} M_{k} \underline{d}_{k}<0 \Rightarrow \text { feasible } \\
& \underline{x}_{k+1}=\underline{x}_{k}+\alpha_{k} \underline{d}_{k} \\
& \alpha_{k}=\left\{\begin{aligned}
& \min _{i} \frac{b_{i}-a_{i}^{T}}{} \underline{x}_{k} \\
& \infty, i \notin \mathcal{A}\left(\underline{x}_{k}\right) \& \underline{a}_{i}^{T} \underline{d}_{k}>0 \\
& \infty \text { if for all } i \notin \mathcal{A}\left(\underline{x}_{k}\right), \underline{a}_{i}^{T} \underline{d}_{k}<0
\end{aligned}\right.
\end{aligned}
$$

Then, add constraint i_{a} to $\mathcal{A}\left(\underline{x}_{k}\right)$

$$
\begin{aligned}
& \mathcal{A}\left(\underline{x}_{k+1}\right)=\mathcal{A}\left(\underline{x}_{k}\right) \cup\left\{i_{a}\right\} \\
& i_{a}=\arg \min _{i} \frac{b_{i}-a_{i}^{T} \underline{x}_{k}}{\underline{a}_{i}^{T} \underline{d}_{k}} \ni \underline{a}_{i}^{T} \underline{d}_{k}>0 \& i \notin \mathcal{A}\left(\underline{x}_{k}\right)
\end{aligned}
$$

Updating Working Set - 2

- $\underline{d}_{k}=\underline{0} \Rightarrow$ cannot move

$$
\begin{aligned}
& A_{k}^{T} \underline{\mu}=-\underline{g}_{k} \\
& \underline{g}_{k}+\sum_{i=1}^{m} \lambda_{i} \underline{a}_{1 i}+\sum_{j \in \mathcal{A}\left(\underline{x}_{k}\right)} \mu_{j} \underline{a}_{2 j}=\underline{0} \\
& \mu^{s} \text { of equality }
\end{aligned}
$$

$$
\text { if } \mu_{j}>0 \text { for all } j \notin \mathcal{A}\left(\underline{x}_{k}\right) \Rightarrow \text { optimal }
$$

Otherwise, drop the constraint with the most negative μ_{j}.

$$
\begin{aligned}
& \mathcal{A}\left(\underline{x}_{k+1}\right)=\mathcal{A}\left(\underline{x}_{k}\right)-\left\{i_{d}\right\} \\
& i_{d}=\arg \min _{j: \mu_{j}<0}\left\{\mu_{j}\right\}
\end{aligned}
$$

QR Implementation

$$
\text { Let } A_{k}^{T}=\left(\begin{array}{ll}
Q_{k} & \bar{Q}_{k}
\end{array}\right)\binom{R_{k}}{0}=Q_{k} R_{k}
$$

$$
\operatorname{spans} R\left(A_{k}^{T}\right) \text { spans } N\left(A_{k}\right)
$$

To find \underline{d}_{k}, need to solve

$$
\begin{aligned}
& \left(\begin{array}{cc}
M_{k} & A_{k}^{T} \\
A_{k} & 0
\end{array}\right)\binom{\underline{d}_{k}}{\underline{u}_{k+1}}=\binom{-\underline{g}_{k}}{\underline{0}} \Rightarrow A_{k}^{T}=Q_{k} R_{k} \\
& \quad \text { Let } \underline{d}_{k}=Q_{k} \underline{c}_{k}+\bar{Q}_{k} \underline{a}_{k} \Rightarrow\left(\begin{array}{ccc}
M_{k} Q_{k} & M_{k} \bar{Q}_{k} & Q_{k} R_{k} \\
R_{k}^{T} & 0 & 0
\end{array}\right)\left(\begin{array}{c}
\underline{c}_{k} \\
\underline{a}_{k} \\
\underline{\mu}_{k+1}
\end{array}\right)=\binom{-\underline{g}_{k}}{\underline{0}} \\
& \underline{c}_{k}=Q_{k}^{T} \underline{d}_{k} \& R_{k}^{T} \underline{c}_{k}=\underline{0} \Rightarrow \underline{c}_{k}=\underline{0} \Rightarrow \underline{d}_{k}=\bar{Q}_{k} \underline{a}_{k} \\
& \bar{Q}_{k}^{T} M_{k} \bar{Q}_{k} \underline{a}_{k}=-\bar{Q}_{k}^{T} \underline{g}_{k}
\end{aligned}
$$

