Lecture 1:
 Introduction, Review of Linear Algebra, Convex Analysis

Prof. Krishna R. Pattipati

Dept. of Electrical and Computer Engineering
University of Connecticut
Contact: krishna@engr.uconn.edu; (860) 486-2890

Outline

- Course Objectives
- Optimization problems
- Classification
- Measures of complexity of algorithms
- Background on Matrix Algebra
- Matrix-vector notation
- Matrix-vector product
- Linear subspaces associated with an $m \times n$ matrix A
- LU and QR decompositions to solve $A \underline{x}=\underline{b}, A$ is $n \times n$
- Convex analysis
- Convex sets
- Convex functions
- Convex programming problem
- LP is a special case of convex programming problem
- Local optimum \equiv global optimum

Reading List

- Dantzig and Thapa, Foreword to Linear Programming: Volume 1
- Papadimitrou and Steiglitz, Chapter 1
- Bertsimas and Tsitsiklis, Chapter 1 \& Sections 2.1 and 2.2
- Ahuja, Magnanti and Orlin, Chapter 1

Course objectives

- Provide systems analysts with central concepts of widely used and elegant optimization techniques used to solve LP and Network Flow problems
- Requires skills from both Math and CS
- Need a strong background in linear algebra

Three Recurrent Themes

1. Mathematically formulate the optimization problem
2. Design an algorithm to solve the problem

- Algorithm \equiv a step-by-step solution process

3. Computational complexity as a function of "size" of the problem

- What is an optimization problem?
- Arise in mathematics, engineering, applied sciences, economics, medicine and statistics
- Have been investigated at least since 825 A.D.
- Persian author Abu Ja'far Mohammed ibn musa al khowarizmi wrote the first book on Math
- Since the 1950s, a hierarchy of optimization problems have emerged under the general heading of "mathematical programming"

What is an optimization problem?

- Has three attributes
- Independent variables or parameters $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Parameter vector: $\underline{x}=\left[x_{1}, x_{2}, \ldots, x_{n}\right]^{T}$
- Conditions or restriction on the acceptable values of the variables
\Rightarrow Constraints of the problem
- Constraint set: $\underline{x} \in \Omega\left(e . g ., \Omega=\left\{\underline{x}: x_{i} \geq 0\right\}\right)$
- A single measure of goodness, termed the objective (utility) function or cost function or goal, which depends on the parameter vector \underline{x} :
- Cost function: $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=f(\underline{x})$

Typical cost functions

	$\underline{x} \in R^{n}$	$\underline{x} \in Z^{n}$	$\underline{x} \in\{0,1\}^{n}$
$f \in R$	${ }^{*} f: R^{n} \rightarrow R$	${ }^{*} f: Z^{n} \rightarrow R$	${ }^{*} f:\{0,1\}^{n} \rightarrow R$
$f \in Z$	$\# f: R^{n} \rightarrow Z$	${ }^{*} f: Z^{n} \rightarrow Z$	${ }^{*} f:\{0,1\}^{n} \rightarrow Z$
$f \in\{0,1\}$	$\# f: R^{n} \rightarrow\{0,1\}$	$\#^{\prime} f: Z^{n} \rightarrow\{0,1\}$	${ }^{*} f:\{0,1\}^{n} \rightarrow\{0,1\}$

$$
R=\text { set of reals; } Z=\text { set of integers }
$$

* denotes the most common optimization cost functions \# Typically a problem of mapping features to categories
- Abstract formulation
- "Minimize $f(x)$ where $\underline{x} \in \Omega$ "
- The solution approach is algorithmic in nature
- Construct a sequence $\underline{x}_{0} \rightarrow \underline{x}_{1} \rightarrow \ldots \rightarrow \underline{x}^{*}$ where \underline{x}^{*} minimizes $f(\underline{x})$ subject to $\underline{x} \in \Omega$

Classification of mathematical programming problems

LP: Linear Programming NFP: Network Flow Problems CPP: Convex Programming Problems NLP: Nonlinear Programming Problems

- Unconstrained continuous NLP
- $\Omega=R^{n}$, i.e., no constraints on \underline{x}
- Algorithmic techniques . . . ECE 6437
- Steepest descent
- Conjugate gradient
- Newton
- Gauss-Newton
- Quasi-Newton

Classification of mathematical programming problems

- Constrained continuous NLP
- Ω defined by:
- Set of equality constraints, E

$$
\because h_{i}(\underline{x})=0 ; i=1,2, \ldots, m ; m<n
$$

- Set of inequality constraints, I

$$
g_{i}(\underline{x}) \geq 0 ; i=1,2, \ldots, p
$$

- Simple bound constraints

$$
x_{i}^{L B} \leq x \leq x_{i}^{U B} ; i=1,2, \ldots, n
$$

- Algorithmic techniques . . . ECE 6437
- Penalty and barrier function methods
- Reduced gradient method
- Augmented Lagrangian (multiplier) methods
- Recursive quadratic programming
- Convex programming problems (CPP)
- Characterized by:
$\circ f(\underline{x})$ is convex . . . will define shortly!
- $g_{i}(\underline{x})$ is concave or $-g_{i}(\underline{x})$ is convex
- $h_{i}(\underline{x})$ linear $\Rightarrow A \underline{x}=\underline{b}$; A an $m \times n$ matrix
- Key: local minimum \equiv global minimum
- Necessary conditions are also sufficient (the so-called Karush-KuhnTucker (KKT) conditions (1951))

