
Lecture 1:
Introduction, Review of Linear Algebra,
Convex Analysis

Prof. Krishna R. Pattipati
Dept. of Electrical and Computer Engineering

University of Connecticut
Contact: krishna@engr.uconn.edu; (860) 486-2890

© K. R. Pattipati, 2001-2016
January 21, 2016

Outline

VUGRAPH 2

• Course Objectives

• Optimization problems
 Classification

 Measures of complexity of algorithms

• Background on Matrix Algebra
 Matrix-vector notation

 Matrix-vector product

 Linear subspaces associated with an m × n matrix A

 LU and QR decompositions to solve Ax = b, A is n × n

• Convex analysis
 Convex sets

 Convex functions

 Convex programming problem

• LP is a special case of convex programming problem
 Local optimum ≡ global optimum

Reading List

VUGRAPH 3

• Dantzig and Thapa, Foreword to Linear Programming:
Volume 1

• Papadimitrou and Steiglitz, Chapter 1

• Bertsimas and Tsitsiklis, Chapter 1 & Sections 2.1 and 2.2

• Ahuja, Magnanti and Orlin, Chapter 1

Course objectives

VUGRAPH 4

• Provide systems analysts with central concepts of widely used and elegant
optimization techniques used to solve LP and Network Flow problems

• Requires skills from both Math and CS

• Need a strong background in linear algebra

ECE 6108:
LP and

Network Flows

Computational
Complexity

Optimization
Problem

Algorithmic
Techniques

• General LP
• Shortest paths
• Assignment
• Maximum flow

• Linear algebra
• Graph theory
• Duality
• Decomposition

• Polynomial versus exponential
in “problem size”

Applications:
Resource Allocation,

Activity Planning,
Routing,

Scheduling,…

Three Recurrent Themes

VUGRAPH 5

1. Mathematically formulate the optimization problem

2. Design an algorithm to solve the problem

 Algorithm ≡ a step-by-step solution process

3. Computational complexity as a function of “size” of
the problem

• What is an optimization problem?

 Arise in mathematics, engineering, applied sciences,
economics, medicine and statistics

 Have been investigated at least since 825 A.D.

o Persian author Abu Ja’far Mohammed ibn musa al khowarizmi
wrote the first book on Math

 Since the 1950s, a hierarchy of optimization problems have
emerged under the general heading of “mathematical
programming”

What is an optimization problem?

VUGRAPH 6

• Has three attributes

 Independent variables or parameters (x1, x2, . . . , xn)

o Parameter vector: x = [x1, x2, . . . , xn]T

 Conditions or restriction on the acceptable values of the variables

⇒ Constraints of the problem

o Constraint set: x∈Ω (e.g., Ω = {x : x i ≥ 0})

 A single measure of goodness, termed the objective (utility)
function or cost function or goal, which depends on the parameter
vector x:

o Cost function: f (x1, x2, . . . , xn) = f (x)

Typical cost functions

VUGRAPH 7

• Abstract formulation

 “Minimize f (x) where x ∈Ω”

• The solution approach is algorithmic in nature

 Construct a sequence x0 → x1 → … → x*

where x* minimizes f (x) subject to x ∈Ω

x∈Rn x ∈Z n x ∈{ 0 ,1 } n

f ∈R f : Rn → R f : Z n → R f : { 0 ,1} n→ R

f ∈Z f : Rn → Z f : Zn → Z f : { 0 ,1 } n→ Z

f ∈ {0,1} f : Rn →{ 0 ,1 } f : Z n →{ 0 ,1} f : { 0 ,1 } n→{ 0 ,1}

R = set of reals; Z = set of integers
* denotes the most common optimization cost functions
Typically a problem of mapping features to categories

*

*

*

*

*

*



 

Classification of mathematical
programming problems

VUGRAPH 8

• Unconstrained continuous NLP
 Ω = Rn, i.e., no constraints on x

 Algorithmic techniques . . . ECE 6437

Continuous

Discrete

LP

NFP

NLP

CPP LP: Linear Programming

NFP: Network Flow Problems

CPP: Convex Programming Problems

NLP: Nonlinear Programming Problems

• Steepest descent
• Conjugate gradient

• Newton
• Gauss-Newton
• Quasi-Newton

• Constrained continuous NLP

 Ω defined by:

o Set of equality constraints, E

 h i(x) = 0; i = 1, 2, . . . , m; m <n

o Set of inequality constraints, I

 gi(x) ≥ 0; i = 1, 2, . . . , p

o Simple bound constraints

 xi
LB ≤ x ≤ xi

UB; i = 1, 2, . . . , n

 Algorithmic techniques . . . ECE 6437

• Convex programming problems (CPP)

