
Lecture 10:
Minimum Cost Network Flows

Prof. Krishna R. Pattipati
Dept. of Electrical and Computer Engineering

University of Connecticut
Contact: krishna@engr.uconn.edu; (860) 486-2890

© K. R. Pattipati, 2001-2016

Minimum cost network flows

VUGRAPH 2

• Minimum cost network flows

 LP formulation

 Special case: shortest path problem

• Minimum cost circulation problem as a generalization

 Special cases

o Maximum flow problem

o Transportation problem

o Assignment problem

• Dual problem and optimality conditions

• Relaxation algorithms

 RELAX

 𝜖-RELAX

Minimum cost network flow problem

VUGRAPH 3

• Minimum cost network flow (MCNF) problem
 Want to send a specified amount of flow 𝑣 from 𝑠 to 𝑡 ∋ the total cost

is a minimum

 LP formulation

o aij = cost per unit flow through edge (i, j)

o xij = flow of commodity through edge (i, j)

 Special case: shortest path problem

o 𝑏𝑖𝑗 = 0, 𝑐𝑖𝑗 = 1, 𝑣 = 1

⇒ Single source-single destination shortest path problem

,

s.t. 0, ,

 0

 0

 0

mi

n

j k ikji

j k skjs

j k tkjt

ij ij ij

ij iji j

x x i s t

x x v

x x

c

a

b x

x

v

Minimum cost circulation problem (MCCP)

VUGRAPH 4

 What if a commodity can enter or exit at any node?

• Minimum cost circulation problem

 Can view max. flow, min. cost and shortest path problems as special cases of the so-
called min. cost circulation problem

 LP formulation of minimum cost circulation problem

 Special case 1: maximum flow problem

o Add return arc (t , s) ∋ bts = 0, cts = and ats = -1

o For all other arcs, set 𝑎𝑖𝑗 = 0

o LP formulation

,

s.t. ,

 0

 0

in

m

ji ik

ij iji j

ij k

ii

ij ij ij

x x s i

a x

s

b x c

,

s.t. 0,

 0

min ij iji j

ji ikj k

ij ij ij

x x i

b

a x

x c

min or max

s.t. 0

 0

j

ts st

i ikj k

ij ij ij

x x

x x

b x c

Recall flow is skew
symmetric

MCCP and special cases

VUGRAPH 5

 Special case 2: minimum cost network flow (MCNF) problem

o Add a return arc t,s ∋ bts= 0, cts= v, & ats= 0

 Special case 3: general MCNF problem

o add two nodes a and b ∋

 arc a,i is added if si >0

 arc i,b is added if si < 0

o Alternately, can add a single node ‘0’ with zero supply, with arcs (i,0) if si > 0
and an arc (0,i) if si < 0. The artificial arcs have cost M >(n-1)C/2 where C is
the largest absolute arc cost in the original network (see Bertsekas, section 5.2)

 Special case 4: feasible circulation problem

⇒ 𝑎𝑖𝑗 = 0, ∀𝑖, 𝑗

 Special case 5: shortest path problem

o Add a return arc t,s with bts =cts= 1

o For all other arcs, bij=0, cij=∞ and aij is given

o To find shortest paths to all nodes from s, add return arcs i,s , i ≠ s
∋bis=cis= 1

MCCP and Transportation Problem

VUGRAPH 6

 Special case 6: transportation or Hitchcock-Koopman’s problem

1

1

min

s.t. ; 1, ,
special case of generalized min. cost flow problem

; 1, ,

0 ;

ij iji j

n

ij ij

m

ij ii

ij j i

x a

x c i m

x b j n

x b c

s t
c3

∞

b3

c2

c1 b1

b2

cm
bn

∞
∞

∞

∞
∞
∞

∞

∞
∞
∞

∞

∞ ∞
∞
∞

Super-source Super-sink

Dual of the minimum cost circulation problem

VUGRAPH 7

 Special case 7: assignment problem (or) weighted bipartite
matching problem ... lecture 8

o LP formulation

• Dual of the minimum cost circulation problem

min

s.t. 1

1

0 1

ij iji j

ijj

iji

ij

x a

x

x

x

min

s.t. 0

ij iji j

ij ikj k

ij ij

ij ij

Primal

x a

x x

x c

x b

max

s.t.