Linear programming (LP) problems

- LP is characterized by:
- $f(\underline{x})$ linear $\Rightarrow f(\underline{x})=c_{1} x_{1}+c_{2} x_{2}+\cdots+c_{n} x_{n}=\underline{c}^{T} \underline{x}$
- $g_{i}(\underline{x})$ linear $\Rightarrow \underline{a}_{i}{ }^{T} \underline{x} \geq b_{i} ; i \in I$
- $h_{i}(\underline{x})$ linear $\Rightarrow \underline{a}_{i}{ }^{T} \underline{x}=b_{i} ; i \in E$
- $x_{i} \geq 0 ; i \in P$
- x_{i} unconstrained; $i \in U \Rightarrow$ unconstrained if $i \in U$
- An important subclass of convex programming problems
- Widely used model in production planning, allocation, routing and scheduling,....
- Examples of Industries using LP
- Petroleum: extraction, refining, blending and distribution
- Food: economical mixture of ingredients; shipping from plants to warehouses
- Iron and steel industry: pelletization of low-grade ores, shop loading, blending of iron ore and scrap to produce steel,...
- Paper mills: minimize trim loss
- Communication networks: routing of messages
- Ship and aircraft routing, Finance,...

Search Space of LP is Finite

- A key property of LP
- Number of possible solutions, N is finite
- If n variables, m equality constraints, p inequality constraints and q unconstrained variables

$$
N=\binom{n+p+q}{m+p+q} \quad \begin{aligned}
& n=100, m=p=q=10 \\
& \Rightarrow N=1.6975 \times 10^{28} \text { possible solutions! }
\end{aligned}
$$

- Lies on the border of combinatorial or discrete optimization and continuous optimization problems
- Also called enumeration problems, since can theoretically count the number of different solutions
- Counting the number of solutions is a laborious process
- Even if each solution takes 10^{-12} seconds (terahertz machine !!), it takes 538 million years to search for an optimal solution.

A Brief History of LP

- Chronology and Pioneers
- Fourier : System of Linear Inequalities (1826)
- de la Vallee Poussin: Minimax Estimation (1911)
- Von Neumann: Game Theory (1928) and Steady Economic Growth (1937)
- Leontief: Input-output Model of the Economy (1932); Nobel Prize: 1973
- Kantorovich: Math. Methods in Organization and Planning Production (1939); Nobel Prize: 1975
- Koopmans: Economics of Cargo Routing (1942); Nobel Prize: 1975
- Dantzig: Activity Analysis for Air Force Planning and Simplex Method (1947)
- Charnes, Cooper and Mellon: Commercial applications in Petroleum industry (1952)
- Orchard-Hays: First successful LP software (1954)
- Merrill Flood, Ford and Fulkerson: Network Flows (1950, 1954)
- Dantzig, Wets, Birge, Beale, Charnes and Cooper: Stochastic Programming (1955-1960, 1980’s)
- Gomory: Cutting plane methods for Integer Programming (1958)
- Dantzig-Wolfe and Benders: Decomposition Methods (1961-62)
- Bartels-Golub-Reid $(1969,1982)$ \& Forrest-Tomlin (1972): Sparse LU methods
- Klee \& Minty: Exponential Complexity of Simplex (1972)
- Bland: Avoid Cycling in Simplex (1977)
- Khachian: LP has Polynomial Complexity (1979)
- Karmarkar: Projective Interior Point Algorithm (1984)
- Primal-dual/Path Following (1984-2000)
- Modern implementations (XMP, OSL, CPLEX, Gurobi, Mosek, Xpress,...)

Two Main Methods for LP

- Fortunately, there exist efficient methods
- Revised simplex (Dantzig: 1947-1949)
- Ellipsoid method (Khachian: 1979)
- Interior point algorithms (Karmarkar: 1984)
- Dantzig's Revised simplex (॰)
- In theory, can have exponential complexity, but works well in practice
- Number of iterations grows with problem size
- Khachian's Ellipsoid method (•)
- Polynomial complexity of LP, but not competitive with the Simplex method \Rightarrow not practical
- Karmarkar's (or interior point) algorithms ()
- Polynomial complexity
- Number of iterations is relatively constant $(\approx 20-50)$ with the size of the problem
- Need efficient matrix decomposition techniques

Network flow problems (NFP)

- Subclass of LP problems defined on graphs
- Simpler than general LP
- One of the most elegant set of optimization problems
- Examples of network flow problems
- Shortest path on a graph
- Maximum flow problem
- Minimum cost flow problem
- Transportation problem
- Assignment problem (also known as weighted bipartite matching problem)
- Illustration of shortest path problem

- Shortest path from a to f is: $a \rightarrow b \rightarrow c \rightarrow f$ shortest path length $=3$

