Problem Set \# 2

(Due Date: September 15, 2009)

1. A company has n factories. Factory i is located at the point $\left(x_{i}, y_{i}\right)$ in the $x-y$ plane. The company wants to locate a warehouse at a point (x, y) that minimizes

$$
\min _{x, y} \sum_{i=1}^{n}\left[\left|x-x_{i}\right|+\left|y-y_{i}\right|\right]
$$

Find the optimal location of the warehouse. Interpret the solution.
2. Find all local maxima, local minima, and saddle points for $f\left(x_{1}, x_{2}\right)=x_{1}^{3}-3 x_{1} x_{2}^{2}+x_{2}^{4}$.
3. In a Basketball league, the following games have been played: team A beats team B by points, team C beats team A by 8 points, team B beats team C by 6 points, and team B beats team C by 9 points. Let r_{A}, r_{B}, r_{C} represent "ratings" for each team in the sense that if, say, team A plays team B , we predict that team A will defeat team B by $\left(r_{A}-r_{B}\right)$ points. Determine the values of r_{A}, r_{B}, and r_{C} that best fit (in the least-squares sense) these results. To obtain a unique set of ratings, it may be helpful to add the constraint $\left(r_{A}+r_{B}+r_{C}\right)=0$. This ensures that an "average" team will have a rating of 0 .
4. Consider a second order Taylor series expansion of $f\left(\underline{x}_{k}+\alpha \underline{d}_{k}\right)$ around \underline{x}_{k}, where \underline{d}_{k} is a descent direction. Assuming that the Hessian $\left[\partial^{2} f / \partial x_{i} \partial x_{j}\right]>0$, find the optimum α^{*}. What is $f\left(\underline{x}_{k}+\alpha^{*} \underline{d}_{k}\right)$? Specialize the results to the following three cases: (a) Steepest descent, (b) Newton's method, and (c) General gradient method, $\underline{d}_{k}=-H_{k} \underline{g}_{k}$, where \underline{g}_{k} is the gradient of $f(\underline{x})$ at $\underline{x}=\underline{x}_{k}$.
5. Consider a second order Taylor series expansion of $f\left(\underline{x}_{k}+\underline{d}_{k}\right)$ around \underline{x}_{k}. If you could choose \underline{d}_{k}, what would you pick to achieve maximal decrease in f. Assume that $\left[\partial^{2} f / \partial x_{i} \partial x_{j}\right]>0$.
6. Let $f(\underline{x})=3 x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}$. Let the initial point be $\underline{x}_{0}=(1,1)^{T}$. Find \underline{x}_{1} for the following methods: (a) Newton, (b) Diagonal Newton, $H_{k}=\operatorname{Diag}\left(1 / \partial^{2} f / \partial x_{i}^{2}\right)$, and (c) $H_{k}=\left[F\left(\underline{x}_{k}\right)+\mu I\right]^{-1}$, where $F\left(\underline{x}_{k}\right)$ is the Hessian and $\mu=10$.
7. Let $f(\underline{x})=x^{2}$. Show that the infinite sequence of points $x_{i}=(-1)^{i}\left[1+2^{-i}\right], i=0,1,2 \ldots$ is not permitted by the Armijo step size rule for any $\sigma>0$.
8. Apply Fibonacci search to the scalar function $f(x)=x^{2}-6 x+2$ given that $l_{1}=0$, and $r_{1}=10$. It is desired that $\left(r_{N}-l_{N}\right) \leq 0.1\left(r_{1}-l_{1}\right)$.

