

Lecture 1: Introduction, Review of Linear Algebra, Convex Analysis

Prof. Krishna R. Pattipati Dept. of Electrical and Computer Engineering University of Connecticut Contact: <u>krishna@engr.uconn.edu</u>; (860) 486-2890

January 21, 2016

© K. R. Pattipati, 2001-2016

- Course Objectives
- Optimization problems
 - Classification
 - Measures of complexity of algorithms
- Background on Matrix Algebra
 - Matrix-vector notation
 - Matrix-vector product
 - Linear subspaces associated with an $m \times n$ matrix A
 - LU and QR decompositions to solve $A\underline{x} = \underline{b}$, A is $n \times n$
- Convex analysis
 - Convex sets
 - Convex functions
 - Convex programming problem
- LP is a special case of convex programming problem
 - Local optimum = global optimum

- Dantzig and Thapa, Foreword to Linear Programming: Volume 1
- Papadimitrou and Steiglitz, Chapter 1
- Bertsimas and Tsitsiklis, Chapter 1 & Sections 2.1 and 2.2
- Ahuja, Magnanti and Orlin, Chapter 1

- Provide systems analysts with central concepts of widely used and elegant optimization techniques used to solve LP and Network Flow problems
- Requires skills from both Math and CS
- Need a strong background in linear algebra

Three Recurrent Themes

- 1. Mathematically formulate the optimization problem
- 2. Design an algorithm to solve the problem
 - Algorithm ≡ a step-by-step solution process
- 3. Computational complexity as a function of "size" of the problem
- What is an optimization problem?
 - Arise in mathematics, engineering, applied sciences, economics, medicine and statistics
 - Have been investigated at least since 825 A.D.
 - Persian author Abu Ja'far Mohammed ibn musa al khowarizmi wrote the first book on Math
 - Since the 1950s, a hierarchy of optimization problems have emerged under the general heading of "mathematical programming"

What is an optimization problem?

Has three attributes

- Independent variables or parameters (x_1, x_2, \ldots, x_n)
 - Parameter vector: $\underline{x} = [x_1, x_2, \dots, x_n]^T$
- Conditions or restriction on the acceptable values of the variables

 \Rightarrow Constraints of the problem

• Constraint set: $\underline{x} \in \Omega$ (*e.g.*, $\Omega = \{\underline{x} : x_i \ge 0\}$)

 A single measure of goodness, termed the objective (utility) function or cost function or goal, which depends on the parameter vector <u>x</u>:

• Cost function: $f(x_1, x_2, ..., x_n) = f(\underline{x})$

Typical cost functions

	$\underline{x} \in \mathbb{R}^n$	$\underline{x} \in Z^n$	$\underline{x} \in \{0,1\}^n$
$f \in R$	$ * f : R^n \to R $	* $f: Z^n \to R$	$*_{f:\{0,1\}^n \to R}$
$f \in Z$	$\#_{f}: R^{n} \to Z$	$* f : Z^n \to Z$	${}^{*}_{f}:\{0,1\}^{n} \rightarrow Z$
$f \in \{0,1\}$	$# f : \mathbb{R}^n \to \{0, 1\}$	$# f : Z^n \to \{0, 1\}$	* $f : \{0,1\}^n \to \{0,1\}$

R = set of reals; Z = set of integers

* denotes the most common optimization cost functions # Typically a problem of mapping features to categories

- Abstract formulation
 - "Minimize f(x) where $\underline{x} \in \Omega$ "
- The solution approach is algorithmic in nature
 - Construct a sequence $\underline{x}_0 \to \underline{x}_1 \to \dots \to \underline{x}^*$ where \underline{x}^* minimizes $f(\underline{x})$ subject to $\underline{x} \in \Omega$

Classification of mathematical programming problems

LP: Linear Programming NFP: Network Flow Problems CPP: Convex Programming Problems NLP: Nonlinear Programming Problems

- Unconstrained continuous NLP
 - $\Omega = R^n$, i.e., no constraints on <u>x</u>
 - Algorithmic techniques . . . ECE 6437
 - Steepest descent

- Newton
- Conjugate gradient
 - Gauss-Newton
 - Quasi-Newton

UCONN

Classification of mathematical programming problems

- Constrained continuous NLP
 - Ω defined by:
 - \circ Set of equality constraints, E

★ $h_i(x) = 0; i = 1, 2, ..., m; m < n$

• Set of inequality constraints, I

♦ $g_i(x) \ge 0; i = 1, 2, ..., p$

• Simple bound constraints

♦ $x_i^{LB} \le x \le x_i^{UB}$; i = 1, 2, ..., n

- Algorithmic techniques . . . ECE 6437
 - Penalty and barrier function methods

- Augmented Lagrangian (multiplier) • methods
- Reduced gradient method Recursive quadratic programming
- Convex programming problems (CPP)
 - Characterized by:
 - $\circ f(\underline{x})$ is convex... will define shortly!
 - $\circ g_i(x)$ is concave or $-g_i(x)$ is convex
 - $h_i(x)$ linear $\Rightarrow Ax = b$; A an $m \times n$ matrix
 - **Key**: local minimum ≡ global minimum
 - Necessary conditions are also sufficient (the so-called Karush-Kuhn-Tucker (KKT) conditions (1951))