Integer programming (IP) problems

- Hard intractable problems
- NP-complete problems (exponential time complexity)
- Examples of IP problems
- Travelling salesperson problem
- VLSI routing
- Test sequencing \& test pattern generation
- Multi-processor scheduling to minimize makespan
- Bin-packing and covering problems
- Knapsack problems
- Inference in graphical models
- Multicommodity flow problems
- Max cut problem
- Illustration of traveling salesperson problem
- Given a set of cities $C=\left\{c_{1}, c_{2}, \ldots, c_{n}\right\}$
- For each pair $\left(c_{i}, c_{j}\right)$, the distance $d\left(c_{i}, c_{j}\right)=d_{i j}$
- Problem is to find an ordering $\left\langle c_{\pi(1),} c_{\pi(2)}, \ldots, c_{\pi(n)}\right\rangle$ such that

$$
\sum_{i=1}^{n-1} d\left(c_{\pi(i)}, c_{\pi(i+1)}\right)+d\left(c_{\pi(n)}, c_{\pi(1)}\right)
$$

is a minimum
\Rightarrow Shortest closed path that visits every node once (Hamiltonian path)

Want efficient algorithms

- How to measure problem size?
- In LP, the problem size is measured in one of two ways:
- Crude way:

$$
n+m+p+q
$$

- Correct way: (size depends on the base used)

$$
\sum_{i=1}^{m+p}\left[\left(\log _{2}\left|b_{i}\right|\right)^{+}+\sum_{j=1}^{n}\left(\log _{2}\left|a_{i j}\right|\right)^{+}\right]+\sum_{j=1}^{n}\left(\log _{2}\left|c_{j}\right|\right)^{+}
$$

- For network flow problems, the size is measured in terms of the number of nodes and arcs in the graph and the largest arc weight
- How to measure efficiency of an algorithm?
- The time requirements of \# of operations as a function of the problem size
- Time complexity measured using big "O" notation
- A function $h(n)=O(g(n))$ (read as $h(n)$ equals "big oh" of $g(n)$) iff \exists constants $c, n_{0}>0$ such that $|h(n)| \leq c|g(n)|, \forall n>n_{0}$

Polynomial versus Exponential Complexity

- Polynomial versus exponential complexity
- An algorithm has polynomial time complexity if $h(n)=O(p(n))$ for some polynomial function
- Crude Examples: $O(n), O\left(n^{2}\right), O\left(n^{3}\right), \ldots$
- Some algorithms have exponential time complexity
- Examples: $O\left(2^{n}\right), O\left(3^{n}\right)$, etc.
- Significance of polynomial vs. exponential complexity
- Time complexity versus problem size ($1 \mathrm{~ns} / o p$)

Complexity	Problem size n			
	10	20	30	40
n	10^{-8}	2.10^{-8}	3.10^{-8}	4.10^{-8}
n^{2}	10^{-7}	4.10^{-7}	9.10^{-7}	16.10^{-7}
n^{3}	10^{-6}	8.10^{-6}	27.10^{-6}	64.10^{-6}
2^{n}	10^{-6}	10^{-3}	1.07	18.3 min
3^{n}	6×10^{-5}	3.48	2.37 days	385.5 years

- Last two rows are inherently intractable
- NP-hard; must go for suboptimal heuristics
- Certain problems, although intractable, are optimally solvable in practice (e.g., knapsack for as many as 10,000 variables)

Background on matrix algebra

- Vector - Matrix Notation

$$
\underline{x}=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] \text { a column vector }
$$

- $x_{i} \in R ; x_{i} \in[-\infty, \infty] \Rightarrow \underline{x} \in R^{n}$
- $\underline{x} \in Z^{n}$ for integers
- $x_{i} \in\{0,1\}$ for binary
- $A=\left[a_{i j}\right]$ an $m \times n$ matrix $\in R^{m n}$
- $A^{T}=\left[a_{j i}\right]$ an $n \times m$ matrix $\in R^{n m}$
- $m=n \Rightarrow A$ is a square matrix
- A square $n \times n$ matrix is symmetric if $a_{i j}=a_{j i}$
- Diagonal matrix: $A=\left[\begin{array}{ccc}2 & 4 \\ 4 & 11\end{array}\right] \begin{aligned} & \text { symmetric } \\ & d_{1} \\ & \\ & \\ & 0\end{aligned} d_{2} \quad 0$

Matrix-vector notation

- Identity matrix: $I_{n}=\operatorname{Diag}(1,1, \ldots, 1)$
- A matrix is PD if $\underline{x}^{T} A \underline{x}>0, \forall \underline{x} \neq \underline{0}$
- A matrix is PSD if $\underline{x}^{T} A \underline{x} \geq 0, \forall \underline{x} \neq \underline{0}$
- Note: $\underline{x}^{T} A \underline{x}=\underline{x}^{T} A^{T} \underline{x} \Rightarrow \underline{x}^{T} A \underline{x}=\underline{x}^{T}\left[\left(A+A^{T}\right) / 2\right] \underline{x}$ $\left(\frac{A+A^{T}}{2}\right)$ is called the symmetrized part of A
- If A is skew symmetric, $A^{T}=-A \Rightarrow \underline{x}^{T} A \underline{x}=0 \forall \underline{x}$
- $A=\operatorname{Diag}\left(d_{i}\right) \Rightarrow \underline{x}^{T} A \underline{x}=\sum_{i=1}^{n} d_{i} x_{i}^{2}$
- Vector \underline{x} is an $n \times 1$ matrix
- $\underline{x}^{T} \underline{y}=$ inner (dot, scalar) product $=\sum_{i=1}^{n} x_{i} y_{i}$ (a scalar)

$$
\left[\begin{array}{llll}
x_{1} & x_{2} & \cdots & x_{1 n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
y_{n}
\end{array}\right]
$$