Do Cholesky on $\bar{Q}_{k}^{T} M_{k} \bar{Q}_{k}=\bar{U}_{k} \bar{U}_{k}^{T} \Rightarrow \underline{a}_{k}=-\left(\bar{U}_{k} \bar{U}_{k}^{T}\right)^{-1} \bar{Q}_{k}^{T} \underline{g}_{k} \quad ;$

$$
\begin{array}{r}
\underline{d}_{k}=-\bar{Q}_{k}\left(\bar{U}_{k} \bar{U}_{k}^{T}\right)^{-1} \bar{Q}_{k}^{T} \underline{g}_{k} ; \underline{g}_{k}^{T} \underline{d}_{k}=-\underline{g}_{k}^{T} \bar{Q}_{k}\left(\bar{U}_{U_{k}} \bar{U}_{k}^{T}\right)^{-1} \bar{Q}_{k}^{T} \underline{g}_{k}<0 \\
\text { Descent Direction }
\end{array}
$$

Rosen's Gradient Projection Algorithm

- Choice of M_{k} determines the type of projection algorithm
- Rosen's Gradient Projection Algorithm $M_{k}=I$

$$
\begin{aligned}
& \underline{\mu}=-\left(A_{k} A_{k}^{T}\right)^{-1} A_{k} \underline{g}_{k} \quad \text { compleme } \\
& \underline{d}_{k}=-\left[I-A_{k}^{T}\left(A_{k} A_{k}^{T}\right)^{-1} A_{k}\right] \underline{g}_{k}=-P_{k}^{c} \underline{g}_{k} \\
& \Rightarrow \min \frac{1}{2}\left\|\underline{d}+\underline{g}_{k}\right\|^{2} \text { s.t. } A_{k} \underline{d}=\underline{0} \\
& \underline{d}_{k}=\text { Projection of }-\underline{g}_{k} \text { onto the null space } \\
& \quad \text { of } A_{k} \text { corresponding to active } \\
& \quad \text { constraints }
\end{aligned}
$$

so,
complementary projection

Reduced Gradient Method

- Reduced Gradient Method: Select $M_{k}=\bar{Q}_{k}\left(\bar{Q}_{k}^{T} \bar{Q}_{k}\right)^{-2} \bar{Q}_{k}^{T}$
$\Rightarrow \bar{Q}_{k}^{T} M_{k} \bar{Q}_{k}=I$
$\Rightarrow d_{k}=-\bar{Q}_{k} \bar{Q}_{k}^{T} \underline{g}_{k}$
The update equation is:

$$
\underline{x}_{k+1}=\underline{x}_{k}-\alpha_{k} \bar{Q}_{k} \bar{Q}_{k}^{T} \underline{g}_{k}
$$

- Reduced gradient method can be viewed as a steepest descent iteration for solving the problem of minimizing $f(\underline{x})$ over the manifold $\left\{\underline{x}: A_{k}\left(\underline{x}-\underline{x}_{k}\right)=\underline{0}\right\}$ i.e., $\underline{x}=\underline{x}_{k}+Q_{k} \underline{a}$

$$
\left.\begin{array}{rl}
\min f(\underline{x}) \\
\text { s.t. } A_{k}\left(\underline{x}-\underline{x}_{k}\right)=\underline{0}
\end{array}\right\} \Rightarrow \begin{gathered}
\min h(\underline{a})=f\left(\underline{x}_{k}+\bar{Q}_{k} \underline{a}\right) \\
\quad \begin{aligned}
\text { s.t. } \underline{a} \in R^{n-m-\hat{r}}
\end{aligned} \\
\Rightarrow \underline{a}_{k+1}=\underline{a}_{k}-\alpha_{k} \nabla \underline{h}\left(\underline{a}_{k}\right) \\
\\
\\
=-\alpha_{k} \bar{Q}_{k}^{T} \nabla \underline{f}\left(\underline{x}_{k}\right) \quad \text { when } \underline{a}_{k}=\underline{0}
\end{gathered}
$$

$$
\text { when } \underline{a}_{k}=0 \Rightarrow \underline{a}_{k+1}=-\alpha_{k} \bar{Q}_{k}^{T} \nabla \underline{f}\left(\underline{x}_{k}\right)=-\alpha_{k} \overline{\bar{Q}}_{k}^{T} \underline{g}_{k}
$$

$$
\therefore \underline{x}_{k+1}=\underline{x}_{k}+\bar{Q}_{k} \underline{a}_{k+1}=\underline{x}_{k}-\alpha_{k} \overline{\bar{Q}_{k}} \bar{Q}_{k}^{T} \underline{g}_{k}
$$