 Characterized by:
o f (x) is convex . . . will define shortly!
o gi(x) is concave or -gi(x) is convex
o h i(x) linear ⇒ A x = b; A an m ×n matrix

 Key: local minimum ≡ global minimum

 Necessary conditions are also sufficient (the so-called Karush-Kuhn-
Tucker (KKT) conditions (1951))

Classification of mathematical
programming problems

VUGRAPH 9

• Penalty and barrier function
methods

• Reduced gradient method

• Augmented Lagrangian (multiplier)
methods

• Recursive quadratic programming



















































mnmnm

n

b

b

x

x

aa

aa







 11

1

111

Ax = b

Linear programming (LP) problems

VUGRAPH 10

• LP is characterized by:
 f (x) linear ⇒ f (x) = c1x1 + c2x2 + ···+ cnxn = cTx

 gi(x) linear ⇒ ai
Tx ≥ bi ; i ∈ I

 hi(x) linear ⇒ ai
Tx = bi ; i ∈E

 x i ≥ 0; i ∈P

 x i unconstrained; i ∈U ⇒ unconstrained if i ∈U

• An important subclass of convex programming problems
 Widely used model in production planning, allocation, routing

and scheduling,….

 Examples of Industries using LP

o Petroleum: extraction, refining, blending and distribution

o Food: economical mixture of ingredients; shipping from plants to
warehouses

o Iron and steel industry: pelletization of low-grade ores, shop loading,
blending of iron ore and scrap to produce steel,…

o Paper mills: minimize trim loss

o Communication networks: routing of messages

o Ship and aircraft routing, Finance,…

Search Space of LP is Finite

VUGRAPH 11

• A key property of LP
 Number of possible solutions, N is finite

o If n variables, m equality constraints, p inequality constraints and

q unconstrained variables

• Lies on the border of combinatorial or discrete
optimization and continuous optimization problems

 Also called enumeration problems, since can theoretically count
the number of different solutions

• Counting the number of solutions is a laborious process
 Even if each solution takes 10−12 seconds (terahertz machine !!), it takes 538

million years to search for an optimal solution.















qpm

qpn
N

n= 100, m = p = q = 10

⇒ N= 1.6975×1028 possible solutions!

A Brief History of LP

VUGRAPH 12

• Chronology and Pioneers

 Fourier : System of Linear Inequalities (1826)

 de la Vallee Poussin: Minimax Estimation (1911)

 Von Neumann: Game Theory (1928) and Steady Economic Growth (1937)

 Leontief: Input-output Model of the Economy (1932); Nobel Prize: 1973

 Kantorovich: Math. Methods in Organization and Planning Production (1939); Nobel Prize: 1975

 Koopmans: Economics of Cargo Routing (1942); Nobel Prize: 1975

 Dantzig: Activity Analysis for Air Force Planning and Simplex Method (1947)

 Charnes, Cooper and Mellon: Commercial applications in Petroleum industry (1952)

 Orchard-Hays: First successful LP software (1954)

 Merrill Flood, Ford and Fulkerson: Network Flows (1950, 1954)

 Dantzig, Wets, Birge, Beale, Charnes and Cooper: Stochastic Programming (1955-1960, 1980’s)

 Gomory: Cutting plane methods for Integer Programming (1958)

 Dantzig-Wolfe and Benders: Decomposition Methods (1961-62)

 Bartels-Golub-Reid (1969, 1982) & Forrest-Tomlin (1972): Sparse LU methods

 Klee & Minty: Exponential Complexity of Simplex (1972)

 Bland: Avoid Cycling in Simplex (1977)

 Khachian: LP has Polynomial Complexity (1979)

 Karmarkar: Projective Interior Point Algorithm (1984)

 Primal-dual/Path Following (1984-2000)

 Modern implementations (XMP, OSL, CPLEX, Gurobi, Mosek, Xpress,…)