0

0

ij ij ij iji j i j

iji j ij ij

ij

ij

Dual

b c

a

⇒

Optimality – KILTER conditions

VUGRAPH 8

• Optimality conditions or complementary slackness or
Karush-Kuhn-Tucker or KILTER conditions

• Alternatively,

 λi = (–price of node i) or (–Lagrange multiplier) or dual variable

 0

 0

 0

ij i j ij ij ij

ij ij ij

ij ij ij

x µ a

x b

µ x c

0 & 0 known as

 0 KILTER

conditions0 & 0

ij ij ij ij j i ij

ij ij ij ij ij j i ij

ij ij ij ij j i ij

x b µ a

b x c µ a

x c µ a

aij

xij

in Kilter

λj − λi

out-of-Kilter

cij
bij

Kilter diagram

MCNF Algorithms

VUGRAPH 9

• Primal simplex methods

 Non-zero feasible flow pattern (bfs) is a spanning tree

 Pivoting: how to go from one bfs to another, while reducing primal cost?

o Add an edge to the tree that creates a negative cost cycle

o Remove the edge from the current tree to get back the spanning tree (next bfs)

 Software: RNET: The Rutgers Minimum Cost Network Flow Subroutines
(Grigoriadis, 1980); NETFLO: Algorithms for Network Programming (Kennington &
Helgason, 1980)

• Primal-dual methods

 Start with (x,p) pair satisfying CS conditions and maintains the CS property
throughout

 Out-of-kilter methods: shortest augmenting path methods

 RELAX: Relaxation Algorithm for network flows (Bertsekas & Tseng, 1985-1991)

 𝜖-RELAX ~ Auction-like algorithm (Bertsekas and Eckstein, 1988)

• For problems with lower and upper bound constraints, also need to keep track of arcs with flows at
lower bound and arcs with flows at upper bound (see Bertsekas’ book, section 5.3)

Primal-dual algorithms for MCNF

VUGRAPH 10

• Most successful methods employ primal-dual concepts

 RELAX

 𝜖-RELAX

o RELAX is at least 4 − 10 times faster than out-of-Kilter

o 𝝐-RELAX is parallelizable

• RELAX and 𝜖-RELAX algorithms are based on primal-dual concepts

 Assume: ai j , bi j & ci j are integers

o No loss in generality, since can scale rational numbers so that
they are integers

o If irrational, scale numbers to machine precision

 If pi = −λi, then Kilter conditions are of the form:

aij

xijcij
bij

λj − λi

aij

xijcij
bij

pi − pj

Lagrangian function

VUGRAPH 11

• Primal-dual from classical Lagrangian framework
 Let us consider the dual formulation from the classical duality

framework

o Define Lagrange multipliers pi for each of the n conservation of
flow constraints

o But, leave the lower and upper bound constraints on xij alone ⇒
partial dualization

o Lagrangian function

() (), ,
min , (

s.t. , ,

 price of node price of node

 = tension of edge (

()) ()

()

ij j i ij ij ij iji j E i j E

ij ij ij

ij i j

L x p a p p x a t x

b x c i j E

t p p

i j

i

,)j

Dual of MCNF

VUGRAPH 12

o Dual problem is:

o Observations

L(x, p) and q(p) are separable in network edges

()

() (

,

), ,

max

no constraint on or 0

where

 min

()

,)

min

mi

s.t.

() (

(

n ()

where

) n

)

)

(m

(

i

ij ij ij

ij ij ij

ij ij ij

ij ij ij

p

i i

b x c

b x c ij j i iji j E

b x c ij ij ij ij iji j E i j E

ij ij ij ij ij
b x c

q p

p p

q p L x p

a p p x

a t x q t

q t a t x

*

if

() any { , } if

if

ij ij ij

ij ij ij ij ij ij ij

ij ij ij

b a t

x t x b c a t

c a t

 For a given pi, pj (or equivalently, tij), qij (tij) is easily evaluated via
scalar minimization

 For a given pi, pj (or equivalently, tij = pi − pj), we say that arc (i, j) is:

 Inactive if tij < aij (or) pi < pj + aij

 Balanced if tij = aij (or) pi = pj + aij

 Active if tij > aij (or) pi > pj + aij

Inactive, Balanaced and Active arcs

VUGRAPH 13

if
()

if

()

()

ij ij ij ij ij i j ij

ij ij

ij ij ij ij ij i j ij

a t b t a p p a
q t

a t c t a p p a

tij = pi − pj

xij

cost of arc (i, j)

bij cij

1

aij

qij(tij)

Inactive

slope: –bij

tij=aij

balanced

slope: –cij

Active

ҧ𝐼

• What do CS conditions mean in terms of inactive, balanced & active arcs?