Inner product and cosine relationship

- Know ($n=3$ case):

$$
\begin{aligned}
\|\underline{x}-\underline{y}\|^{2} & =\left(x_{1}-y_{1}\right)^{2}+\left(x_{2}-y_{2}\right)^{2}+\left(x_{3}-y_{3}\right)^{2} \\
& =\left(x_{1}^{2}+x_{2}^{2}+x_{3}^{2}\right)+\left(y_{1}^{2}+y_{2}^{2}+y_{3}^{2}\right)-2\left(x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}\right)
\end{aligned}
$$

- Also know:

$$
\begin{aligned}
\|\underline{x}-\underline{y}\|^{2} & =\left(\underline{x}^{T} \underline{x}\right)+\left(\underline{y}^{T} \underline{y}\right)-2 \sqrt{\left(\underline{x}^{T} \underline{x}\right)\left(\underline{y}^{T} \underline{y}\right)} \cos \theta \\
& \Rightarrow \cos \theta=\frac{x^{T} \underline{y}}{\sqrt{\left(\underline{x}^{T} \underline{x}\right)\left(y^{T} \underline{y}\right)}}=\frac{\underline{x}^{T} \underline{y}}{\|\underline{x}\|_{2}\|\underline{y}\|_{2}}
\end{aligned}
$$

Vector norms

$\left[\begin{array}{ll}\frac{x}{1} & 2 \\ 2 & 1\end{array}\right] \Rightarrow \frac{4}{5}=\cos \theta=\cos ^{-1} 0.8 \approx 36.9^{\circ}$

- $\theta=90 \Rightarrow \underline{x}$ and \underline{y} are perpendicular to each other
\Rightarrow ORTHOGONAL $\Rightarrow \underline{x}^{T} v=0$, e.g.,

$$
\underline{x}=\left[\begin{array}{ll}
.8 & -.6
\end{array}\right]^{T}, \quad \underline{y}=\left[\begin{array}{ll}
.6 & .8
\end{array}\right]^{T}
$$

- Vector norms

- Norms generalize the concept of absolute value of a real number to vectors (and matrices) (measure of "SIZE" of a vector (and matrix))
- $\|x\|_{p}=$ Holder or p-norm $=\left[\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\ldots+\left|x_{n}\right|^{p}\right]^{1 / p}=\left[\sum_{i=1}^{n}\left|x_{i}\right|^{p}\right]^{1 / p} \sim$ "size"

- All norms convey approximately the same information
- Only thing is some are more convenient to use than others

Matrix-vector product

- $\underline{\hat{x}}$ approx. to $\underline{x} \Rightarrow$ absolute error $\|\underline{x}-\underline{\hat{x}}\|$ Relative error $\|\underline{x}-\underline{\hat{x}}\| /\|\underline{x}\|$ ∞-norm \Rightarrow \# of correct significant digits in $\underline{\hat{x}}$
Relative error $=10^{-p} \Rightarrow p$ significant digits of accuracy
- Matrix-vector product

$$
A \underline{x}=\left[\begin{array}{lll}
2 & 4 & 5 \\
1 & 2 & 6 \\
3 & 1 & 2 \\
4 & 5 & 6
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
2 \\
1 \\
3 \\
4
\end{array}\right] x_{1}+\left[\begin{array}{l}
4 \\
2 \\
1 \\
5
\end{array}\right] x_{2}+\left[\begin{array}{l}
5 \\
6 \\
2 \\
6
\end{array}\right]
$$

$\Rightarrow A \underline{x}=\sum_{i=1}^{n} a_{i} x_{i} ; A \underline{x} \Rightarrow$ linear combinations of columns of A
$\Rightarrow A \underline{x}: R^{n} \rightarrow R^{m}$ transformation from an n-dimensional space to an m-dimensional space

- Characterization of subspaces associated with a matrix A
- A subspace is what you get by taking all linear combinations of n vectors
- Q: Can we talk about the dimension of a subspace? Yes!
- Q: Can we characterize the subspace such that it is representable by a finite minimal set of vectors \Rightarrow "basis of a subspace," yes!