Two Main Methods for LP

VUGRAPH 13

• Fortunately, there exist efficient methods
 Revised simplex (Dantzig: 1947-1949)

 Ellipsoid method (Khachian: 1979)

 Interior point algorithms (Karmarkar: 1984)

• Dantzig’s Revised simplex ()
 In theory, can have exponential complexity, but works well in practice

 Number of iterations grows with problem size

• Khachian’s Ellipsoid method ()

• Polynomial complexity of LP, but not competitive with the Simplex
method ⇒ not practical

• Karmarkar’s (or interior point) algorithms ()
 Polynomial complexity

 Number of iterations is relatively constant (≈ 20-50) with the size of the
problem

 Need efficient matrix decomposition techniques

Network flow problems (NFP)

VUGRAPH 14

• Subclass of LP problems defined on graphs

 Simpler than general LP

 One of the most elegant set of optimization problems

• Examples of network flow problems

• Illustration of shortest path problem

 Shortest path on a graph

 Maximum flow problem

 Minimum cost flow problem

 Transportation problem

 Assignment problem (also known as

weighted bipartite matching problem)

a

b e

f

c

1

3

1 3

2

1

1

1

3
d

9

• Shortest path from a to f is: a → b → c → f

shortest path length = 3

2

Integer programming (IP) problems

VUGRAPH 15

• Hard intractable problems

• NP-complete problems (exponential time complexity)

• Examples of IP problems

• Illustration of traveling salesperson problem

 Given a set of cities C = {c1, c2, . . . , cn}

 For each pair (ci, cj), the distance d(ci, cj) = dij

 Problem is to find an ordering 〈cπ(1), cπ(2), . . . , cπ(n)〉such that

is a minimum

⇒ Shortest closed path that visits every node once (Hamiltonian path)

 Travelling salesperson problem

 VLSI routing

 Test sequencing & test pattern
generation

 Multi-processor scheduling to
minimize makespan

 Bin-packing and covering problems

 Knapsack problems

 Inference in graphical models

 Multicommodity flow problems

 Max cut problem

         1

1

1

1 ,,  ccdccd n

n

i

ii 






Want efficient algorithms

VUGRAPH 16

• How to measure problem size?
 In LP, the problem size is measured in one of two ways:

o Crude way:

o Correct way: (size depends on the base used)

 For network flow problems, the size is measured in terms of the
number of nodes and arcs in the graph and the largest arc weight

• How to measure efficiency of an algorithm ?
 The time requirements of # of operations as a function of the

problem size

 Time complexity measured using big “O” notation

o A function h(n)= O(g(n)) (read as h(n) equals “big oh” of g(n)) iff

∃constants c, n0 >0 such that |h(n)| ≤ c|g(n)|, ∀n >n0

qpmn 

      





 













n

j

j

pm

i

n

j

iji cab
1

2

1 1

22 logloglog

Polynomial versus Exponential Complexity

VUGRAPH 17

• Polynomial versus exponential complexity

 An algorithm has polynomial time complexity if h(n) = O(p(n)) for some
polynomial function

o Crude Examples: O(n), O(n2), O(n3), . . .

 Some algorithms have exponential time complexity
o Examples: O(2n), O(3n), etc.

• Significance of polynomial vs. exponential complexity
 Time complexity versus problem size (1 ns/op)

 Last two rows are inherently intractable
 NP-hard; must go for suboptimal heuristics
 Certain problems, although intractable, are optimally solvable in practice

(e.g., knapsack for as many as 10,000 variables)

Complexity
Problem size n

10 20 30 40

n 10−8 2.10−8 3.10−8 4.10−8

n2 10−7 4.10−7 9.10−7 16.10−7

n3 10−6 8.10−6 27.10−6 64.10−6

2n 10−6 10−3 1.07 18.3 min

3n 6 ×10−5 3.48 2.37 days 385.5 years

Background on matrix algebra

VUGRAPH 18

• Vector – Matrix Notation

 x i ∈R; x i ∈[−∞, ∞] ⇒ x ∈R n

 x ∈Z n for integers

 x i ∈{0, 1} for binary

 A = [aij] an m × n matrix∈Rmn

 AT = [aji] an n× m matrix ∈Rn m

 m = n ⇒ A is a square matrix

 A square n × n matrix is symmetric if aij = aji

 Diagonal matrix:





















nx

x

x

x

2

1

a column vector










114

42
symmetric

 n

n

dddDiag

d

d

d

A ,,,

0

0

212

1





















Matrix-vector notation

VUGRAPH 19

 Identity matrix: In= Diag(1,1,…,1)