 Inactive ⇒ 𝑥𝑖𝑗
∗ = 𝑏𝑖𝑗

 Balanced ⇒ 𝑏𝑖𝑗 ≤ x∗ ≤ 𝑐𝑖𝑗

 Active ⇒ 𝑥𝑖𝑗
∗ = 𝑐𝑖𝑗

⇒ and, of course, all conservation constraints are satisfied

• Deficit of a node i: export – import

 At optimality: di = 0, ∀i ∈ V

 Also, note that σ𝑖∈𝑉 𝑑𝑖 = 0, ∀ flow

• Suppose we change pi only

 what does q(p) look like?

Arc status and CS conditions

VUGRAPH 14

(,) (,)

outflow inflow

, i ij ji

i j E j i E

d x x i V

pi

breakpoint
q(p) • Breakpoints correspond to points where one or more

edges incident to node i are balanced
• Only at breakpoints we can set xij in the range (bij, cij)

• In the linear portion:

xij = cij if (i, j) is active

xij =bij if (i, j) is inactive

Idea: Adjust flows and prices to reduce deficits

VUGRAPH 15

• Idea: suppose have a flow-price pair (x, p) ∋
 Complementary slackness conditions are satisfied, but

 Conservation of flow constraints need not be met

• If conservation constraints are satisfied ⇒ di = 0

⇒ Solution (x, p) is optimal, since simultaneous primal and dual feasibility
implies optimality

• Otherwise, ∃ nodes such that di > 0 for some nodes & di < 0 for some
other nodes, since Σi di = 0

• So, we need to work towards di = 0, ∀i ∈ V
 If di < 0 (⇒ export < import ... U.S.A.), we can do the following:

o Look at balanced unsaturated outgoing edges, i.e., those edges with xij < cij

(or unsaturated edges)

 Increase the flow on outgoing edges

 Equivalently, look at balanced incoming edges, i.e., those with xji > bji, i.e., edges
with flow > minimal flow,

o Decrease the flow along these edges

 Note:

o We perform increase and decrease operations ∋ capacity constraints are not
violated

o pi did not change

 min , ,

 ,

{ }

ij ij i j ij ij

i i j j

x x d d c x

d d d d

 min , ,

 ,

{ }

ji ji i j ji ji

i i j j

x x d d x b

d d d d

Flow adjustment for surplus nodes

VUGRAPH 16

 If increase and decrease operations make di = 0, we are done

 Otherwise, the result is:

o Active - all outgoing balanced edges at their maximum flow, cij

o Inactive - all incoming balanced edges at their minimum flow, bji

 If new di is still < 0, we must make an inactive outgoing edge balanced

o This we can do by increasing pi until the next breakpoint, i.e., until another
edge becomes balanced

o Repeat the whole process again (up iteration, equivalently, tij ↑ or price adjustment step)

 If di > 0 (⇒ import < export or have surplus ... China, Japan, Mexico), we can do the
opposite

⇒ Increase imports & decrease exports

o Look at inactive & balanced incoming edges (j, i)

o Those edges with xji < cji, and

o Look at active & balanced outgoing edges (i, j) ⇒ those edges with xij > bij

o Find by how much we can increase imports & decrease exports by operating each
incoming edge at its capacity (upper bound) & outgoing edge at its lower bound ... let us
denote this by ∆C

 If ∆C > 0

o Reduce price of pi ∋ one of the active outgoing edges become balanced or an inactive
incoming edge becomes balanced

o Set flows on all incoming balanced arcs (including the new one) at maximum & set flows
on all outgoing balanced arcs (including the new one) at minimum

Jamming problem

VUGRAPH 17

 Otherwise if any adjacent node j has dj < 0

⇒ coordinate ascent methods (or one variable at a time adjustment)!!