Independence and rank of a matrix

- Suppose we have a set of vectors $\underline{a}_{1}, \underline{a}_{2}, \ldots, \underline{a}_{r}$ $\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}$ are dependent iff \exists scalars $x_{1}, x_{2}, \ldots, x_{r}$ s.t. $\sum_{i=1}^{r} \underline{a}_{i} x_{i}=\underline{0}$ and at least one $x_{i} \neq 0$ they are independent if $\sum_{i=1}^{r} \underline{a}_{i} x_{i}=\underline{0} \Rightarrow x_{i}=0$
$\Rightarrow \nexists x_{i} \neq 0$ such that $\sum_{i=1}^{r} \underline{a}_{i} x_{i}=\underline{0}$
- Rank of a matrix

$$
\begin{aligned}
\operatorname{rank}(A) & =\text { \# of linearly independent columns } \\
& =\text { \# of linearly independent rows } \\
& =\operatorname{rank}\left(A^{T}\right) \\
& =\operatorname{dim}[\operatorname{range}(A)] \leq \min (m, n) \\
{\left[\begin{array}{ccc}
1 & -1 & 0 \\
0 & 1 & -1 \\
1 & 0 & -1
\end{array}\right] \Rightarrow } & \begin{array}{l}
\text { indep. columns }=\text { indep. rows }=\text { rank }=2 \\
\\
\\
\text { Row 1+ Row } 2=\text { Row } 3 \\
\text { Column } 1+\text { Column } 2=- \text { Column 3 }
\end{array}
\end{aligned}
$$

Linear subspaces associated with a matrix

- Linear spaces associated with $A \underline{x}=\underline{b}$
- $\operatorname{range}(A)=R(A)=\left\{\underline{y} \in R^{m} \mid \underline{y}=\sum_{i=1}^{n} \underline{a}_{i} x_{i}\right.$ for vectors $\left.\underline{x} \in R^{n}\right\}$
$=$ column space of A
- $\operatorname{dim}(R(A))=r, \operatorname{rank}$ of (A)
- $A \underline{x}=\underline{b}$ has a solution if \underline{b} can be expressed as a linear combination of the columns of $A \Rightarrow \underline{b} \in R(A)$
- Null space of $A=N(A)=\left\{\underline{x} \in R^{n} \mid A \underline{x}=\underline{0}\right\}$ \Rightarrow also called kernel of A or ker (A)
- Note that $\underline{x}=[000]^{T}$ always satisfies $A \underline{x}=\underline{0}$
- Key: $\operatorname{dim}(N(A))=n-r=n-\operatorname{rank}(A)$
- If $\operatorname{rank}(A)=n$, then $A \underline{x}=\underline{0} \Rightarrow \underline{x}=\underline{0} \Rightarrow N(A)$ is the origin
- $R\left(A^{T}\right)=\left\{\underline{z} \in R^{n} \mid A^{T} \underline{y}=\underline{z}, \forall \underline{y} \in R^{m}\right\}$
\Rightarrow For a solution to exist, \underline{z} should be in the column space of A^{T} or row space of A
- $N\left(A^{T}\right)=\left\{\underline{\underline{L}} \in R^{m} / A^{T} \underline{y}=\underline{0}\right\}=$ null space of A^{T}

Column, row and null spaces

column space null space of A

$$
\begin{array}{lll}
A \underline{x}=\underline{b} & \text { (m) } R(A) & \text { (n) } N(A) \\
A^{T} \underline{y}=\underline{z} & { }_{\text {(n) }} R\left(A^{T}\right) & \text { (m) } N\left(A^{T}\right)
\end{array}
$$

row space of A null space of A^{T}

- KEY:

○ $\operatorname{dim}\left[R\left(A^{T}\right)\right]+\operatorname{dim}[N(A)]=r+n-r=n$

- $\operatorname{dim}[R(A)]+\operatorname{dim}\left[N\left(A^{T}\right)\right]=r+m-r=m$
- rank of $A=\operatorname{rank}$ of $A^{T}=r$
- Linearly ind. col. of $A=$ linearly ind. rows of A

Example:

$$
\left.\begin{array}{rl}
A^{T} \underline{y}= & {\left[\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 0 \\
0 & -1 & -1
\end{array}\right]\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right]=\underline{0} \Rightarrow\left[\begin{array}{c}
1 \\
1 \\
-1
\end{array}\right] \in N\left(A^{T}\right) \quad \Rightarrow\left[\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & 1 \\
1 & 0 & -1
\end{array}\right] \text { are linearly }} \\
\text { independent }
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 1 \\
0 & -1 & 1
\end{array}\right] \text { are linearly independent, } \quad\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \in N\left(A^{T}\right) \text {. }
$$

indep. col of $A^{T}=$ indep. Rows of $A=$ indep. col of $A=$ indep. Rows of A^{T}

Geometric insight

- Every $\underline{x} \in N(A) \perp^{r}$ to every $\underline{z} \in R\left(A^{T}\right)$

$$
\Rightarrow \text { if } A^{T} \underline{y}=\underline{z} \text { and } A \underline{x}=\underline{0} \Rightarrow \underline{x}^{T} \underline{z}=\underline{x}^{T} A^{T} \underline{y}=\underline{0}^{T} \underline{y}=0
$$

- Every $\underline{y} \in N\left(A^{T}\right) \perp^{r}$ to every $\underline{z} \in R\left(A^{T}\right) \Rightarrow \underline{y}^{T} \underline{b}=\underline{y}^{T} A^{T} \underline{x}=0$

- In general, when $\operatorname{rank}(A)=r<n$, then $\operatorname{dim}(N(A))=n-r$
- Suppose we have $\underline{x}_{r} \Rightarrow A \underline{x}_{r}=\underline{b}$
- Then all $\underline{x}=\underline{x}_{r}+\underline{x}_{n}$ are also solutions to $A \underline{x}=\underline{b}$
\Rightarrow infinite \# of solutions