 A matrix is PD if xTAx > 0, ∀ x ≠ 0

 A matrix is PSD if xTAx ≥ 0, ∀ x ≠ 0

 Note: xTAx = xT AT x ⇒ xT Ax = xT [(A + AT)/2]x

is called the symmetrized part of A

 If A is skew symmetric, AT = -A ⇒ xTAx = 0 ∀ x

 A = Diag(di) ⇒ xTAx =

 Vector x is an n×1 matrix

 xTy = inner (dot, scalar) product = (a scalar)








 

2

TAA

1

n

i i

i

x y




 

1

2

1 2 1n

n

y

y
x x x

y

 
 
 
 
 
 

2

1

n

i i

i

d x




Inner product and cosine relationship

VUGRAPH 20

 Know (n=3 case):

 Also know:

x

y

(x – y)

θ

     

     332211

2

3

2

2

2

1

2

3

2

2

2

1

2

33

2

22

2

11

2

2 yxyxyxyyyxxx

yxyxyxyx





      

  
22

2

cos

cos2

yx

yx

yyxx

yx

yyxxyyxxyx

T

TT

T

TTTT









Vector norms

VUGRAPH 21

 θ = 90◦⇒ x and y are perpendicular to each other

⇒ ORTHOGONAL ⇒ xT y = 0, e.g.,

• Vector norms

 Norms generalize the concept of absolute value of a real number to vectors
(and matrices) (measure of “SIZE” of a vector (and matrix))

 ||x||p = Holder or p-norm = [|x1|
p + |x2|

p + … + |xn|
p]1/p =

 Most important:

 All norms convey approximately the same information

 Only thing is some are more convenient to use than others

x y

9.368.0coscos
5

4

12

21
1 







 

   TT
yx 8.6.,6.8. 

90°

  pn

i

p

ix
/1

1 
~ “size”

 




























ii

n

i i

n

i i

xxp

xxp

xxp

max

(RSS)2

1
2/1

1

2

2

11

Matrix-vector product

VUGRAPH 22

 ො𝑥 approx. to x ⇒ absolute error 𝑥 − ො𝑥

Relative error 𝑥 − ො𝑥 / 𝑥

∞-norm ⇒ # of correct significant digits in ො𝑥

Relative error = 10-p ⇒ p significant digits of accuracy

 Matrix-vector product

⇒ Ax = ;𝐴𝑥 ⇒ linear combinations of columns of A

⇒ Ax : Rn → Rm transformation from an n-dimensional space to an

m-dimensional space

 Characterization of subspaces associated with a matrix A
o A subspace is what you get by taking all linear combinations of n vectors

o Q: Can we talk about the dimension of a subspace? Yes!

o Q: Can we characterize the subspace such that it is representable by a finite
minimal set of vectors ⇒ “basis of a subspace,” yes!

321

3

2

1

6

2

6

5

5

1

2

4

4

3

1

2

6

2

6

5

5

1

2

4

4

3

1

2

xxx

x

x

x

xA

































































































1

n

i i

i

a x




Independence and rank of a matrix

VUGRAPH 23

 Suppose we have a set of vectors a1, a2, . . . , ar

{a1, a2, . . . , ar} are dependent iff ∃ scalars x1, x2, . . . , xr s.t.

σ𝑖=1
𝑟 𝑎𝑖𝑥𝑖 = 0 and at least one 𝑥𝑖 ≠ 0

they are independent if σ𝑖=1
𝑟 𝑎𝑖𝑥𝑖 = 0 ⟹ 𝑥𝑖 = 0

⟹ ∄𝑥𝑖 ≠ 0 such that σ𝑖=1
𝑟 𝑎𝑖𝑥𝑖 = 0

 Rank of a matrix

rank(A) = # of linearly independent columns

= # of linearly independent rows

= rank(AT)

= dim[range(A)] ≤ min(m,n)

