• Problem with the approach – jamming

 Because q(p) is sum of non-differentiable concave functions

 Can’t change p1 or p2 to improve

 Use more complicated directions ⇒ RELAX

 Use 𝜖-relaxation ⇒ 𝜖-relaxation algorithms

o Move, even if dual cost decreases, but only by a

small ± 𝜖 beyond maximum in a direction

o Similar to auction for the assignment problem

 mi { }()

flow ad

n

justme

, ,if , is an incoming arc :

 ,

 min , ,if , is an outgoing arc :

 ,

nt

{ }()

ji ji i j ji ji

i i j j

ij ij i j ij ij

i i j j

x x d d c xj i

d d d d

x x d d x bi j

d d d d

Contours of
constant q(p)

.

p1

p2

Basic ideas of RELAX

VUGRAPH 18

• Choose a starting flow - price pair (x, p) satisfying complementary
slackness

 Example: p = 0 and xij = bij for aij > 0

• Repeat until ∄ a node with positive deficit

 Obtain a new (x, p) by carrying out

o Single node price adjustment (or)

o Single node flow adjustment (or)

o Multiple node price (or) flow adjustment

• Single node price adjustment
 We will describe an algorithm for di > 0 ... think of Japan, China or

Mexico

 The algorithm for di < 0 is similar ... think of U.S.A.

 Suppose have a node with di < 0

o You must have one as long as di ≠ 0, ∀i

o Recall that Σi di = 0 ∀ flow

 Q: what is the maximum price change I can have at node i w/o
violating the complementary slackness conditions?

 di > 0 ⇒ import <export ... China, Japan, Mexico

 We can reduce di by increasing flows on incoming edges & reducing flows on outgoing edges

 Need outgoing edges (i, j) and incoming edges (j, i) ∋

 Let

⇒ So, for an outgoing edge (i, j) ∈ Bi
+ ∪ {active}, we can reduce pi to at most (pj + aij)

⇒ For an incoming edge (j, i) ∈ Bi
− ∪ {inactive}, we can reduce pi to at most (pj − aji) without

violating C-S conditions

• Formally

• If pinew < pi OK ... what if pinew = pi?

 We can still do it provided imports can be increased & exports decreased ∋ the residual capacity
of all balanced incoming and outgoing edges are such that:

⇒ All incoming balanced edges at their capacity & all outgoing balanced edges at their minimum
can’t resolve deficit

Formalization of RELAX

VUGRAPH 19

ij ij i ij j

ji ji j i ji

x b p a p

x c p p a

: (,) is balanced,

: (,) is balanced,

i ij ij

i ji ji

B j i j x b

B j j i x c

() ()

max : , , ; () (:) () (,) ,

i ij B active j B inactive

inew j ij ij ij j ji ji jip p a i j E x b p a i Ej x c

i i

i ji ji ij ij i

j B j B

c x x b d

• Single node price adjustment algorithm
 Start with a node with di > 0

 Compute pinew & set pi = pinew

 If δi ≤ di then

o di = di − δi

o xji = cji, ∀j ∈ Bi
−

o xij = bij, ∀j ∈ Bi
+

 Else terminate

• What does it all mean?
 Consider

 Suppose want to reduce pi

⇒ p = p − αei; ei = ith unit vector

 What is the directional derivative?

Single node price adjustment algorithm

VUGRAPH 20

(,) (,)

() () ()ij ij ij

i j E

i

i j E

jp pq p q t q

• When inactive edges are at LB, active edges at UB, incoming balanced edges at UB,
and outgoing balanced edges at LB

• Proof: use the facts that active ⇒ xij = cij , inactive ⇒ xij = bij

• So, we can improve q(p) only if di − δi ≥ 0 ... if di = δi, dual value will be same, but
deficit dinew = 0

• We have used essentially this idea for the assignment problem

• We can extend this idea to multiple directions to avoid jamming

Directional derivative

VUGRAPH 21

0
(,)

(,)

, lim

,

if & , is balanced or inactive

, if & , is active

if & , is

() ()
()

()

0 if or

()