Hyperplanes model equality constraints

- Can we give a geometric meaning to all this? Yes!
- Consider a single equation $\underline{a}^{T} \underline{x}=b$ (a scalar)
- $\underline{a} b / \underline{a}^{T} \underline{a}$ is a solution to \underline{x}
- Since $\underline{x}_{n} \in N\left(\underline{a}^{T}\right)$, we have $\underline{a}^{T} \underline{x}=0$ and $\operatorname{dim}\left(N\left(\underline{a}^{T}\right)\right)=n-1$
- But, what is $\underline{a}^{T} \underline{x}_{n}=0 \Rightarrow$ it is a hyperplane passing through the origin
- $\underline{a}^{T} \underline{x}=b \Rightarrow$ it is a hyperplane at a distance b from the origin
- So, $H=\left\{\underline{x} \in R^{n} \mid \underline{a}^{T} \underline{x}=b\right\}$ is a hyperplane
- $\operatorname{dim}(H)=n-1$ since we can find $n-1$ independent vectors that are orthogonal to \underline{a}
- Or alternately, $H=\left\{\underline{x}_{n} \in N\left(\underline{(a}^{T}\right) \mid \underline{a}^{T}\left(\underline{x}_{r}+\underline{x}_{n}\right)=b\right\}$

Half spaces model inequality constraints

- If we have m equations in $A \underline{x}=\underline{b}$, each equation is a hyperplane
- Then $\left\{\underline{x} \in R^{n} \mid A \underline{x}=\underline{b}\right\}$ is the intersection of m hyperplanes and this subspace has dimension equal to $(n-m)$
- Note: intersection of n nonparallel hyperplanes in R^{n} is a point $\underline{x}=A^{-1} \underline{b} \Rightarrow$ solution to $A \underline{x}=\underline{b}$
- For every hyperplane $H=\left\{\underline{x} \mid \underline{a}^{T} \underline{x}=b\right\}$, we can define negative and positive closed and open half spaces

$$
\left.\begin{array}{cc}
\text { closed } & \text { open } \\
H_{c+}=\left\{\underline{a}^{T} \underline{x} \geq b\right\} & H_{o+}=\left\{\underline{a}^{T} \underline{x}>b\right\} \\
H_{c-}=\left\{\underline{a}^{T} \underline{x} \leq b\right\} & H_{o-}=\left\{\underline{a}^{T} \underline{x}<b\right\}
\end{array}\right\}
$$

- Half spaces model inequality constraints
- Example: $x_{1}+x_{2} \geq 1$

Partitioning and transformations

- Partitioned matrices
- Horizontal partition . . . useful in developing revised simplex method

$$
A \underline{x}=\left[\begin{array}{ll}
B & N
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=B x_{1}+N x_{2}
$$

- Horizontal and vertical partition

$$
\left[\begin{array}{ll}
A_{1} & A_{2} \\
A_{3} & A_{4}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
A_{1} x_{1}+A_{2} x_{2} \\
A_{3} x_{1}+A_{4} x_{2}
\end{array}\right]
$$

- Elementary transformations
- Column j of $A=\underline{a}_{j}=A e_{j} ; e_{j}=j^{\text {th }}$ unit vector with 1 in the $j^{\text {th }}$ component and 0 , elsewhere
- Row i of $A=\underline{e}_{i}^{T} A \Rightarrow$ element $a_{i j}=\underline{e}_{i}^{T} A \underline{e}_{j}$
- $A \underline{e}_{j} \underline{e}_{j}^{T}=\underline{a}_{j} \underline{e}_{j}^{T}=\left[\underline{0}, \underline{0}, \ldots, \underline{a}_{j}, \ldots, \underline{0}\right] \Rightarrow j^{\text {th }}$ column is \underline{a}_{j} and the rest are zero vectors

Deleting and inserting columns

$$
\left.I+A \underline{e}_{j} e_{j}^{T}=I+\underline{a}_{j} e_{j}^{T}=\left[\begin{array}{cccc}
1 & 0 & a_{1 j} & 0 \\
0 & 1 & a_{2 j} & \vdots \\
\vdots & \cdots & 1+a_{j j} & \vdots \\
0 & \cdots & a_{m j} & 1
\end{array}\right]\right)
$$

- Suppose we have an $n \times n$ matrix A and we want to delete the $j^{t h}$ column of A and insert a new column \underline{b} in its place

$$
\begin{aligned}
A_{\text {new }} & =A-A \underline{e}_{j} \underline{e}_{j}^{T}+\underline{b} \underline{e}_{j}^{T} \\
& =A\left[\begin{array}{lccc}
I-\underline{e}_{j} e_{j}^{T}+A^{-1} \underline{b} \underline{e}_{j}^{T}
\end{array}\right] \\
& =A\left[\begin{array}{cccc}
1 & 0 & \uparrow & 0 \\
0 & 1 & \vdots & \vdots \\
\vdots & \cdots & A^{-1} \underline{b} & \vdots \\
0 & \cdots & \downarrow & 1
\end{array}\right]
\end{aligned}
$$