101

110

011

indep. columns = indep. rows = rank = 2

Row 1+ Row 2=Row 3
Column 1 + Column 2 = - Column 3

Linear subspaces associated with a matrix

VUGRAPH 24

• Linear spaces associated with Ax = b

 range(A) = R(A) ={𝑦 ∈ 𝑅𝑚|𝑦 = σ𝑖=1
𝑛 𝑎𝑖𝑥𝑖 for vectors 𝑥 ∈ 𝑅𝑛}

= column space of A

 dim(R(A)) = r, rank of (A)

 Ax = b has a solution if b can be expressed as a linear combination
of the columns of A ⟹ 𝑏 ∈ R(A)

 Null space of A = N(A) = 𝑥 ∈ 𝑅𝑛 𝐴𝑥 = 0

⟹ also called kernel of A or ker (A)

 Note that x = [000]T always satisfies Ax = 0

 Key: dim(N(A)) = n − r = n − rank(A)

 If rank(A) = n, then Ax = 0 ⇒ x = 0 ⇒ N (A) is the origin

 R(AT) = {z ∈Rn|AT y = z, ∀y ∈Rm}

⇒ For a solution to exist, z should be in the column space of AT or
row space of A

 N (AT) = {y ∈Rm|AT y = 0} = null space of AT

Column, row and null spaces

VUGRAPH 25

 KEY:

o dim[R(AT)] + dim[N (A)] = r + n −r = n

o dim[R(A)] + dim[N (AT)] = r + m −r = m

o rank of A = rank of AT = r

o Linearly ind. col. of A = linearly ind. rows of A

Example:

A x = b

AT y = z

column space

(m)R(A)

(n)R(AT)

row space of A

null space of A

(n)N(A)

(m)N (AT)

null space of AT

 TT ANyA 

























































1

1

1

0

1

1

1

110

011

101























101

110

111
are linearly
independent





















110

111

101

are linearly independent,  TAN

















1

1

1

indep. col of AT = indep. Rows of A = indep. col of A = indep. Rows of AT

Geometric insight

VUGRAPH 26

 Every x∈N(A) ⊥r to every z ∈R(AT)

⇒ if AT y = z and Ax = 0 ⇒ xT z = xT AT y = 0Ty = 0

 Every y∈N(AT) ⊥r to every z ∈R(AT) ⇒ yT b = yT AT x = 0

 In general, when rank(A) = r < n, then dim(N (A)) = n − r

o Suppose we have xr ⇒ Ax r = b

o Then all x = xr + xn are also solutions to Ax = b

⇒ infinite # of solutions

row space

R(AT)

column
space

R(A)

nullspace

N(A)
left

nullspace

N(AT)

x

xr

xn

x → Ax

xr → Axr=Ax

Ax

xn → Axn= 0

Hyperplanes model equality constraints

VUGRAPH 27

 Can we give a geometric meaning to all this? Yes!

o Consider a single equation aT x= b (a scalar)

o ab/aT a is a solution to x

o Since xn ∈N(aT), we have aT x=0 and dim(N (aT)) = n − 1

o But, what is aT x n=0 ⇒ it is a hyperplane passing through the origin

o aT x= b ⇒ it is a hyperplane at a distance b from the origin

o So, H={x ∈Rn | aT x= b} is a hyperplane

o dim(H)= n−1 since we can find n−1 independent vectors that are
orthogonal to a

o Or alternately, H={xn ∈N(aT) | aT (x r+x n)= b}
x2

a [11]T

1

90°

x1

x1  x2 1

x1  x2  0

x2

x1  x2  x3  1

x1

x3

Half spaces model inequality constraints

VUGRAPH 28

 If we have m equations in Ax = b, each equation is a hyperplane

 Then {x ∈ Rn | Ax = b} is the intersection of m hyperplanes and this
subspace has dimension equal to (n − m)