Linear programming (LP) problems

- LP is characterized by:
 - $f(\underline{x})$ linear $\Rightarrow f(\underline{x}) = c_1 x_1 + c_2 x_2 + \dots + c_n x_n = \underline{c}^T \underline{x}$
 - $g_i(\underline{x})$ linear $\Rightarrow \underline{a}_i^T \underline{x} \ge b_i; i \in I$
 - $h_i(\underline{x})$ linear $\Rightarrow \underline{a}_i^T \underline{x} = b_i; i \in E$
 - $x_i \ge 0; i \in P$
 - x_i unconstrained; $i \in U \Rightarrow$ unconstrained if $i \in U$
- An important subclass of convex programming problems
 - Widely used model in production planning, allocation, routing and scheduling,....
 - Examples of Industries using LP
 - $\circ\,$ Petroleum: extraction, refining, blending and distribution
 - Food: economical mixture of ingredients; shipping from plants to warehouses
 - Iron and steel industry: pelletization of low-grade ores, shop loading, blending of iron ore and scrap to produce steel,...
 - Paper mills: minimize trim loss
 - Communication networks: routing of messages
 - Ship and aircraft routing, Finance,...

Search Space of LP is Finite

- A key property of LP
 - Number of possible solutions, *N* is finite
 - If *n* variables, *m* equality constraints, *p* inequality constraints and *q* unconstrained variables

$$N = \begin{pmatrix} n+p+q \\ m+p+q \end{pmatrix}$$

$$n = 100, m = p = q = 10$$

$$\Rightarrow N = 1.6975 \times 10^{28} \text{ possible solutions!}$$

- Lies on the border of combinatorial or discrete optimization and continuous optimization problems
 - Also called **enumeration problems**, since can theoretically count the number of different solutions
- Counting the number of solutions is a **laborious process**
 - Even if each solution takes 10⁻¹² seconds (terahertz machine !!), it takes 538 million years to search for an optimal solution.

A Brief History of LP

- Chronology and Pioneers
 - Fourier : System of Linear Inequalities (1826)
 - de la Vallee Poussin: Minimax Estimation (1911)
 - Von Neumann: Game Theory (1928) and Steady Economic Growth (1937)
 - Leontief: Input-output Model of the Economy (1932); Nobel Prize: 1973
 - Kantorovich: Math. Methods in Organization and Planning Production (1939); Nobel Prize: 1975
 - Koopmans: Economics of Cargo Routing (1942); Nobel Prize: 1975
 - Dantzig: Activity Analysis for Air Force Planning and Simplex Method (1947)
 - Charnes, Cooper and Mellon: Commercial applications in Petroleum industry (1952)
 - Orchard-Hays: First successful LP software (1954)
 - Merrill Flood, Ford and Fulkerson: Network Flows (1950, 1954)
 - Dantzig, Wets, Birge, Beale, Charnes and Cooper: Stochastic Programming (1955-1960, 1980's)
 - Gomory: Cutting plane methods for Integer Programming (1958)
 - Dantzig-Wolfe and Benders: Decomposition Methods (1961-62)
 - Bartels-Golub-Reid (1969, 1982) & Forrest-Tomlin (1972): Sparse LU methods
 - Klee & Minty: Exponential Complexity of Simplex (1972)
 - Bland: Avoid Cycling in Simplex (1977)
 - Khachian: LP has Polynomial Complexity (1979)
 - Karmarkar: Projective Interior Point Algorithm (1984)
 - Primal-dual/Path Following (1984-2000)
 - Modern implementations (XMP, OSL, CPLEX, Gurobi, Mosek, Xpress,...)

Two Main Methods for LP

- Fortunately, there exist efficient methods
 - Revised simplex (Dantzig: 1947-1949)
 - Ellipsoid method (Khachian: 1979)
 - Interior point algorithms (Karmarkar: 1984)
- Dantzig's Revised simplex (
)
 - In theory, can have exponential complexity, but works well in practice
 - Number of iterations **grows** with problem **size**
- Khachian's Ellipsoid method (•)
 - Polynomial complexity of LP, but not competitive with the Simplex method ⇒ not practical
- Karmarkar's (or interior point) algorithms (
)
 - Polynomial complexity
 - Number of iterations is relatively constant (\approx 20-50) with the size of the problem
 - Need efficient matrix decomposition techniques

