Problem Set \# 8

(Due Date: November 10. 2009)

1. a) One useful application of projection theorem is in the context of gradient projection algorithm. Suppose g is the gradient of $f(\underline{x})$. Then, the projected gradient \underline{p} can be computed by solving: minimize $\|\underline{g}-\underline{p}\|_{2}^{2}$ subject to $A \underline{p}=\underline{0}$. Using the KKT conditions, solve this problem and derive the formula for the projected gradient.
b) Show that finding \underline{d} that solves min $\underline{g}^{T} \underline{d}$ subject to $A \underline{d}=0,\|\underline{d}\|_{2}^{2}=1$ gives a vector \underline{d} that has the same direction as the negative projected gradient.
2. Derive the dual of the projection problem

$$
\begin{aligned}
& \min \|\underline{z}-\underline{x}\|_{2}^{2} \\
& \text { subject to } A \underline{x}=\underline{0}
\end{aligned}
$$

where the $m \mathrm{x} n$ matrix A and the vector $\underline{\mathrm{z}}$ are given. Show that the dual problem is also a problem of projection on a subspace.
3. Consider the problem $\min f(\underline{x})=\frac{1}{2}\left(x_{1}^{2}-x_{2}^{2}\right)-3 x_{2}$ subject to $x_{2}=0$.
a. Calculate the optimal solution and the Lagrange multiplier.
b. For $k=0,1,2$ and $c^{k}=10^{k+1}$, calculate and compare the iterates of the quadratic penalty method and the method of multipliers (augmented Lagrangian) with $\lambda^{0}=0$. Interpret the iterates geometrically for both methods. For what values of c would the augmented Lagrangian have a minimum and for what values of c would the method converge?
c. Verify that the second order method of multipliers converges in a single iteration provided c is sufficiently large, and estimate the threshold value for c.
4. The purpose of this exercise is to show how to treat two-sided inequality constraints by using a single multiplier per constraint. Consider the problem

$$
\begin{aligned}
& \min f(\underline{x}) \\
& \text { subject to } \alpha_{j} \leq g_{j}(\underline{x}) \leq \beta_{j}, j=1,2, . ., r
\end{aligned}
$$

The method consists of sequential minimizations of the form

$$
\begin{aligned}
& \min _{\underline{x}}\left[f(\underline{x})+\sum_{i=1}^{r} P_{j}\left(g_{j}(\underline{x}), \mu_{j}^{k}, c^{k}\right)\right] \\
& \text { where } P_{j}\left(g_{j}(\underline{x}), \mu_{j}^{k}, c^{k}\right)=\min _{u_{j} \in\left[g_{j}(\underline{x})-\beta_{j}, g_{j}(\underline{x})-\alpha_{j}\right]}\left[\mu_{j}^{k} u_{j}+\frac{c^{k}}{2} u_{j}^{2}\right]
\end{aligned}
$$

Each of these minimizations is followed by the multiplier iteration

$$
\mu_{j}^{k+1}=\left\{\begin{array}{c}
\mu_{j}^{k}+c^{k}\left(g_{j}\left(\underline{x}^{k}\right)-\beta_{j}\right) \text { if } \mu_{j}^{k}+c^{k}\left(g_{j}\left(\underline{x}^{k}\right)-\beta_{j}\right)>0 \\
\mu_{j}^{k}+c^{k}\left(g_{j}\left(\underline{x}^{k}\right)-\alpha_{j}\right) \text { if } \mu_{j}^{k}+c^{k}\left(g_{j}\left(\underline{x}^{k}\right)-\alpha_{j}\right)<0 \\
0 \text { otherwise }
\end{array}\right.
$$

where \underline{x}^{k} is a minimizing vector. Justify the method by introducing artificial variables u_{j} by converting the constraint to equivalent form $\alpha_{j} \leq g_{j}(\underline{x})-u_{j} \leq \beta_{j}, u_{j}=0, j=1,2, \ldots, r$ and applying the method of multipliers for this problem, where only the constraints $u_{j}=0$ are eliminated by means of a quadratic penalty function.
5. Find the sets of all optimal solutions and Lagrange multipliers, and sketch the dual function for the following two-dimensional convex programming problems:

$$
\begin{aligned}
& \text { a) } \min x_{1} \text { subject to }\left|x_{1}\right|+\left|x_{2}\right| \leq 1 \\
& \text { b) } \min x_{1} \text { subject to }\left|x_{1}\right|+\left|x_{2}\right| \leq 1,\left|x_{1}\right| \leq 1,\left|x_{2}\right| \leq 1
\end{aligned}
$$

6. Consider the binary optimization problem (look at constraints on variables)

$$
\begin{aligned}
& \min f(\underline{x})=10 x_{1}+3 x_{2} \\
& \text { subject to } 4-5 x_{1}-x_{2} \leq 0, x_{1}, x_{2}=0 \text { or } 1
\end{aligned}
$$

(a) Sketch the set of constraint-cost pairs $\left\{\left(4-5 x_{1}-x_{2}\right), 10 x_{1}+3 x_{2} \mid x_{1}, x_{2}=0\right.$ or 1$\}$
(b)Sketch the dual function (Hint: dualize only the inequality constraint)
(c) Solve the problem and its dual. Relate the solutions to your sketch in part (a)
7. Given objects $i=1,2, . ., n$ with positive weights w_{i} and values v_{i}, we want to assemble a subset of the objects so that the sum of the weights of the subset does not exceed a given $A>0$, and the sum of the values of the subset is maximized. The problem is the so-called knapsack problem given by

$$
\max \sum_{i=1}^{n} v_{i} x_{i} \text { subject to } \sum_{i=1}^{n} w_{i} x_{i} \leq A, x_{i} \in\{0,1\}, i=1,2, . ., n
$$

Form the dual by dualizing the inequality constraint. Use a graphical procedure to solve the dual problem.