Newton-type Methods

Newton-type Methods:

$$
\underline{a}_{k+1}=\underline{a}_{k}-\alpha_{k} D_{k} \nabla \underline{h}\left(\underline{a}_{k}\right)=\underline{a}_{k}-\alpha_{k} D_{k} \bar{Q}_{k}^{T} \underline{g}_{k}
$$

$$
D_{k} \sim \text { approximation to }\left[\nabla^{2} h\left(\underline{a}_{k}\right)\right]^{-1}
$$

when $\underline{a}_{k}=\underline{0}$

$$
\underline{a}_{k+1}=-\alpha_{k} D_{k} \bar{Q}_{k}^{T} \underline{g}_{k}
$$

$$
\text { and } \underline{x}_{k+1}=\underline{x}_{k}+\bar{Q}_{k} \underline{a}_{k+1}
$$

$$
=\underline{x}_{k}-\alpha_{k} \bar{Q}_{k} D_{k} \bar{Q}_{k}^{T} \underline{g}_{k}
$$

so,

$$
d_{k}=-\bar{Q}_{k} D_{k} \bar{Q}_{k}^{T} \underline{g}_{k}
$$

Note that this is similar to

$$
D_{k}=\left(\bar{Q}_{k}^{T} M_{k} \bar{Q}_{k}\right)^{-1} \Rightarrow M_{k}=\bar{Q}_{k}\left(\bar{Q}_{k}^{T} \bar{Q}_{k}\right)^{-1} D_{k}^{-1}\left(\bar{Q}_{k}^{T} \bar{Q}_{k}\right)^{-1} \bar{Q}_{k}^{T}
$$

$$
\text { when } D_{k}=\left[\nabla^{2} h\left(\underline{a}_{k}\right)\right]^{-1}=\left[\bar{Q}_{k}^{T} \nabla^{2} f\left(\underline{x}_{k}\right) \bar{Q}_{k}\right]^{-1} \Rightarrow M_{k}=\nabla^{2} f\left(\underline{x}_{k}\right)
$$

- If $\bar{Q}_{k}^{T} \nabla^{2} f\left(\underline{x}_{k}\right) \bar{Q}_{k}$ is not PD, make it PD via cholesky decomposition
- It is possible to use Quasi-Newton versions for updating approximations of $\nabla^{2} h\left(\underline{a}_{k}\right)$ or $\left[\nabla^{2} h\left(\underline{a}_{k}\right)\right]^{-1}$

A General Projection Algorithm - 1

Algorithm

1. Get initial \underline{x}_{0} and working set $\mathcal{A}\left(\underline{x}_{0}\right) . k=0$
2. Determine \underline{d}_{k}

Use QR decomposition for numerical stability
3. Determine maximum step size $\bar{\alpha}$ w/o violating any inactive constraints

$$
\begin{aligned}
& \text { Find } \bar{\alpha}=\left\{\begin{array}{l}
\frac{b_{i}-\underline{a}_{i}^{T} \underline{x}_{k}}{\underline{a}_{i}^{T} \underline{d}_{k}} \quad i \notin \mathcal{A}\left(\underline{x}_{0}\right) \& \underline{a}_{i}^{T} \underline{d}_{k}>0 \\
\infty \text { if for all } \quad i \notin \mathcal{A}\left(\underline{x}_{0}\right), \underline{a}_{i}^{T} \underline{d}_{k}<0
\end{array}\right. \\
& i_{a}=\arg \min _{i}\left(\frac{b_{i}-a_{i}^{T} \underline{x}_{k}}{\underline{a}_{i}^{T} \underline{d}_{k}}\right), i \notin \mathcal{A}\left(\underline{x}_{0}\right) \& \underline{a}_{i}^{T} d_{k}>0
\end{aligned}
$$

$$
\alpha_{k}=\underset{\alpha \in(0, \bar{\alpha})}{\arg \min } f\left(\underline{x}_{k}+\alpha_{k} \underline{d}_{k}\right)
$$

5. If $\alpha_{k}<\bar{\alpha}$

$$
\underline{x}_{k+1}=\underline{x}_{k}+\alpha_{k} \underline{d}_{k}
$$

A General Projection Algorithm - 2

If $\left\|\underline{d}_{k}\right\|<\varepsilon$ and $\mu_{i_{d}}=\min _{i}\left(\mu_{i}\right)>0$ Stop
If $\mu_{i_{d}}<0$, drop constraint i_{d}

$$
A_{k+1}=A_{k} / \text { row } i_{d} \Rightarrow \text { remove row } i_{d} \text { from } A_{k}
$$

Go to step 2
6. If $\alpha_{k}=\bar{\alpha}$, add constraint i_{a} to the set

$$
A_{k+1}=A_{k} \cup \text { row } i_{a} \Rightarrow \text { add row } i_{a} \text { to } A_{k}
$$

Go to step 2
\square Linear Programming application
$\min \underline{c}^{T} \underline{x}$
s.t. $A \underline{x}=\underline{b}, \quad \underline{x} \geq 0$
$\underline{x}_{k+1}=\underline{x}_{k}+\alpha_{k} \underline{d}_{k}$
$\underline{d}_{k}=\arg \min \underline{c}^{T} \underline{d}_{k}+\frac{1}{2} \underline{d}_{k}^{T} M_{k} \underline{d}_{k}$
s.t. $A \underline{d}_{k}=\underline{0}$