Network flow problems (NFP)

- Subclass of LP problems defined on graphs
 - Simpler than general LP
 - One of the most elegant set of optimization problems
- Examples of network flow problems
 - Shortest path on a graph
 - Maximum flow problem
 - Minimum cost flow problem

- Transportation problem
- Assignment problem (also known as weighted bipartite matching problem)
- Illustration of shortest path problem

Integer programming (IP) problems

- Hard intractable problems
- NP-complete problems (exponential time complexity)
- Examples of IP problems
 - Travelling salesperson problem
 - VLSI routing
 - Test sequencing & test pattern generation
 - Multi-processor scheduling to minimize makespan

- Bin-packing and covering problems
- Knapsack problems
- Inference in graphical models
- Multicommodity flow problems
- Max cut problem
- Illustration of traveling salesperson problem
 - Given a set of cities $C = \{c_1, c_2, \ldots, c_n\}$
 - For each pair (c_i, c_j) , the distance $d(c_i, c_j) = d_{ij}$
 - Problem is to find an ordering $\langle c_{\pi(1)}, c_{\pi(2)}, \ldots, c_{\pi(n)} \rangle$ such that

$$\sum_{i=1}^{n-1} d(c_{\pi(i)}, c_{\pi(i+1)}) + d(c_{\pi(n)}, c_{\pi(1)})$$

is a minimum

 \Rightarrow Shortest <u>closed</u> path that visits every node once (Hamiltonian path)

Want efficient algorithms

- How to measure problem size?
 - In LP, the problem size is measured in one of two ways:
 - Crude way:

n+m+p+q

 $\,\circ\,$ Correct way: (size depends on the base used)

$$\sum_{i=1}^{m+p} \left[\left(\log_2 |b_i| \right)^+ + \sum_{j=1}^n \left(\log_2 |a_{ij}| \right)^+ \right] + \sum_{j=1}^n \left(\log_2 |c_j| \right)^+$$

- For network flow problems, the size is measured in terms of the number of nodes and arcs in the graph and the largest arc weight
- How to measure efficiency of an algorithm ?
 - The time requirements of # of operations as a function of the problem size
 - Time complexity measured using big "O" notation
 - A function h(n) = O(g(n)) (read as h(n) equals "big oh" of g(n)) iff ∃ constants c, $n_0 > 0$ such that $|h(n)| \le c/g(n)/$, $\forall n > n_0$

Polynomial versus Exponential Complexity

- Polynomial versus exponential complexity
 - An algorithm has polynomial time complexity if h(n) = O(p(n)) for some polynomial function
 - Crude Examples: O(n), $O(n^2)$, $O(n^3)$, ...
 - Some algorithms have exponential time complexity

 Examples: O(2ⁿ), O(3ⁿ), etc.
- Significance of polynomial vs. exponential complexity
 - Time complexity versus problem size (1 *ns/op*)

Camilarita	Problem size n			
Complexity	10	20	30	40
n	10 ⁻⁸	2.10-8	3.10 ⁻⁸	4.10 ⁻⁸
n^2	10 ⁻⁷	4.10 ⁻⁷	9.10 ⁻⁷	16.10 ⁻⁷
<i>n</i> ³	10-6	8.10-6	27.10-6	64.10-6
2^n	10 ⁻⁶	10 ⁻³	1.07	18.3 min
3 ⁿ	6×10 ⁻⁵	3.48	2.37 days	385.5 years

- Last two rows are inherently intractable
- NP-hard; must go for suboptimal heuristics
- Certain problems, although intractable, are optimally solvable in practice (e.g., knapsack for as many as 10,000 variables)

• Vector – Matrix Notation

$$\underline{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \text{ a column vector}$$

- $x_i \in R; x_i \in [-\infty, \infty] \Rightarrow \underline{x} \in R^n$
- $\underline{x} \in \mathbb{Z}^n$ for integers
- $x_i \in \{0, 1\}$ for binary
- $A = [a_{ij}]$ an $m \times n$ matrix $\in \mathbb{R}^{mn}$
- $A^T = [a_{ji}]$ an $n \times m$ matrix $\in \mathbb{R}^{nm}$
- $m = n \Rightarrow A$ is a square matrix
- A square $n \times n$ matrix is symmetric if $a_{ij} = a_{ji}$

• Diagonal matrix:
$$A = \begin{bmatrix} 2 & 4 \\ 4 & 11 \end{bmatrix}$$
 symmetric
$$d_1 = \begin{bmatrix} d_1 & 0 \\ d_2 & \\ 0 & d_n \end{bmatrix} = Diag(d_1, d_2, \dots, d_n)$$