() ()

 inactive

if)& ,(i

()

kj k ik j kj k j

i

k j E

ikj

k

ij

ij

ki

j

kj

ki

E

i

q p p q p p
C e p

r e p

k i i j

r e p k i i j

j i k i

j

k i j i

b

c

b

c i k i

(,) (,) (,) (,)

active balanced or balanced or inactive
inactive active

Outflow Inflow

s balanced or a e

)

ctiv

,(i ij ij ki ki
i j i j k i k i

C e p c b c b

() ()

i i

i ki ki ik ik i i

k B k B

d c x x b d

Single node flow adjustment

VUGRAPH 22

• Very simple

 If di > 0, reduce outgoing flows or increase incoming flows

• Single node flow adjustment algorithm

 Start with a node i having di > 0 …. surplus

 Repeat

o Choose a node j ∋ j ∈ 𝐵𝑖
− (incoming balanced edge) & dj < 0 … deficit (or)

o A node j ∋ j ∈ 𝐵𝑖
+ (outgoing balanced edge) & dj < 0

 If j ∈ Bi
−

o δ = min{−dj, di, cji − xji}

o di = di − δ

o dj = dj + δ

o xji = xji + δ

o If di = 0 terminate, else go to repeat

 Else if j ∈ Bi
+

o δ = min{−dj, di, xij − bij }

o di = di − δ

o dj = dj + δ

o xij = xij − δ

o if di = 0 terminate, else go to repeat

 Else terminate

• pi
s do not change in a single node flow adjustment step

• What can go wrong with single node price & flow adjustment procedures?

Price adjustment procedure

VUGRAPH 23

• Price adjustment

 pi → pinew & dinew = 0

⇒ Can’t work with node i

 pi → pinew & dinew > 0, but directional derivative di − δi < 0

⇒ Can’t adjust pinew ⇒ jammed

 In the latter case, we can attempt a flow adjustment
procedure

. . . then, the resulting possibilities are:

o di = 0 ⇒ can’t work with node i

o di > 0 & dj > 0, ∀ j ∈ Bi
− ∪ Bi

+

⇒ “All rich neighbors”

⇒ We are stuck and can’t move

o So, need alternate mechanisms in case when:

di > 0, dj > 0, ∀ j ∈ Bi
− ∪ Bi

+ & di − dj < 0

Directional derivative for complex price adjustments

VUGRAPH 24

• Idea: Employ more complex ascent procedures than the simple
coordinate ascent scheme

 Constructing complex ascent steps

o Suppose want to change prices at a subset S of nodes (S ≠V)

o Consider the cut separating S and V − S

o These are the incoming and outgoing edges from V − S to S and S to V − S,
respectively

o Suppose want to decrease prices at all nodes i ∈ S ⇒

o Then, the directional derivative of q(p) along v is:

o Since ∃ a one-to-one relationship between S and v

(,) (,)

, , ,()),() () (kj kj

k j E k j E

C pv v Sr C Sr p p p

if , & , is balanced or inactive

, if , & , is active

if , & , is active

if , & , is balanced or activ

0 if , or

e

,

& ()

() & ()

& ()

& ()

ij

ij

ki

ki

kj

k i i S i j

r p k i i S i j

j i i S k k i

j i j S

k j S k j V S

b j V S

S c j V S

k k

b V S

c V S i

inew
p p e p v

RELAX steps -1

VUGRAPH 25

o Again if ∆C(S, p) < 0 ⇒ can’t perform ascent step

 But can perform flow adjustment if ∃ a node j ∋ dj < 0 & j∈ S

o In fact, we can embed the single node & multiple node price/flow
adjustments into an overall algorithm as follows:

o One iteration of overall RELAX

 Inputs (x, p); outputs (x, p)new

Step 1: Choose a node i with di > 0 (a similar procedure for di < 0)

 If no such node, terminate (⇒ optimum)

 Label node i by ′O′ . . . set S = ∅

Step 2: Choose a labeled but unscanned node k (initially, k = i) . . . S = S ∪ {k}

(,) active (,) balanced (,) inactive (,) balanced
or inactive or active

(,) balanced (,) balanc

()

()

,

()

k V S k V S

j V S j V S

i V S

ij ij ki ki
i S i S

i S i S

i j i j k i k i

i ij ij ji

j V S

ji
i Si S

j S

i j j i

SC p c b b c

d b c xx

ed

RELAX steps - 2

VUGRAPH 26

Step 3: Scan the label of node k as follows:

 Give the label “k” to all unlabeled nodes m ∋ :

Bk
− = {m : (m,k) is balanced & xmk < cmk}

Bk
+ = {m : (k,m) is balanced & xmk > bmk}

 If v is the corresponding vector to S and ∆C(v, p) > 0

Go to Step 5

 Else if any of the labeled nodes m is ∋ dm < 0

Go to Step 4

 Else

Go to Step 2

Step 4: (flow augmentation step)