- Sherman-Morrison-Woodbury formula:

$$
\begin{gathered}
\bar{A}=A+\underline{a} b^{T} \\
\bar{A}^{-1}=A^{-1}-\frac{A^{-1} \underline{a} b^{T} A^{-1}}{1+\underline{b}^{T} A^{-1} \underline{a}}
\end{gathered}
$$

- Modern: LU and QR decomposition

Application:

$$
\begin{aligned}
& A_{\text {new }}=A\left[I+\left(\underline{\alpha}-\underline{e}_{j}\right) \underline{e}_{j}^{T}\right] ; \underline{\alpha}=A^{-1} \underline{b} \\
& A_{\text {new }}^{-1}=\underbrace{\left[I-\frac{\left(\underline{\alpha}-\underline{e}_{j}\right) \underline{e}_{j}^{T}}{\alpha_{j}}\right]}_{E} A^{-1}=E A^{-1}
\end{aligned}
$$

"Product Form of the Inverse (PFI)"

Decomposition

- Special matrices
- Block diagonal - useful in modeling large loosely-connected systems

- Orthogonal $\Rightarrow Q^{-1}=Q^{T}$ * $\underline{q}_{i}{ }^{T} q_{j}=0, \forall i \neq j, \underline{q}_{j}{ }^{T} q_{j}=1$
* Very useful in solving linear systems and in solving LP via revised simplex method
- Lower triangular

- Upper triangular

LU and QR decomposition

- Solution of $A \underline{x}=\underline{b}$ when A is square and has full rank
- LU decomposition \Rightarrow write $A=L U$
- Solve $L \underline{y}=\underline{b}$ via Forward Elimination
- Solve $U \underline{x}=\underline{y}$ via Backward Substitution
- QR decomposition $\Rightarrow A=Q R$ where R is upper triangular
- Solve $R \underline{x}=Q^{T} \underline{b}$ via Backward Substitution
- In Lecture 3, we will discuss how to update L and U (or Q and R) when the matrix is modified by removing a column and inserting a new one in its place when we talk about basis updates

Convex analysis - Convex sets

- A set $\Omega \in R^{n}$ is convex if for any two points x_{1} and x_{2} in the set Ω, the line segment joining x_{1} and x_{2} is also in Ω

- A convex set is one whose boundaries do not bulge inward or do not have indentations

Examples of convex sets

- Examples:
- A hyperplane $\underline{a}^{T} \underline{x}=b$ is a convex set
- A closed half space
- $H_{c+}=\left\{\underline{x} \mid a^{T} \underline{x} \geq b\right\}$
- $H_{c_{-}}=\left\{\underline{x} \mid a^{T} \underline{x} \leq b\right\}$
- $\cap \Omega_{i}$ is convex
- $\cup \Omega_{i}$ need not be convex

- Sums and differences of convex sets are convex
- Expansions or contractions of convex sets are convex

- Empty set is convex

Convex cone and convex combination

- Useful results:
- Intersection of hyperplanes is convex
- Intersection of halfspaces is convex

$$
\text { - e.g., } x_{1}+x_{2} \leq 1 ; x_{1} \geq 0, \quad x_{2} \geq 0
$$

- Set of intersection of m closed halfspaces is called a convex polytope \Rightarrow set of solutions to $A \underline{x} \leq \underline{b}$ or $A \underline{x} \geq \underline{b}$ is a convex polytope
- A bounded polytope is called a polyhedron
- Convex cone: $\underline{x} \in$ cone $\Rightarrow \lambda \underline{x} \in$ cone $\forall \lambda \geq 0$
- Convex combination: given a set of points $\underline{x}_{1}, \underline{x}_{2}, \ldots, \underline{x}_{k}, \underline{x}=\alpha_{1} \underline{x}_{1}+$ $\alpha_{2} \underline{x}_{2}+\ldots+\alpha_{k} \underline{x}_{k}$ such that $\alpha_{1}+\alpha_{2}+\ldots+\alpha_{k}=1, \alpha_{i} \geq 0$ is termed the convex combination of $\underline{x}_{1}, \underline{x}_{2}, \ldots, \underline{x}_{k}$
- A point \underline{x} in a convex set Ω is an extreme point (corner) if there are no two points $x_{1}, x_{2} \in \Omega$ such that $\underline{x}=\alpha \underline{x}_{1}+(1-\alpha) \underline{x}_{2}$ for any $0<\alpha<1$

Convex hull and convex polyhedron

- A closed convex hull C is a convex set such that every point in C is a convex combination of its extreme points, i.e.,

$$
\underline{x}=\sum_{i=1}^{k} \alpha_{i} \underline{x}_{i}
$$

- In particular, a convex polyhedron can be thought of as:
- The intersection of a finite number of closed half spaces
- (or) as the convex hull of its extreme points
- Convex polyhedrons play an important role in LP
- We will see that we need to look at only a finite number of extreme points
- This is what makes LP lie on the border of continuous and discrete optimization problems

Convex functions

- Consider $f(\underline{x}): \Omega \rightarrow R, f(\underline{x})$ a scalar function
- $f(\underline{x})$ is a convex function on the convex set Ω if for any two points $\underline{x}_{1}, \underline{x}_{2} \in \Omega$

$$
f\left(\alpha \underline{x}_{1}+(1-\alpha) \underline{x}_{2}\right) \leq \alpha f\left(\underline{x}_{1}\right)+(1-\alpha) f\left(\underline{x}_{2}\right) ; 0 \leq \alpha \leq 1
$$