UCONN

Matrix-vector notation

- Identity matrix: $I_n = Diag(1, 1, ..., 1)$
- A matrix is PD if $\underline{x}^T A \underline{x} > 0$, $\forall \underline{x} \neq \underline{0}$
- A matrix is PSD if $\underline{x}^T A \underline{x} \ge 0$, $\forall \underline{x} \neq \underline{0}$
- Note: $\underline{x}^T A \underline{x} = \underline{x}^T A^T \underline{x} \Rightarrow \underline{x}^T A \underline{x} = \underline{x}^T [(A + A^T)/2] \underline{x}$ $\left(\frac{A + A^T}{2}\right)$ is called the *symmetrized* part of A
- If A is skew symmetric, $A^T = -A \Rightarrow \underline{x}^T A \underline{x} = 0 \forall \underline{x}$

•
$$A = Diag(d_i) \Rightarrow \underline{x}^T A \underline{x} = \sum_{i=1}^n d_i x_i^2$$

- Vector \underline{x} is an $n \times 1$ matrix
- $\underline{x}^T \underline{y} = \text{inner} (\text{dot, scalar}) \text{ product} = \sum_{i=1}^n x_i y_i \text{ (a scalar)}$

$$\begin{bmatrix} x_1 & x_2 & \cdots & x_{1n} \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix}$$

• Know (*n*=3 case):

$$\begin{aligned} \left\|\underline{x} - \underline{y}\right\|^2 &= (x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2 \\ &= (x_1^2 + x_2^2 + x_3^2) + (y_1^2 + y_2^2 + y_3^2) - 2(x_1y_1 + x_2y_2 + x_3y_3) \end{aligned}$$

Also know:

$$\left\|\underline{x} - \underline{y}\right\|^{2} = \left(\underline{x}^{T} \underline{x}\right) + \left(\underline{y}^{T} \underline{y}\right) - 2\sqrt{\left(\underline{x}^{T} \underline{x}\right)\left(\underline{y}^{T} \underline{y}\right)}\cos\theta$$
$$\Rightarrow \cos\theta = \frac{\underline{x}^{T} \underline{y}}{\sqrt{\left(\underline{x}^{T} \underline{x}\right)\left(\underline{y}^{T} \underline{y}\right)}} = \frac{\underline{x}^{T} \underline{y}}{\left\|\underline{x}\|_{2}\left\|\underline{y}\|_{2}}$$

$$\begin{bmatrix} \frac{x}{1} & \frac{y}{2} \\ 2 & 1 \end{bmatrix} \Rightarrow \frac{4}{5} = \cos\theta = \cos^{-1} 0.8 \approx 36.9^{\circ}$$

• $\theta = 90 \Rightarrow \underline{x}$ and \underline{y} are perpendicular to each other

$$\Rightarrow$$
 ORTHOGONAL $\Rightarrow \underline{x}^T \underline{y} = 0$, e.g.,

- Vector norms
 - Norms generalize the concept of absolute value of a real number to vectors (and matrices) (measure of "SIZE" of a vector (and matrix))
 - $||\underline{x}||_p = \text{Holder or } p\text{-norm} = [|x_1|^p + |x_2|^p + \dots + |x_n|^p]^{1/p} = \left[\sum_{i=1}^n |x_i|^p\right]^{1/p} \sim \text{``size''}$
 - Most important: $\begin{cases} p=1 \Rightarrow \|\underline{x}\|_{1} = \sum_{i=1}^{n} |x_{i}| \\ p=2 \Rightarrow \|\underline{x}\|_{2} = \left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1/2} \text{ (RSS)} \\ p=\infty \Rightarrow \|\underline{x}\|_{\infty} = \max_{i} |x_{i}| \end{cases}$
 - All norms convey approximately the same information
 - Only thing is some are more convenient to use than others

Matrix-vector product

- <u>x</u> approx. to <u>x</u> ⇒ absolute error ||<u>x</u> <u>x</u>̂||
 Relative error ||<u>x</u> <u>x</u>̂||/||<u>x</u>||
 ∞-norm ⇒ # of correct significant digits in <u>x</u>̂
 Relative error = 10^{-p} ⇒ p significant digits of accuracy
- Matrix-vector product

$$A\underline{x} = \begin{bmatrix} 2 & 4 & 5 \\ 1 & 2 & 6 \\ 3 & 1 & 2 \\ 4 & 5 & 6 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 2 \\ 1 \\ 3 \\ 4 \end{bmatrix} x_1 + \begin{bmatrix} 4 \\ 2 \\ 1 \\ 5 \end{bmatrix} x_2 + \begin{bmatrix} 5 \\ 6 \\ 2 \\ 6 \end{bmatrix} x_3$$

 $\Rightarrow A\underline{x} = \sum_{i=1}^{n} \underline{a}_{i} x_{i} ; A\underline{x} \Rightarrow \text{linear combinations of columns of } A$ $\Rightarrow A\underline{x} : \mathbb{R}^{n} \to \mathbb{R}^{m} \text{ transformation from an } n\text{-dimensional space to an}$ m-dimensional space

- Characterization of subspaces associated with a matrix *A*
 - A subspace is what you get by taking **all** linear combinations of *n* vectors
 - $\circ~~\mathbf{Q}$: Can we talk about the dimension of a subspace? Yes!
 - Q: Can we characterize the subspace such that it is representable by a finite minimal set of vectors ⇒ "basis of a subspace," yes!