 Note: intersection of n nonparallel hyperplanes in Rn is

a point x = A−1b ⇒ solution to Ax = b

 For every hyperplane H = {x | aT x = b}, we can define negative
and positive closed and open half spaces

closed

Hc+ = {aT x ≥ b}

Hc− = {aT x ≤ b}

open

Ho+ = {aT x >b}

Ho− = {aT x< b}

 Half spaces model inequality constraints

 Example: x1 + x2 ≥ 1

x1

x2

x1 + x2 ≥ 1

Partitioning and transformations

VUGRAPH 29

• Partitioned matrices
 Horizontal partition . . . useful in developing revised simplex

method

 Horizontal and vertical partition

• Elementary transformations
 Column j of A = aj = Aej; ej = jth unit vector with 1 in the jth

component and 0, elsewhere

 Row i of A=ei
TA ⇒ element aij = ei

T Ae j

 Ae jej
T = a jej

T = [0,0,…,aj,…,0] ⇒ jth column is aj and the rest are zero
vectors

  21

2

1
NxBx

x

x
NBxA 








































2413

2211

2

1

43

21

xAxA

xAxA

x

x

AA

AA

Deleting and inserting columns

VUGRAPH 30

 Suppose we have an n×n matrix A and we want to delete the jth

column of A and insert a new column b in its place

 Sherman-Morrison-Woodbury formula:

 Modern: LU and QR decomposition
























10

1

10

001

2

1

mj

jj

j

j

T

jj

T

jj

a

a

a

a

eaIeeAI







1

1

1 0 0

0 1

0 1

T T

j j jnew

T T

j j j

A A Ae e be

A I e e A be

A
A b





  

   
 

 
 
 
 
 

 

aAb

AbaA
AA

baAA

T

T

T

1

11
11

1 









1

1 1 1

Application:

[()];

()
[]

"Product Form of the Inverse (PFI)"

T

j jnew

T

j j

new

j

E

A A I e e A b

e e
A I A EA

 







  

   


  

Decomposition

VUGRAPH 31

 Special matrices

o Block diagonal – useful in modeling large loosely-connected systems

o Orthogonal ⇒ Q-1=QT

 q i
Tqj = 0, ∀ i ≠ j , q j

Tqj = 1

 Very useful in solving linear systems and in solving LP via revised
simplex method

o Lower triangular





































o Upper triangular



















LU and QR decomposition

VUGRAPH 32

• Solution of Ax = b when A is square and has full rank

 LU decomposition ⇒ write A = LU

o Solve Ly = b via Forward Elimination

o Solve Ux = y via Backward Substitution

 QR decomposition ⇒ A = QR where R is upper triangular

o Solve Rx = QT b via Backward Substitution

• In Lecture 3, we will discuss how to update L and U (or Q
and R) when the matrix is modified by removing a
column and inserting a new one in its place when we talk
about basis updates

Convex analysis – Convex sets

VUGRAPH 33

• A set Ω ∈Rn is convex if for any two points x1 and x2 in the set
Ω, the line segment joining x1 and x2 is also in Ω

 A convex set is one whose boundaries do not bulge inward or do not have indentations

Convex Nonconvex

x1 x2 x1

x2

x1

x2 x1

x2

x1

x2

x1

x2

x1

x2

x1

x2

Examples of convex sets

VUGRAPH 34

• Examples:
 A hyperplane aT x = b is a convex set

 A closed half space

o Hc+ = { x | aTx ≥ b }

o Hc– = { x | aT x ≤ b }

 ∩Ωi is convex

 ∪Ωi need not be convex

 Sums and differences of convex sets are convex

 Expansions or contractions of convex sets are convex

 Empty set is convex

Ω1

Ω2

Ω1 + Ω2

Ω1 Ω2

2Ω

Ω

1

2
Ω

Convex cone and convex combination

VUGRAPH 35

• Useful results:

 Intersection of hyperplanes is convex

 Intersection of halfspaces is convex

o e.g., x1+ x2 ≤ 1; x1 ≥ 0, x2 ≥ 0

• Set of intersection of m closed halfspaces is called a convex polytope
⇒ set of solutions to Ax ≤ bor Ax ≥ b is a convex polytope

• A bounded polytope is called a polyhedron

• Convex cone: x ∈cone⇒ λx ∈ cone ∀λ ≥ 0

• Convex combination: given a set of points x1, x2, . . . , xk, x = α1x1 +

α2x2 + . . . + αkxk such that α1 + α2 + . . . + αk = 1, αi ≥ 0 is termed the
convex combination of x1, x2, . . . , xk

• A point x in a convex set Ω is an extreme point (corner) if there are no
two points x1, x2 ∈Ω such that x = αx1 + (1 − α)x2 for any 0 < α < 1