 A directed path p from i with di > 0 to a node m with dm < 0 has been found

 What we want to do is either increase incoming flow to i from m or reduce
outgoing flow from i to m; To do this define:

P + = {(k, n) ∈ P : (k, n) is oriented in the direction from i to m}

P − = {(k, n) ∈ P : (k, n) is oriented in the direction from m to i}

RELAX steps - 3

VUGRAPH 27

 If b kn < xkn, we can reduce outgoing flow

 If xkn < ckn, we can increase incoming flow so,

 Go to next iteration

Step 5: Let

where L is the set of labeled nodes

 Set

 Go to next iteration

Note: Need to initiate iterations with both di > 0 & di < 0

min , , : , , : , }

 if ,

 if

{ () } { ()

()

,()

i m kn kn kn kn

kn

kn

kn

d d x b k n P c x k n P

x k n P
x

x k n P

{ : ; ; , active ,
max

{ : , ; , inactive

Set

 , balanced arcs , ,

() }

()

 , balanced arcs , ,

}

k m km

k mk m

km km

km km

p p a k S m V S k m

p a p k S m V S m k

x b k S m L m V S

x c k S m L m V S

if

if

k

knew

k

p k S
p

p k V S

Illustration of RELAX - 1

VUGRAPH 28

2

1

3

4

5/2

3

1/2

4/3 3/2

2/1

0/5

2

4

1

aij/cij

initialize

2

1

3

4

0
d1=-3
p1=0

0

0 0

0

0

d2=-2
p2=0

d4=4
p4=0

d3=1
p3=0

o Select node 1: step 5: = max(-1,-5)= -1; p1 = p1 - =1; p2 = p3 = p4 =0

o Select node 1 again: step 5: x13=2; d1=-1; = max(1-5)= -4; p1 = p1 - =5; p2 = p3 = p4 =0

o Nodes 1 and 2 will give ascent direction: =-2; p1 = p1 - =7; p2 = p2 - =2; p3 = p4 =0

o Easier to see from the C equation on slide 25

o Flow augmentation along path 1-2-4: x12=1; x24=1; d1=0; d4=-3

o Nodes 1 and 2 will give ascent direction: =-2; p1 = p1 - =9; p2 = p2 - =4; p3 = p4 =0

o Flow augmentation along path (2,3,4): x23=2; x34=2; d2=0; d4=-1

o Flow augmentation along edge (3,4): x34=3; d3=0, d4=0; Done !

Performance of RELAX

VUGRAPH 29

• Practical details

 Need to initiate iterations with both di > 0 & di < 0

 Can convert problem ∋ bij = 0

o Simply use:

 Use linked lists to represent data

o [start node, end node, cap., aij + pj − pi, xij , next arc with same start node, next
arc with the same end node]

• Computational comparison

• 𝜖-relaxation algorithm

 Satisfy complementary slackness only approximately

 Essentially to avoid executing multi-node price and flow adjustments of
RELAX ⇒ well-suited for distributed implementation

(,) (,)

ˆ ˆ ˆ & min

ˆ ˆ ˆs.t. ,

ˆ0

ij ij ij ij ij ij ij iji j

ij ji ii j j i

ij ij ij

x x b c c b x a

x x s i V

x c b

Problem RELAX Out-of-Kilter RNET

Transportation 37.32 251.85 96.22

Assignment 9.31 56.89 40.37
Uncapacitated & Highly

Cap.Transportation
32.09 192.88 41.94

Large Uncap. Problems 295 2217 882

What does ε-relaxation mean?

VUGRAPH 30

pi − pj

aij + 𝜖
aij

aij − 𝜖

bij cij xij

aij

xijcij

pi − pj KILTER

bij

inactive (inactive)

balanced (balanced)

 (balanced)

active a

ij ij i j ij i j ij

ij ij i j ij i j ij

i j ij i j ij

i j ij i j ij

i j ij

x c p p a p p a

x b p p a p p a

p p a p p a

p p a p p a

p p a

CS CS

rc (active)

so, balanced arc

i j ij i j ij

j ij i j ij

p p a p p a

p a p p a

𝑥𝑖𝑗
∗ = cij

𝜖-active

t ij = pi − pj

qij (t ij)