Independence and rank of a matrix

- Suppose we have a set of vectors $\underline{a}_1, \underline{a}_2, \dots, \underline{a}_r$ $\{a_1, a_2, \dots, a_r\}$ are <u>dependent</u> iff \exists scalars x_1, x_2, \dots, x_r s.t. $\sum_{i=1}^r \underline{a}_i x_i = \underline{0}$ and at least one $x_i \neq 0$ they are <u>independent</u> if $\sum_{i=1}^r \underline{a}_i x_i = \underline{0} \implies x_i = 0$ $\implies \nexists x_i \neq 0$ such that $\sum_{i=1}^r \underline{a}_i x_i = \underline{0}$
- Rank of a matrix

 $\operatorname{rank}(A) = \# \text{ of linearly independent columns} \\ = \# \text{ of linearly independent rows} \\ = \operatorname{rank}(A^T) \\ = \operatorname{dim}[\operatorname{range}(A)] \le \min(m, n) \\ \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & -1 \end{bmatrix} \Rightarrow \text{ indep. columns = indep. rows = rank = 2} \\ \hline \operatorname{Row 1+ Row 2=Row 3} \\ \operatorname{Column 1 + Column 2 = - Column 3} \end{bmatrix}$

Linear subspaces associated with a matrix

- Linear spaces associated with $A\underline{x} = \underline{b}$
 - range(A) = $R(A) = \{ \underline{y} \in R^m | \underline{y} = \sum_{i=1}^n \underline{a}_i x_i \text{ for vectors } \underline{x} \in R^n \}$ = column space of A
 - $\dim(R(A)) = r$, rank of (A)
 - $A\underline{x} = \underline{b}$ has a solution if \underline{b} can be expressed as a linear combination of the columns of $A \Longrightarrow \underline{b} \in R(A)$
 - Null space of $A = N(A) = \{ \underline{x} \in \mathbb{R}^n | A\underline{x} = \underline{0} \}$ \implies also called kernel of A or ker (A)
 - Note that $\underline{x} = [000]^T$ always satisfies $A\underline{x} = \underline{0}$
 - Key: $\dim(N(A)) = n r = n \operatorname{rank}(A)$
 - If rank(*A*) = *n*, then $A\underline{x} = \underline{0} \Rightarrow \underline{x} = \underline{0} \Rightarrow N(A)$ is the origin
 - $R(A^T) = \{\underline{z} \in \mathbb{R}^n | A^T \underline{y} = \underline{z}, \forall \underline{y} \in \mathbb{R}^m \}$

 \Rightarrow For a solution to exist, <u>z</u> should be in the column space of A^T or row space of A

•
$$N(A^T) = \{ \underline{y} \in \mathbb{R}^m | A^T \underline{y} = \underline{0} \} = \text{null space of } A^T$$

column spacenull space of A $A \underline{x} = \underline{b}$ (m)R(A)(n)N(A) $A^T \underline{y} = \underline{z}$ $(n)R(A^T)$ $(m)N(A^T)$ row space of Anull space of A^T

• KEY:

$$\circ \dim[R(A^T)] + \dim[N(A)] = r + n - r = n$$

 $\circ \dim[R(A)] + \dim[N(A^T)] = r + m - r = m$

 \circ rank of A = rank of $A^T = r$

○ Linearly ind. col. of A = linearly ind. rows of A

Example:

$$A^{T} \underline{y} = \begin{bmatrix} 1 & 0 & 1 \\ -1 & 1 & 0 \\ 0 & -1 & -1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} = \underline{0} \Rightarrow \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} \in N(A^{T}) \qquad \Rightarrow \begin{bmatrix} 1 & -1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & -1 \end{bmatrix} \text{ are linearly independent,}$$
$$\begin{bmatrix} 1 \\ 1 \\ 1 \\ -1 \end{bmatrix} \in N(A^{T})$$
$$ndep, col of A^{T} = indep. Rows of A = indep, col of A = indep. Rows of A^{T}$$

UCONN

Geometric insight

- In general, when rank(A) = r < n, then dim(N(A)) = n r
 - Suppose we have $\underline{x}_r \Rightarrow A\underline{x}_r = \underline{b}$
 - Then all $\underline{x} = \underline{x}_r + \underline{x}_n$ are also solutions to $A\underline{x} = \underline{b}$
 - \Rightarrow infinite # of solutions