Projection Applied to LP

$$
\begin{gathered}
\underline{d}_{k}=-M_{k}^{-1}\left(\underline{c}-A^{T} \underline{\lambda}_{k}\right) \\
\underline{\lambda}_{k}=\left(A M_{k}^{-1} A^{T}\right)^{-1} A M_{k}^{-1} \underline{c} \\
\underline{x}_{k+1}=\underline{x}_{k}-\alpha_{k} M_{k}^{-1}\left(\underline{c}-A^{T} \underline{\lambda}_{k}\right)
\end{gathered}
$$

where

$$
\begin{aligned}
& \alpha_{k}=\max \left\{\alpha \mid \underline{x}_{k}-\alpha M_{k}^{-1}\left(\underline{c}-A^{T} \underline{\lambda}_{k}\right) \geq 0\right\} \\
& M_{k}=\left[\operatorname{Diag}\left\{x_{k i}\right\}\right]^{-2}=\left(X_{k}\right)^{-2} \\
& \underline{x}_{k+1}=\underline{x}_{k}-\alpha_{k} X_{k}^{2}\left(\underline{c}-A^{T} \underline{\lambda}_{k}\right) \\
& \underline{\lambda}_{k}=\left(A X_{k}^{2} A^{T}\right)^{-1} A X_{k}^{2} \underline{c}
\end{aligned}
$$

- Affine scaling method due to Dikin (1967)
- Actually superior to Karmarkar's original method
- These methods belong to the so-called interior point methods for LP

Barrier (Penalty) Viewpoint of LP - 1

- More general view of LP via Barrier function methods

$$
\begin{aligned}
& \min \underline{c}^{T} \underline{x} \\
& \text { s.t. } \underline{x} \in \Omega \\
& \quad \Omega=\{\underline{x} \mid \underline{x} \geq 0, A \underline{x}=\underline{b}\} \\
& f_{\varepsilon}(\underline{x})=\underline{c}^{T} \underline{x}-\varepsilon \sum_{i=1}^{n} \ln x_{i} \\
& \text { s.t. } A \underline{x}=\underline{b} \\
& \underline{g}_{k}=\underline{c}-\varepsilon X_{k}^{-1} \underline{e} \quad X_{k}=\operatorname{diag}\left(x_{k i}\right) \\
& \nabla^{2} f_{\varepsilon}=\varepsilon X_{k}^{-2} \\
& \underline{d}_{k}=\arg \min _{\underline{\underline{d}}} \underline{g}_{k}^{T} \underline{d}+\frac{1}{2} \underline{d}^{T} \nabla^{2} f_{\varepsilon} \underline{d} \quad \text { Newton direction } \\
& \text { s.t. } A \underline{d}=\underline{0} \\
& \Rightarrow \underline{d}_{k}=-\frac{1}{\varepsilon} X_{k}^{2}\left(c-\varepsilon X_{k}^{-1} \underline{e}-A^{T} \underline{\lambda}_{k}\right)
\end{aligned}
$$

Barrier (Penalty) Viewpoint of LP - 2

$$
\begin{aligned}
& \underline{\lambda}_{k}=\left(A X_{k}^{2} A^{T}\right)^{-1} A X_{k}^{2}\left(\underline{c}-\varepsilon X_{k}^{-1} \underline{e}\right) \\
&=(\underbrace{\left.A X_{k}^{2} A^{T}\right)^{-1} A X_{k}^{2} \underline{c}}_{k}-\varepsilon(\underbrace{\left.A X_{k}^{2} A^{T}\right)^{-1} A X_{k}}_{\underline{\lambda}_{c}} \underline{e} \\
& \underline{d}_{k}=-\frac{1}{\varepsilon} X_{k}^{2}\left(\underline{c}-\varepsilon X_{k}^{-1} \underline{e}-A^{T}\left(\underline{\lambda}_{a}-\underline{\lambda}_{c} \varepsilon\right)\right) \\
& \underline{d}_{k}=+\frac{1}{\varepsilon} \underline{d}_{a}-\underline{d}_{c} \\
& \underline{d}_{a}=-X^{2}\left(c-A^{T} \underline{\lambda}_{a}\right) \\
& \underline{d}_{c}=-X \underline{e}+X^{2} A^{T} \underline{\lambda}_{c}
\end{aligned}
$$

So, Newton direction is a combination of affine scaling direction and so called centering direction that minimizes

$$
\begin{aligned}
& f_{c}=-\sum_{i=1}^{n} \ln x_{i} \\
& \text { s.t. } \underline{x} \in \Omega=\{\underline{x} \mid A \underline{x}=\underline{b} ; \underline{x} \geq 0\}
\end{aligned}
$$

