Fall 2009
KRP

Problem Set \# 5

(Due Date: October 13, 2009)

1. Recall the Gram-Schmidt method for generating the Q -conjugate directions. Suppose that $\left\{\underline{\mathrm{p}}_{i}\right\}_{i=0}^{n-1}$ are generated as moments of Q, that is, suppose $\underline{p}_{k}=Q^{k} \underline{p}_{0}, k=1,2, \ldots, n-1$. This is the so-called Krylov subspace. Show that the corresponding d_{k} 's can then be generated by a (three-term) recursion formula where \underline{d}_{k+1} is defined in terms of $Q \underline{d}_{k}, \underline{d}_{k}$ and \underline{d}_{k-1}. (Hint: This recursion is related to Lanczos tri-diagonalization of symmetric matrices.)
2. Suppose that the $\left\{\underline{p}_{i}\right\}_{i=0}^{n-1}$ in Problem 1 are taken as $\underline{p}_{i}=\underline{e}_{i}$, where \underline{e}_{i} is the $i^{\text {th }}$ unit coordinate vector and the \underline{d}_{k} 's are constructed accordingly. Show that using \underline{d}_{k} 's in a conjugate direction method to minimize $f(\underline{x})=\frac{1}{2} \underline{x}^{T} Q \underline{x}-\underline{b}^{T} \underline{x}$ is equivalent to the application of Gaussian elimination to solve $Q \underline{x}=\underline{b}$.
3. Show that in the purely quadratic form of the conjugate gradient method $\underline{d}_{k}^{T} Q \underline{d}_{k}=-\underline{d}_{k}^{T} Q \underline{g}_{k}$. Using this show that to obtain \underline{x}_{k+1} from \underline{x}_{k}, it is necessary to use Q only to evaluate g_{k} and $Q g_{k}$.
4. Show that in the quadratic problem $Q g_{k}$ can be evaluated by taking a unit step from \underline{x}_{k} in the direction of the negative gradient and evaluating the gradient there. Specifically, if $y_{k}=x_{k}-g_{k}$ and $\underline{p}_{k}=\nabla \underline{f}\left(\underline{y}_{k}\right)$, then $Q g_{k}=g_{k^{-}} \underline{p}_{k}$. Combine this result with the result of Problem 3 to derive a conjugate gradient method for general problems which does not require the knowledge of the Hessian or a line search (but it need not have global convergence properties. For global convergence, you need line search!).