Hyperplanes model equality constraints

- Can we give a geometric meaning to all this? Yes!
 - Consider a single equation $\underline{a}^T \underline{x} = b$ (a scalar)
 - $\circ \underline{a} \underline{b} / \underline{a}^T \underline{a}$ is a solution to \underline{x}
 - Since $\underline{x}_n \in N(\underline{a}^T)$, we have $\underline{a}^T \underline{x} = 0$ and dim $(N(\underline{a}^T)) = n 1$
 - But, what is $\underline{a}^T \underline{x}_n = 0 \Rightarrow$ it is a hyperplane passing through the origin
 - $\underline{a}^T \underline{x} = b \Rightarrow$ it is a hyperplane at a distance *b* from the origin
 - So, $H = \{\underline{x} \in \mathbb{R}^n \mid \underline{a}^T \underline{x} = b\}$ is a hyperplane
 - dim(*H*)=n-1 since we can find n-1 independent vectors that are orthogonal to <u>a</u>
 - Or alternately, $H = \{\underline{x}_n \in N(\underline{a}^T) \mid \underline{a}^T(\underline{x}_r + \underline{x}_n) = b\}$

Half spaces model inequality constraints

- If we have *m* equations in $A\underline{x} = \underline{b}$, each equation is a hyperplane
- Then $\{\underline{x} \in \mathbb{R}^n | A\underline{x} = \underline{b}\}$ is the intersection of *m* hyperplanes and this subspace has dimension equal to (n m)
- Note: intersection of *n* nonparallel hyperplanes in \mathbb{R}^n is a point $\underline{x} = A^{-1}\underline{b} \Rightarrow$ solution to $A\underline{x} = \underline{b}$
- For every hyperplane $H = \{\underline{x} \mid \underline{a}^T \underline{x} = b\}$, we can define negative and positive closed and open half spaces

closed	open		
$H_{c+} = \{\underline{a}^T \underline{x} \ge b\}$	$H_{o+} = \{\underline{a}^T \underline{x} > b\}$		
$H_{c-} = \{\underline{a}^T \underline{x} \le b\}$	$H_{o-} = \{\underline{a}^T \underline{x} < b\}$		

- Half spaces model inequality constraints
- Example: $x_1 + x_2 \ge 1$

Partitioning and transformations

- Partitioned matrices
 - Horizontal partition . . . useful in developing revised simplex method

$$A\underline{x} = \begin{bmatrix} B & N \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = Bx_1 + Nx_2$$

Horizontal and vertical partition

$$\begin{bmatrix} A_1 & A_2 \\ A_3 & A_4 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} A_1 x_1 + A_2 x_2 \\ A_3 x_1 + A_4 x_2 \end{bmatrix}$$

- Elementary transformations
 - Column *j* of $A = \underline{a}_j = A\underline{e}_j$; $\underline{e}_j = j^{th}$ unit vector with 1 in the j^{th} component and 0, elsewhere
 - Row *i* of $A = \underline{e}_i^T A \Rightarrow$ element $a_{ij} = \underline{e}_i^T A \underline{e}_j$
 - $A \underline{e}_j \underline{e}_j^T = \underline{a}_j \underline{e}_j^T = [\underline{0}, \underline{0}, \dots, \underline{a}_j, \dots, \underline{0}] \Rightarrow j^{th}$ column is \underline{a}_j and the rest are zero vectors

Deleting and inserting columns

$$I + A\underline{e}_{j}\underline{e}_{j}^{T} = I + \underline{a}_{j}\underline{e}_{j}^{T} = \begin{bmatrix} 1 & 0 & a_{1j} & 0 \\ 0 & 1 & a_{2j} & \vdots \\ \vdots & \cdots & 1 + a_{jj} & \vdots \\ 0 & \cdots & a_{mj} & 1 \end{bmatrix}$$

Suppose we have an *n×n* matrix *A* and we want to delete the *jth* column of *A* and insert a new column <u>*b*</u> in its place

$$A_{new} = A - A\underline{e}_{j}\underline{e}_{j}^{T} + \underline{b}\underline{e}_{j}^{T}$$
$$= A\left[I - \underline{e}_{j}\underline{e}_{j}^{T} + A^{-1}\underline{b}\underline{e}_{j}^{T}\right]$$
$$= A\left[\begin{array}{ccc}1 & 0 & \uparrow & 0\\0 & 1 & \vdots & \vdots\\\vdots & \cdots & A^{-1}\underline{b} & \vdots\\0 & \cdots & \downarrow & 1\end{array}\right]$$

Sherman-Morrison-Woodbury formula:

$$\overline{A} = A + \underline{a}\underline{b}^{T}$$
$$\overline{A}^{-1} = A^{-1} - \frac{A^{-1}\underline{a}\underline{b}^{T}A^{-1}}{1 + \underline{b}^{T}A^{-1}\underline{a}}$$