Barrier (Penalty) Viewpoint of LP - 3

$$
\begin{aligned}
& \underline{g}_{c}=-X^{-1} \underline{e}, \quad \nabla^{2} f_{c}=X^{-2} \\
& \Rightarrow \underline{d}_{c}=-X \underline{e}+X^{2} A^{T} \underline{\lambda}_{c}
\end{aligned}
$$

$$
-X^{-1} \underline{e}+A^{T} \underline{\lambda}=0
$$

$$
A \underline{x}=\underline{b}
$$

$$
X^{-1} \underline{e}=A^{T} \underline{\lambda}
$$

Sequential QR Updates - 1

\square Updating QR decompositions:

- QR decomposition for initial working set $\mathcal{A}\left(\underline{x}_{0}\right)$ from
- Householder Reflections
- (or) Gram-Schmidt (parallel)
- (or) Givens Rotations
- Each add (or drop) constraint modifies A^{T} in one column only. The procedure for modifying QR decompositions is as follows:
Suppose we have

$$
Q R=A^{T}=\left[\underline{a}_{1} \underline{a}_{2} \cdots \underline{a}_{m+r}\right]=\left[Q_{1} \bar{Q}_{1}\right]\left[\begin{array}{c}
R \\
0
\end{array}\right]=Q_{1} R
$$

Suppose we want to find QRdecomposition of $\tilde{A}^{T}=\left[\underline{a}_{1} \underline{a}_{2} \cdot \underline{a}_{i-1} \underline{a}_{i+1} \ldots \underline{a}_{m+r}\right]$
Split R as:

$$
\left[\begin{array}{ccc}
R_{11} & v & R_{13} \\
0 & r_{i i} & w^{T} \\
0 & 0 & R_{33}
\end{array}\right] \text { so } Q^{T} \tilde{A}^{T}=\left[\begin{array}{cc}
R_{11} & R_{13} \\
0 & \underline{w}^{T} \\
0 & R_{33}
\end{array}\right] \begin{aligned}
& H \text { upper Hessenberg } \\
& \text { in the last } m-i \\
& \text { columns }
\end{aligned}
$$

Sequential QR Updates - 2

Use Givens rotations

$$
\begin{aligned}
& J_{m-1}^{T} \ldots . . J_{i+1}^{T} J_{i}^{T} H=\tilde{R} \\
& \Rightarrow \tilde{Q}=Q J_{i} J_{i+1} \ldots J_{m-1}
\end{aligned}
$$

Suppose want to add a column

$$
\begin{gathered}
\tilde{A}^{T}=\left[\underline{a}_{1} \underline{a}_{2} \ldots \underline{a}_{m+r} \underline{a}_{m+r+1}\right]=\left[A^{T} \underline{a}_{i_{a}}\right] \\
Q^{T} \tilde{A}^{T}=\left[\begin{array}{cc}
R & Q^{T} \underline{a}_{i_{a}} \\
0 & 1
\end{array}\right]=\left[\begin{array}{cc}
R & \underline{w} \\
0 & 1
\end{array}\right] ; J_{m+r+1}^{T} \ldots J_{n-1}^{T} \underline{w}=\left[\begin{array}{c}
w_{2} \\
w_{m+r+1} \\
0 \\
\tilde{Q}=Q J_{n-1} \ldots . . J_{m+r+1}
\end{array}\right.
\end{gathered}
$$

- Convergence Analysis: Rate of convergence depends on Eigen values of $P_{k} \nabla^{2} f\left(\underline{x}_{k}\right) P_{k}$ where $P_{k} \quad$ is the projection matrix associated with active constraints. For ROSEN's gradient projection method

$$
\lim _{k \rightarrow \infty} \frac{f\left(\underline{x}_{k+1}\right)-f\left(\underline{x}^{*}\right)}{f\left(\underline{x}_{k}\right)-f\left(\underline{x}^{*}\right)} \leq\left(\frac{\lambda_{\max }-\lambda_{\min }}{\lambda_{\max }+\lambda_{\min }}\right)^{2}
$$

For reduced gradient method, convergence rate depends on eigen values of

$$
\left(\bar{Q}_{k} \bar{Q}_{k}^{T}\right)^{1 / 2} \nabla^{2} f\left(\underline{x}^{*}\right)\left(\bar{Q}_{k} \bar{Q}_{k}^{T}\right)^{1 / 2}
$$

For Newton type methods,convergence rate depends on eigen values of

$$
\lim _{k \rightarrow \infty}\left[\bar{Q}_{k}\left[\bar{Q}_{k}^{T} \nabla^{2} f\left(\underline{x}_{k}\right) \bar{Q}_{k}\right]^{-1} \bar{Q}_{k}^{T}\right]^{1 / 2} \nabla^{2} f\left(\underline{x}_{k}\right)\left\{\bar{Q}_{k}\left[\bar{Q}_{k}^{T} \nabla^{2} f\left(\underline{x}_{k}\right) \bar{Q}_{k}^{T}\right]^{-1} \bar{Q}_{k}^{T}\right\}^{1 / 2}
$$