- A convex function bends up
- A line segment (chord, secant) between any two points never lies below the graph
- Linear interpolation between any two points \underline{x}_{1} and \underline{x}_{2} overestimates the function

Examples of convex functions

- Concave if $-f(\underline{x})$ is convex
- Examples:

- Proof: $f(\underline{x})=\underline{c}^{T} \underline{x}$, a linear function is convex
- $f\left(\alpha \underline{c}^{T} \underline{x}_{1}+(1-\alpha) \underline{c}^{T} \underline{x}_{2}\right)=\underline{c}^{T} \underline{x}$ holds with equality
- $f(\underline{x})=\underline{x}^{T} Q \underline{x}$ is convex if Q is PD . . HW problem

Properties of convex functions

- In general,

$$
f\left(\alpha_{1} \underline{x}_{1}+\alpha_{2} \underline{x}_{2}+\cdots+\alpha_{n} \underline{x}_{n}\right)=f\left(\sum_{i} \alpha_{i} \underline{x}_{i}\right) \leq \sum_{i} \alpha_{i} f\left(\underline{x}_{i}\right)
$$

where $\sum_{i} \alpha_{i}=1 ; \alpha_{i} \geq 0 \ldots$ Jensen's inequality

- Linear extrapolation underestimates the function

 semi-definite (PSD) or positive definite (PD) matrix

Level sets of convex functions

- Sum of convex functions is convex
- The epigraph or level set $\Omega_{\mu}=\{\underline{x} \mid f(\underline{x}) \leq \mu\}$ is convex, $\forall \mu$, if $f(\underline{x})$ is convex
- Proof:

$$
\begin{aligned}
& \text { If } \underline{x}_{1}, \underline{x}_{2} \in \Omega_{\mu} \Rightarrow f\left(\underline{x}_{1}\right), f\left(\underline{x}_{2}\right) \leq \mu \\
& \text { Consider } \underline{x}=\alpha \underline{x}_{1}+(1-\alpha) \underline{x}_{2} \\
& f\left(\alpha \underline{x}_{1}+(1-\alpha) \underline{x}_{2}\right) \leq \alpha f\left(\underline{x}_{1}\right)+(1-\alpha) f\left(\underline{x}_{2}\right) \leq \mu \\
& \Rightarrow \underline{x} \in \Omega_{\mu}
\end{aligned}
$$

Convex programming problem (CPP)

- $\min f(\underline{x}) \ldots f$ is convex, such that $A \underline{x}=\underline{b}, g_{i}(\underline{x}) \geq 0$; $i=1,2, \ldots, p ; g_{i}$ concave $\Rightarrow-g_{i}$ convex
- $\Omega_{i}=\left\{\underline{x} \mid-g_{i}(\underline{x}) \leq 0\right\}=\left\{\underline{x} \mid g_{i}(\underline{x}) \geq 0\right\} \Rightarrow$ convex
- $\Omega_{\mu}=\{\underline{x} \mid f(\underline{x}) \leq \mu\}$ is convex
- $A \underline{x}=\underline{b} \Rightarrow$ intersection of hyperplanes \Rightarrow convex set $\Omega_{A} \Rightarrow$

$$
\Omega=\bigcap \Omega_{i} \cap \Omega_{\mu} \cap \Omega_{A} \text { is convex }
$$

- Key property of CPP: local optimum \Leftrightarrow global optimum
- Suppose \underline{x}^{*} is a local minimum, but \underline{y} is a global minimum
- Consider $\underline{x}=\alpha \underline{x}^{*}+(1-\alpha) \underline{y} \in \Omega_{\mu}$
- Convexity $\Rightarrow f\left(\alpha \underline{x}^{*}+(1-\alpha) \underline{y}\right) \leq \alpha f\left(\underline{x}^{*}\right)+(1-\alpha) f(\underline{y}) \leq f\left(\underline{x}^{*}\right)$
$\Rightarrow x^{*}$ is not a local optimum \Rightarrow a contradiction

$L P=$ special case of CPP

- Local optima must be bunched together as shown

- General LP problem is a special case of CPP

$$
\begin{aligned}
& \min \underline{c}^{T} \underline{x} \\
& \text { s.t. } \underline{a}_{i}^{T} \underline{x}=b_{i}, i \in E \\
& \underline{a}_{i}^{T} \underline{x} \geq b_{i}, i \in I \\
& \\
& \quad x_{i} \geq 0, i \in P
\end{aligned}
$$

\Rightarrow Local optimum and global optimum must be the same

Summary

- Course Objectives
- Optimization problems
- Classification
- Measures of complexity of algorithms
- Background on Matrix Algebra
- Matrix-vector notation
- Matrix-vector product
- Linear subspaces associated with an $m \times n$ matrix A
- LU and QR decompositions to solve $A \underline{x}=\underline{b}, A$ is $n \times n$
- Convex analysis
- Convex sets
- Convex functions
- Convex programming problem
- LP is a special case of convex programming problem
- Local optimum \equiv global optimum