Modern: LU and QR decomposition

Application:

$$A_{new} = A[I + (\underline{\alpha} - \underline{e}_j)\underline{e}_j^T]; \underline{\alpha} = A^{-1}\underline{b}$$
$$A_{new}^{-1} = [I - \frac{(\underline{\alpha} - \underline{e}_j)\underline{e}_j^T}{\alpha_j}]A^{-1} = EA^{-1}$$

"Product Form of the Inverse (PFI)"

UCONN

Special matrices

Block diagonal – useful in modeling large loosely-connected systems

 $\circ \text{ Orthogonal} \Rightarrow Q^{-1} = Q^T$

 $\blacklozenge \ \underline{q}_i{}^T\underline{q}_j = 0, \forall i \neq j, \ \underline{q}_j{}^T\underline{q}_j = 1$

- Very useful in solving linear systems and in solving LP via revised simplex method
- Lower triangular

o Upper triangular

- Solution of $A\underline{x} = \underline{b}$ when *A* is square and has full rank
 - LU decomposition \Rightarrow write A = LU
 - Solve $Ly = \underline{b}$ via Forward Elimination
 - \circ Solve $U\underline{x} = \underline{y}$ via **Backward Substitution**
 - QR decomposition $\Rightarrow A = QR$ where *R* is upper triangular

• Solve $R\underline{x} = Q^T \underline{b}$ via **Backward Substitution**

• In Lecture 3, we will discuss how to update *L* and *U* (or Q and R) when the matrix is modified by removing a column and inserting a new one in its place when we talk about basis updates

• A set $\Omega \in \mathbb{R}^n$ is convex if for any two points x_1 and x_2 in the set Ω , the line segment joining x_1 and x_2 is also in Ω

• A convex set is one whose boundaries do not bulge inward or do not have indentations

Examples of convex sets

- Examples:
 - A hyperplane $\underline{a}^T \underline{x} = b$ is a convex set
 - A closed half space

$$\circ H_{c+} = \{ \underline{x} \mid a^T \underline{x} \ge b \}$$

- $\circ H_{c_{-}} = \{ \underline{x} \mid a^T \underline{x} \leq b \}$
- $\cap \Omega_i$ is convex
- $\cup \Omega_i$ need not be convex

- Sums and differences of convex sets are convex
- Expansions or contractions of convex sets are convex

Empty set is convex

Convex cone and convex combination

- Useful results:
 - Intersection of hyperplanes is convex
 - Intersection of halfspaces is convex

◦ **e.g.**, $x_1 + x_2 \le 1$; $x_1 \ge 0$, $x_2 \ge 0$

- Set of intersection of *m* closed halfspaces is called a **convex polytope** \Rightarrow set of solutions to $A\underline{x} \leq \underline{b}$ or $A\underline{x} \geq \underline{b}$ is a convex polytope
- A bounded polytope is called a **polyhedron**
- **Convex cone:** $\underline{x} \in \operatorname{cone} \Rightarrow \lambda \underline{x} \in \operatorname{cone} \forall \lambda \ge 0$
- **Convex combination:** given a set of points $\underline{x}_1, \underline{x}_2, \ldots, \underline{x}_k, \underline{x} = \alpha_1 \underline{x}_1 + \alpha_2 \underline{x}_2 + \ldots + \alpha_k \underline{x}_k$ such that $\alpha_1 + \alpha_2 + \ldots + \alpha_k = 1, \alpha_i \ge 0$ is termed the convex combination of $\underline{x}_1, \underline{x}_2, \ldots, \underline{x}_k$
- A point \underline{x} in a convex set Ω is an extreme point (corner) if there are no two points $x_1, x_2 \in \Omega$ such that $\underline{x} = \alpha \underline{x}_1 + (1 \alpha) \underline{x}_2$ for any $0 < \alpha < 1$

Convex hull and convex polyhedron

• A closed convex hull *C* is a convex set such that every point in *C* is a convex combination of its extreme points, i.e.,

$$\underline{x} = \sum_{i=1}^{k} \alpha_i \underline{x}_i$$

- In particular, a convex polyhedron can be thought of as:
 - The intersection of a finite number of closed half spaces
 - (or) as the convex hull of its extreme points
- Convex polyhedrons play an important role in LP
 - We will see that we need to look at only a finite number of extreme points
 - This is what makes LP lie on the border of continuous and discrete optimization problems

- Consider $f(\underline{x}): \Omega \to R$, $f(\underline{x})$ a scalar function
- $f(\underline{x})$ is a convex function on the convex set Ω if for any two points $\underline{x}_1, \underline{x}_2 \in \Omega$

$$f(\alpha \underline{x}_{1}+(1-\alpha)\underline{x}_{2}) \leq \alpha f(\underline{x}_{1})+(1-\alpha)f(\underline{x}_{2}); 0 \leq \alpha \leq 1$$