- Optimization with simple constraints

$$
\begin{array}{ll}
\min & f(\underline{x}) \\
\text { s.t. } & \underline{x} \geq 0
\end{array}
$$

Optimality conditions:

$$
\left.\begin{array}{ll}
\frac{\partial f}{\partial x_{i}}=0 & \text { if } x_{i}^{*}>0 ; \frac{\partial f}{\partial x_{i}} \geq 0 \\
\Rightarrow \underline{x}^{*}=\left[\underline{x}^{*}-\alpha \nabla f\left(\underline{x}_{i}^{*}\right)\right]^{+} ; \text {where } & \underline{z}^{+}=\left[\begin{array}{c}
\max \left(0, z_{1}\right) \\
\max \left(0, z_{2}\right) \\
\vdots \\
\max \left(0, z_{n}\right)
\end{array}\right]
\end{array}\right]
$$

Optimization with Simple Constraints - 2

- A Steepest descent method:

$$
\begin{aligned}
& \underline{x}_{k+1}=\left[\underline{x}_{k}-\alpha_{k} \nabla f\left(\underline{x}_{k}\right)\right]^{+} ; \quad k=0,1,2, \ldots . \\
& \text { where } \alpha_{k}=\arg \min _{\alpha} f\left(\left[\underline{x}_{k}-\alpha \nabla f\left(\underline{x}_{k}\right)\right]^{+}\right) ; \alpha \geq 0
\end{aligned}
$$

- Generalized gradient method:
$\underline{x}_{k+1}=\left[\underline{x}_{k}-\alpha_{k} H_{k} \nabla \underline{f}\left(\underline{x}_{k}\right)\right]^{+}$
where $\alpha_{k}=\arg \min _{\alpha} f\left(\left[\underline{x}_{k}-\alpha H_{k} \nabla \underline{f}\left(\underline{x}_{k}\right)\right]^{+}\right) ; \alpha \geq 0$
Typically, H_{k} is selected to be diagonal $H_{k}=\left[\begin{array}{ll}h_{1} & \\ & h_{2}\end{array}\right.$
- Extension to upper and lower bound constraints:

$$
\begin{aligned}
& \underline{b}_{1} \leq \underline{x} \leq \underline{b}_{2} \\
& \underline{x}_{k+1}=\left[\underline{x}_{k}-\alpha_{k} H_{k} \nabla \underline{f}\left(\underline{x}_{k}\right)\right]^{\#} \text { where }[\underline{z}]^{\#} \text { is given by }
\end{aligned}
$$

Optimization with Simple Constraints =

- Combining with Projected Newton's method:

Suppose at the first trail point $\left[\underline{x}_{k}-\alpha H_{k} \nabla \underline{f}\left(\underline{x}_{k}\right)\right]^{+}=\underline{x}_{k}(\alpha)$
the set of active constraints $A\left(\underline{x}_{k}(\alpha)\right) \neq A\left(\underline{x}_{k}\right)$; where
$A\left(\underline{x}_{k}(\alpha)\right)=\left\{i \mid 0 \leq x_{k i}(\alpha) \leq \varepsilon_{k}, \frac{\partial f\left(x_{k}(\alpha)\right)}{\partial x_{i}}>0\right\} ; \varepsilon_{k}$ is small
Then, we use Diagonally scaled steepest descent.
If $A\left(\underline{x}_{k}(\alpha)\right)=A\left(\underline{x}_{k}\right)$, use projected Newton, since probably close to optimal.
What is the form of projected Newton?
Projected Hessian

$$
F_{p}\left(\underline{x}_{k}\right)=\left\{\begin{array}{c}
\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}} \\
0 \text { if } i \neq j \text { and either } i \in A\left(\underline{x}_{k}\right) \text { or } j \in A\left(\underline{x}_{k}\right)
\end{array}\right.
$$

[It does not matter what you set diagonals of $i \in A\left(\underline{x}_{k}\right)$ and $i=j$]

Projected gradient

$$
\underline{g}_{p}\left(\underline{x}_{k}\right)=\left\{\begin{array}{cl}
\frac{\partial f\left(\underline{x}_{k}\right)}{\partial x_{i}} \text { if } i \notin A\left(\underline{x}_{k}\right) \\
0 \quad \text { otherwise }
\end{array}\right.
$$

Use $H_{k} \underline{g}_{p}\left(\underline{x}_{k}\right)=\left[F_{p}\left(\underline{x}_{k}\right)\right]^{-1} \underline{g}_{p}\left(\underline{x}_{k}\right)$

