Problem Set # 4

(Due September 29, 2009)

1. (What is the convergence rate of Modified Newton method?)

Find an estimate for the rate of convergence for the modified Newton method

$$\underline{x}_{k+1} = \underline{x}_k - \alpha_k (\varepsilon_k I + F_k)^{-1} g_k$$

where ε_k is chosen such that the matrix $(\varepsilon_k I + F_k)$ has eigenvalues greater than or equal to δ . Assume that the step size α_k is optimal.

2. Let *H* be an *n*x*n* symmetric positive definite matrix, and let $\{\underline{v}_i\}_{i=1}^n$ be the given eigenvectors with the corresponding eigenvalues $\{\lambda_i\}_{i=1}^n$. Show that

If
$$\underline{g} = \sum_{i=1}^{n} \alpha_i \underline{y}_i$$
 then $(H + \mu I)^{-1} \underline{g} = \sum_{i=1}^{n} (\frac{\alpha_i}{\lambda_i + \mu}) \underline{y}_i$

- 3. Let $f(\underline{x}) = \frac{1}{2}x_1^2 + x_2^2, \underline{x}_0 = (1,1)^T$.
 - a) What is the value of μ to satisfy $||(F_0 + \mu I)^{-1}\underline{g}_0|| = \delta$ for $\delta = 2$ and $\delta = 5/6$, where F_0 and \underline{g}_0 are the Hessian and the gradient at \underline{x}_0 , respectively.
 - b) Use double dogleg step to compute \underline{x}_1 for $\delta = 1, 5/4$ and 2.
- 4. Show that the Gauss-Newton method minimizes the quadratic cost function:

$$\frac{1}{2}\left\|\underline{g}(\underline{x}_{k})+J^{T}(\underline{x}_{k})(\underline{x}^{*}-\underline{x}_{k})\right\|^{2}$$