- A convex function bends up
- A line segment (chord, secant) between any two points never lies below the graph
- Linear interpolation between any two points \underline{x}_1 and \underline{x}_2 overestimates the function

Examples of convex functions

- Concave if $-f(\underline{x})$ is convex
- Examples:

- **Proof:** $f(\underline{x}) = \underline{c}^T \underline{x}$, a linear function is convex
- $f(\alpha \underline{c}^T \underline{x}_1 + (1 \alpha) \underline{c}^T \underline{x}_2) = \underline{c}^T \underline{x}$ holds with equality
- $f(\underline{x}) = \underline{x}^T Q \underline{x}$ is convex if Q is PD . . . HW problem

Properties of convex functions

• In general,

$$f(\alpha_1 \underline{x}_1 + \alpha_2 \underline{x}_2 + \dots + \alpha_n \underline{x}_n) = f\left(\sum_i \alpha_i \underline{x}_i\right) \le \sum_i \alpha_i f(\underline{x}_i)$$

where $\sum_i \alpha_i = 1$; $\alpha_i \ge 0$... **Jensen's inequality**

Linear extrapolation underestimates the function

• Hessian, the matrix of second partials, $H = \begin{bmatrix} \frac{\partial^2 f}{\partial x_i \partial x_j} \end{bmatrix}$ is a positive semi-definite (PSD) or positive definite (PD) matrix

Level sets of convex functions

- Sum of convex functions is convex
- The epigraph or level set $\Omega_{\mu} = \{ \underline{x} / f(\underline{x}) \le \mu \}$ is convex, $\forall \mu$, if $f(\underline{x})$ is convex
 - <u>Proof</u>:

If $\underline{x}_1, \underline{x}_2 \in \Omega_{\mu} \Rightarrow f(\underline{x}_1), f(\underline{x}_2) \leq \mu$ Consider $\underline{x} = \alpha \underline{x}_1 + (1 - \alpha) \underline{x}_2$ $f(\alpha \underline{x}_1 + (1 - \alpha) \underline{x}_2) \leq \alpha f(\underline{x}_1) + (1 - \alpha) f(\underline{x}_2) \leq \mu$ $\Rightarrow \underline{x} \in \Omega_{\mu}$

Convex programming problem (CPP)

• min $f(\underline{x}) \dots f$ is convex, such that $A\underline{x} = \underline{b}, g_i(\underline{x}) \ge 0$;

 $i = 1, 2, ..., p; g_i \text{ concave} \Rightarrow \neg g_i \text{ convex}$

- $\Omega_i = \{\underline{x} / g_i(\underline{x}) \le 0\} = \{\underline{x} / g_i(\underline{x}) \ge 0\} \Rightarrow \text{convex}$
- $\Omega_{\mu} = \{ \underline{x} / f(\underline{x}) \le \mu \}$ is convex
- $A\underline{x} = \underline{b} \Rightarrow$ intersection of hyperplanes \Rightarrow convex set $\Omega_A \Rightarrow$ $\Omega = \bigcap \Omega_i \bigcap \Omega_\mu \bigcap \Omega_A$ is convex
- Key property of CPP: local optimum ⇔ global optimum
- Suppose \underline{x}^* is a local minimum, but \underline{y} is a global minimum
- Consider $\underline{x} = \alpha \underline{x}^* + (1 \alpha) \underline{y} \in \Omega_{\mu}$
- Convexity $\Rightarrow f(\alpha \underline{x}^* + (1 \alpha)\underline{y}) \le \alpha f(\underline{x}^*) + (1 \alpha)f(\underline{y}) \le f(\underline{x}^*)$ $\Rightarrow x^* \text{ is not a local optimum } \Rightarrow \text{ a contradiction}$

UCONN

• Local optima must be bunched together as shown

• General LP problem is a special case of CPP

 $\min \underline{c}^{T} \underline{x}$ s.t. $\underline{a}_{i}^{T} \underline{x} = b_{i}, i \in E$ $\underline{a}_{i}^{T} \underline{x} \ge b_{i}, i \in I$ $x_{i} \ge 0, i \in P$

 \Rightarrow Local optimum and global optimum must be the <u>same</u>

- Course Objectives
- Optimization problems
 - Classification
 - Measures of complexity of algorithms
- Background on Matrix Algebra
 - Matrix-vector notation
 - Matrix-vector product
 - Linear subspaces associated with an $m \times n$ matrix A
 - LU and QR decompositions to solve $A\underline{x} = \underline{b}$, A is $n \times n$
- Convex analysis
 - Convex sets
 - Convex functions
 - Convex programming problem
- LP is a special case of convex programming problem
 - Local optimum = global optimum