Convex hull and convex polyhedron

VUGRAPH 36

• A closed convex hull C is a convex set such that every point
in C is a convex combination of its extreme points, i.e.,

• In particular, a convex polyhedron can be thought of as:
 The intersection of a finite number of closed half spaces

 (or) as the convex hull of its extreme points

• Convex polyhedrons play an important role in LP
 We will see that we need to look at only a finite number of extreme

points

 This is what makes LP lie on the border of continuous and discrete
optimization problems





k

i

ii xx
1



Convex functions

VUGRAPH 37

• Consider f (x): Ω → R, f (x) a scalar function

• f (x) is a convex function on the convex set Ω if for any two
points x1, x2 ∈Ω

• A convex function bends up

• A line segment (chord, secant) between any two points
never lies below the graph

• Linear interpolation between any two points x1 and x2

overestimates the function

        1 2 1 21 1 ; 0 1f x x f x f x          

≥ 0

x 1 x 2

f (x)

f (x)
f (x1)

f (x2)

α f (x1) +(1 −α) f (x2)

x = α x1 +(1 −α)x2

Examples of convex functions

VUGRAPH 38

• Concave if – f (x) is convex

• Examples:

• Proof: f (x) = cT x, a linear function is convex

• f (αcT x1 + (1 − α)cT x2) = cT x holds with equality

• f (x) = xT Qx is convex if Q is PD . . . HW problem

concave

convex

No

No

Properties of convex functions

VUGRAPH 39

• In general,

where σ𝑖 𝛼𝑖 = 1; 𝛼𝑖 ≥ 0… Jensen’s inequality

 Linear extrapolation underestimates the function

 Hessian, the matrix of second partials, is a positive
semi-definite (PSD) or positive definite (PD) matrix

    









i

ii

i

iinn xfxfxxxf  2211


















ji xx

f
H

2

f (x1)

f (x2)

f (x)

xx1 x2

}

Bregman
Divergence

f x1   f T x1  x2  x1

Level sets of convex functions

VUGRAPH 40

• Sum of convex functions is convex

• The epigraph or level set Ωµ ={x | f (x) ≤ µ} is convex, ∀µ, if
f (x) is convex
 Proof:

If x1, x2 ∈Ωµ ⇒ f (x1), f (x2) ≤ µ

Consider x = αx1 + (1 − α)x2

f (αx1 + (1 − α)x2) ≤ α f (x1) + (1 − α) f (x2) ≤ µ

⇒ x ∈Ωµ

f (x)

f(x) =  = constant

x
1

Ωu = {x | f (x) < }

x
2

Convex programming problem (CPP)

VUGRAPH 41

• min f (x) . . . f is convex, such that Ax = b, gi(x) ≥ 0;

i = 1, 2,…, p; gi concave⇒−gi convex

• Ωi = {x | − gi(x) ≤ 0} = {x |gi(x) ≥ 0}⇒ convex

• Ωµ = {x | f (x) ≤ µ} is convex

• Ax = b⇒ intersection of hyperplanes ⇒ convex set ΩA ⇒

• Key property of CPP: local optimum ⇔ global optimum

• Suppose x∗ is a local minimum, but y is a global minimum

• Consider x = αx∗ + (1 − α)y ∈Ωµ

• Convexity ⇒ f (αx∗+(1 − α)y)≤ αf (x∗) + (1 − α)f (y)≤ f (x∗)

⇒ x∗ is not a local optimum ⇒ a contradiction

is convexi A    

LP = special case of CPP

VUGRAPH 42

• Local optima must be bunched together as shown

• General LP problem is a special case of CPP

⇒ Local optimum and global optimum must be the same

min

s.t. ,

,

0,

T

T

i i

T

i i

i

c x

a x b i E

a x b i I

x i P

 

 

 

f (x)

x

Summary

VUGRAPH 43

• Course Objectives

• Optimization problems
 Classification

 Measures of complexity of algorithms

• Background on Matrix Algebra
 Matrix-vector notation

 Matrix-vector product

 Linear subspaces associated with an m × n matrix A

 LU and QR decompositions to solve Ax = b, A is n × n

• Convex analysis
 Convex sets

 Convex functions

 Convex programming problem

• LP is a special case of convex programming problem
 Local optimum ≡ global optimum