𝜖-inactive

𝜖-balanced

aij + 𝜖

𝑥𝑖𝑗
∗ = bij

aij – 𝜖

bij ≤ xij ≤ cij

• Algorithm uses single node price and flow adjustment

• Basic result: if 𝜖 <
1
n
, (xij) is primal feasible and (x, p) satisfy 𝜖-CS

conditions, then (xij) is optimal (assuming aij, bij, & cij are integers ⇒ xij is
also integer)

• To be different, let us consider di < 0 case

 di < 0 ⇒ export < import ⇒ USA

o Increase flows on 𝜖+–balanced outgoing edges

o Decrease flows on 𝜖−–balanced incoming edges

o Increase price of node i . . . this is where 𝜖-relaxation comes in

Idea of 𝝐-Relaxation Algorithm

VUGRAPH 31

p1

p2

e

𝝐-Relaxation Algorithm

VUGRAPH 32

o Also:

 xij < cij ⇒ 𝜖-balanced + 𝜖-inactive

 xij > bij ⇒ 𝜖-balanced + 𝜖-active

 We use 𝜖+-balanced outgoing arcs ⇒ (xij < cij) & 𝜖−-balanced incoming
edges (xij > bij) . . . these are admissible arcs

𝜖+-balanced ⇒ xij < cij

𝜖−-balanced ⇒ xji > bji

 Just as in max. flow, we can construct an admissible graph

o (Residual graph) Gx ∋ ∃ an (i, j), ∀𝜖+-balanced edge (i, j) with xij < cij & a
reverse edge (j, i), ∀𝜖–-balanced edge (j, i) with xji > bji

o Store admissible graph as a forward star . . . outlist (or push list)

 Mechanization

o Suppose i is a node with di < 0

Step 1: Remove arcs from the top of the i’s push list

 If di < 0 and ∃ an edge (i, j) go to Step 2 (i.e., increase outgoing flow or
exports)

 If di < 0 and ∃ an edge (j, i) go to Step 3 (i.e., decrease incoming flow or
imports)

 If the push list is empty, go to Step 4 (price change)

 If di = 0, but an edge was found, stop

admissible arcs

Mechanization

VUGRAPH 33

Step 2: (Decrease deficit by increasing outflows)

 δ = min{−di, cij − xij}, xij = xij + δ, di = di + δ , dj = dj − δ

 (note: dj is not involved ⇒ local computation)

 If δ = cij − xij , delete (i, j) from the push list

 Go to Step 1

Step 3: (Decrease deficit by decreasing inflows)

 δ = min{−di, xji − bji}, xji = xji − δ, di = di + δ, dj = dj − δ

 If d = xji − bji, delete (i, j) from the push list

 Go to Step 1

Step 4: (Scan / price increase)

 By scanning all vertices incident to i, set

pi = min{{pj + aij + 𝜖: (i, j) ∈ E & xij < cij }∪{pj − aji + 𝜖: (j, i) ∈ E & xji > bji}}

 Construct a new push list for i, containing exactly only those incident
arcs which are admissible with the new value of pi

 Go to Step 1

Mechanization

VUGRAPH 34

 Why node prices must increase?

o When we enter Step 4 of the algorithm

 xij = cij ⇒ pi ≥ pj + aij + 𝜖

 xji = bji ⇒ pi ≥ pj − aji + 𝜖

 When Step 4 is entered

pi < min{pj + aij + 𝜖: (i, j) ∈ E, xij < cij}

pi < min{pj − aji + 𝜖: (j, i) ∈ E, xji < bji}

⇒ pi must increase in Step 4

 If set is empty ⇒ outgoing xij = cij , incoming xji = bji ⇒ infeasible since di < 0

 If dk > 0 at the beginning, pk does not change throughout . . . this is because a
node with di < 0 will continue to be part of up iterations

⇒ di ↑ 0 ↔ dk ↓

 Finite termination with complexity O(n3 log nc); c = max(i,j)∈A aij

 Extremely slow compared to RELAX on sequential computers

 Asynchronous version of the algorithm converges

o Proof similar to distributed Bellman-Ford’s version of shortest path algorithm

Summary

VUGRAPH 35

• Minimum cost network flow problem

 Special cases

 Kilter Conditions

• Best algorithms based on primal-dual concepts

 RELAX

 𝜖-RELAX, slow but parallelizable