- Note directions are zero for active constraints as they should.
- Extension to upper and lower bound constraints:

$$
\underline{b}_{1} \leq \underline{x} \leq \underline{b}_{2}
$$

Same as before except

$$
\begin{array}{r}
A\left(\underline{x}_{k}\right)=\left\{i \mid b_{1 i} \leq x_{k i} \leq b_{1 i}+\varepsilon_{k} \text { and } \partial f\left(\underline{x}_{k}\right) / \partial x_{i}>0(\text { or })\right. \\
\left.b_{2 i}-\varepsilon_{k} \leq x_{k i} \leq b_{2 i} \text { and } \partial f\left(\underline{x}_{k}\right) / \partial x_{i}<0\right\}
\end{array}
$$

- Consider the problem

$$
\begin{aligned}
& \min _{\underline{x} \in X} f(\underline{x}) \\
& \text { s.t. } \underline{g}(\underline{x}) \leq \underline{0}
\end{aligned}
$$

Lagrangian $L(\underline{x}, \underline{\mu})=f(\underline{x})+\underline{\mu}^{T} \underline{g}(\underline{x})$

$$
q(\underline{\mu})=\min _{\underline{x} \in X} L(\underline{x}, \underline{\mu})=\min _{\underline{x} \in X}\left\{f(\underline{x})+\underline{\mu}^{T} \underline{g}(\underline{x})\right\} \Rightarrow \underline{x}_{\mu}
$$

$\underline{g}\left(\underline{x}_{\mu}\right)$ is a subgradient of the dual function q at $\underline{\mu}$

$$
q(\underline{\bar{\mu}}) \leq q(\underline{\mu})+(\bar{\mu}-\underline{\mu})^{T} \underline{g}\left(\underline{x}_{\mu}\right) \forall \bar{\mu} \in R^{r}
$$

Why?

$$
\begin{aligned}
q(\bar{\mu}) & =\min _{\underline{x} \in X}\left\{f(\underline{x})+\bar{\mu}^{T} \underline{g}(\underline{x})\right\} \leq f\left(\underline{x}_{\mu}\right)+\bar{\mu}^{T} \underline{g}\left(\underline{x}_{\mu}\right) \\
& =f\left(\underline{x}_{\mu}\right)+\underline{\mu}^{T} \underline{g}\left(\underline{x}_{\mu}\right)+(\bar{\mu}-\underline{\mu})^{T} \underline{g}\left(\underline{x}_{\mu}\right)=q(\underline{\mu})+\left(\underline{\bar{\mu}}-\underline{\mu}^{T} \underline{g}\left(\underline{x}_{\mu}\right)\right.
\end{aligned}
$$

When we get \underline{x}_{μ}, the subgradient is obtained at no cost.
When $q(\underline{\mu})$ is differentiable, subgradient is equivalent to a gradient

Example

\square Example: $\min _{x_{1}, x_{2}} 10 x_{1}+3 x_{2}$

$$
q(\mu)=\left\{\begin{array}{c}
4 \mu \text { if } \mu \leq 2 \\
10-\mu \quad \text { if } 2 \leq \mu \leq 3 \\
13-2 \mu \text { if } \mu \geq 3
\end{array}\right.
$$

$$
\partial q(\mu)=g(\mu) \text { is the convex hull of: }-\xi_{1},-2 \xi_{2}
$$

$$
\ni \xi_{1}+\xi_{2}=1, \xi_{1}, \xi_{2} \geq 0 \text { at } \mu=3
$$

$$
\Rightarrow-\xi_{1}-2\left(1-\xi_{1}\right)=\xi_{1}-2 \in(-2,-1)
$$

$$
13-2 \mu \underline{\mu}^{k+1}=\left[\underline{\mu}^{k}+s^{k} \underline{g}^{k}\right]^{+} \quad[x]_{i}^{+}=\left\{\begin{array}{c}
x_{i} \text { if } x_{i} \geq 0 \\
0 \text { otherwise }
\end{array}\right.
$$

In constrast to the regular gradient method, the new iterate may not improve the dual cost,i.e., we may have $q\left(\left[\underline{\mu}_{k}+s^{k} \underline{\underline{k}}^{k}\right]^{+}\right)<q\left(\underline{\mu}_{k}\right) \forall s>0$
Convergence Property: For $s^{k} \ni 0<s^{k}<\frac{2\left[q\left(\underline{\mu}^{*}\right)-q\left(\underline{\mu}^{k}\right)\right]}{\left\|\underline{g}^{k}\right\|^{2}}$

$$
\left\|\underline{\mu}^{k+1}-\underline{\mu}^{*}\right\|<\left\|\underline{\mu}^{k}-\underline{\mu}^{*}\right\|
$$

