Fall 2009 KRP

<u>Problem Set # 2</u> (Due Date: September 15, 2009)

1. A company has *n* factories. Factory *i* is located at the point (x_i, y_i) in the x-y plane. The company wants to locate a warehouse at a point (x, y) that minimizes

$$\min_{x,y} \sum_{i=1}^{n} \left[|x - x_i| + |y - y_i| \right]$$

Find the optimal location of the warehouse. Interpret the solution.

- **2.** Find all local maxima, local minima, and saddle points for $f(x_1, x_2) = x_1^3 3x_1x_2^2 + x_2^4$.
- **3.** In a Basketball league, the following games have been played: team A beats team B by 7 points, team C beats team A by 8 points, team B beats team C by 6 points, and team B beats team C by 9 points. Let r_A , r_B , r_C represent "ratings" for each team in the sense that if, say, team A plays team B, we predict that team A will defeat team B by $(r_A r_B)$ points. Determine the values of r_A , r_B , and r_C that best fit (in the least-squares sense) these results. To obtain a unique set of ratings, it may be helpful to add the constraint $(r_A + r_B + r_C) = 0$. This ensures that an "average" team will have a rating of 0.
- 4. Consider a second order Taylor series expansion of f(x_k + αd_k) around x_k, where d_k is a descent direction. Assuming that the Hessian [∂²f / ∂x_i∂x_j] > 0, find the optimum α*. What is f(x_k + α*d_k)? Specialize the results to the following three cases: (a) Steepest descent, (b) Newton's method, and (c) General gradient method, d_k = -H_kg_k, where g_k is the gradient of f(x) at x = x_k.
- 5. Consider a second order Taylor series expansion of $f(\underline{x}_k + \underline{d}_k)$ around \underline{x}_k . If you could choose \underline{d}_k , what would you pick to achieve maximal decrease in f. Assume that $\left[\partial^2 f / \partial x_i \partial x_j\right] > 0$.
- 6. Let $f(\underline{x}) = 3x_1^2 + 2x_1x_2 + x_2^2$. Let the initial point be $\underline{x}_0 = (1, 1)^T$. Find \underline{x}_1 for the following methods: (a) Newton, (b) Diagonal Newton, $H_k = \text{Diag}(1/\partial^2 f / \partial x_i^2)$, and (c) $H_k = [F(\underline{x}_k) + \mu I]^{-1}$, where $F(\underline{x}_k)$ is the Hessian and $\mu = 10$.
- 7. Let $f(\underline{x}) = x^2$. Show that the infinite sequence of points $x_i = (-1)^i [1+2^{-i}], i=0, 1, 2 ...$ is not permitted by the Armijo step size rule for any $\sigma > 0$.
- 8. Apply Fibonacci search to the scalar function $f(x) = x^2 6x + 2$ given that $l_1 = 0$, and $r_1 = 10$. It is desired that $(r_N l_N) \le 0.1(r_1 l_1)$.