Proof of Convergence Property

- Proof: $\left\|\underline{\mu}^{k}+s^{k} \underline{g}^{k}-\underline{\mu}^{*}\right\|^{2}=\left\|\underline{\mu^{k}}-\underline{\mu}^{*}\right\|^{2}-2 s^{k}\left(\underline{\mu}^{*}-\underline{\mu}^{k}\right)^{T} \underline{g}^{k}+\left(s^{k}\right)^{2}\left\|\underline{g^{k}}\right\|^{2}$

$$
\begin{aligned}
& \text { also } q\left(\underline{\mu}^{*}\right) \leq q\left(\underline{\mu}^{k}\right)+\left(\underline{\mu}^{*}-\underline{\mu}^{k}\right)^{T} \underline{g}^{k} \\
& \Rightarrow\left(\underline{\mu}^{*}-\underline{\mu}^{k}\right)^{T} \underline{g}^{k} \geq q\left(\underline{\mu}^{*}\right)-q\left(\underline{\mu}^{k}\right) \\
& \Rightarrow\left\|\underline{\mu}^{k}+s^{k} \underline{g}^{k}-\underline{\mu}^{*}\right\|^{2} \leq\left\|\underline{\mu}^{k}-\underline{\mu}^{*}\right\|^{2}-2 s^{k}\left[q\left(\underline{\mu}^{*}\right)-q\left(\underline{\mu}^{k}\right)\right]+\left(s^{k}\right)^{2}\left\|\underline{g}^{k}\right\|^{2} \\
& =\left\|\underline{\mu}^{k}-\underline{\mu}^{*}\right\|^{2}-\gamma^{k}\left(2-\gamma^{k}\right) \frac{\left(q\left(\underline{\mu}^{*}\right)-q\left(\underline{\mu}^{k}\right)\right)^{2}}{\left\|\underline{g}^{k}\right\|^{2}} \\
& s^{k}\left\|g^{k}\right\|^{2}
\end{aligned}
$$

where $\gamma^{k}=\frac{s^{k}\left\|g^{k}\right\|^{2}}{q\left(\underline{\mu}^{*}\right)-q\left(\underline{\mu}^{k}\right)}$
so, if $0<\gamma^{k}<2,\left\|\underline{\mu}^{k}+s^{k} \underline{g}^{k}-\underline{\mu}^{*}\right\|^{2} \leq\left\|\underline{\mu}^{*}-\underline{\mu}^{k}\right\|^{2} \Rightarrow \underline{\mu}^{k}+s^{k} \underline{g}^{k}$ is closer to $\underline{\mu}^{*}$
The projection operator reduces the left hand side even further.

- How to select sk: Do not know $q\left(\underline{\mu}^{*}\right)$

$$
s^{k}=\frac{\alpha^{k}\left(q^{k}-q\left(\underline{\mu}^{k}\right)\right)}{\left\|g^{k}\right\|^{2}} \quad q^{k} \text { is an approximation to } q^{*} \text { and } 0<\alpha^{*}<2
$$

Step Size Selection

- Choices

1) $q^{k}=\max _{0 \leq i \leq k} q\left(\underline{\mu}^{i}\right)$
2) Best feasible $\operatorname{cost} f(\bar{x})$

- Initially $\alpha^{k}=1$ and is decreased by a factor of two every few iterations (e.g., 5 or 10).
$-\alpha^{k}=\frac{1+m}{k+m}$

3) $\alpha^{k}=1$ for all k

$$
q^{k}=(1+\beta(k)) \hat{q}^{k} ; \hat{q}^{k}=\max _{0 \leq i \leq k} q\left(\underline{\mu}^{i}\right) ; \beta(k)=\left\{\begin{array}{lr}
\beta(k) \gamma & \text { if success } \gamma>1 \\
\beta(k) \delta & \text { if failure } \delta<1
\end{array}\right.
$$

\square Advantages:

- Ideas are intuitively clear
- Straightforward implementation
- Computationally efficient
- Works well
\square Disadvantages: Not easy to tune the parameters α and β

Cutting plane Methods

- Cutting plane methods

$$
\begin{aligned}
& \max _{\underline{\mu} \geq 0} q(\underline{\mu}) \\
& \max _{\underline{\mu}} Q^{k}(\underline{\mu}) \quad \text { s.t. } \underline{\mu} \geq \underline{0} \\
& Q^{k}(\underline{\mu})=\min \left\{q\left(\underline{\mu}^{0}\right)+\left(\underline{\mu}-\underline{\mu}^{0}\right)^{T} \underline{g}^{0}, \ldots \ldots . ., q\left(\underline{\mu}^{k-1}\right)+\left(\underline{\mu}-\underline{\mu}^{k-1}\right)^{T} \underline{g}^{k-1}\right\} \\
& \underline{\mu}^{k}=\arg \max _{\underline{\mu}} Q^{k}(\underline{\mu})
\end{aligned}
$$

Summary

Review: Multiplier (primal-dual and augmented Lagrangian methods) and Successive Quadratic Programming methods

- Feasible Direction Methods
- Rosen's Gradient Projection methods
- Reduced Gradient method
- Newton-type methods
- Updating QR decompositions
- Problems with Simple Constraints

Subgradient Methods for Discrete Optimization
Cutting plane methods

