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Minimum cost network flows
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• Minimum cost network flows

 LP formulation

 Special case: shortest path problem

• Minimum cost circulation problem as a generalization

 Special cases

o Maximum flow problem

o Transportation problem

o Assignment problem

• Dual problem and optimality conditions

• Relaxation algorithms

 RELAX

 𝜖-RELAX



Minimum cost network flow problem
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• Minimum cost network flow (MCNF) problem
 Want to send a specified amount of flow 𝑣 from 𝑠 to 𝑡 ∋ the total cost 

is a minimum

 LP formulation

o aij = cost per unit flow through edge (i, j)

o xij = flow of commodity through edge (i, j)

 Special case: shortest path problem

o 𝑏𝑖𝑗 = 0, 𝑐𝑖𝑗 = 1, 𝑣 = 1

⇒ Single source-single destination shortest path problem
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Minimum cost circulation problem (MCCP)
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 What if a commodity can enter or exit at any node?

• Minimum cost circulation problem

 Can view max. flow, min. cost and shortest path problems as special cases of the so-
called min. cost circulation problem

 LP formulation of minimum cost circulation problem

 Special case 1: maximum flow problem

o Add return arc (t , s) ∋ bts = 0, cts =  and ats = -1

o For all other arcs, set 𝑎𝑖𝑗 = 0

o LP formulation
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MCCP and special cases
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 Special case 2: minimum cost network flow (MCNF) problem

o Add a return arc t,s ∋ bts= 0, cts= v, & ats= 0

 Special case 3: general MCNF problem

o add two nodes a and b ∋

 arc a,i is added if si >0

 arc i,b is added if si < 0

o Alternately, can add a single node ‘0’ with zero supply, with arcs (i,0) if si > 0 
and an arc (0,i) if si < 0.  The artificial arcs have cost M >(n-1)C/2 where C is 
the largest absolute arc cost in the original network (see Bertsekas, section 5.2)

 Special case 4: feasible circulation problem

⇒ 𝑎𝑖𝑗 = 0, ∀𝑖, 𝑗

 Special case 5: shortest path problem

o Add a return arc t,s with bts =cts= 1

o For all other arcs, bij=0, cij=∞ and aij is given

o To find shortest paths to all nodes from s, add return arcs i,s , i ≠ s
∋bis=cis= 1



MCCP and Transportation Problem
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 Special case 6: transportation or Hitchcock-Koopman’s problem
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Dual of the minimum cost circulation problem
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 Special case 7: assignment problem (or) weighted bipartite 
matching problem ... lecture 8

o LP formulation

• Dual of the minimum cost circulation problem
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Optimality – KILTER conditions
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• Optimality conditions or complementary slackness or 
Karush-Kuhn-Tucker or KILTER conditions

• Alternatively,

 λi = (–price of node i) or (–Lagrange multiplier) or dual variable
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MCNF Algorithms
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• Primal simplex methods 

 Non-zero feasible flow pattern (bfs) is a spanning tree

 Pivoting: how to go from one bfs to another, while reducing primal cost?

o Add an edge to the tree that creates a negative cost cycle

o Remove the edge from the current tree to get back the spanning tree (next bfs)

 Software: RNET: The Rutgers Minimum Cost Network Flow Subroutines 
(Grigoriadis, 1980); NETFLO: Algorithms for Network Programming (Kennington & 
Helgason, 1980) 

• Primal-dual methods

 Start with (x,p) pair satisfying CS conditions and maintains the CS property 
throughout

 Out-of-kilter methods: shortest augmenting path methods

 RELAX: Relaxation Algorithm for network flows (Bertsekas & Tseng, 1985-1991)

 𝜖-RELAX ~  Auction-like algorithm (Bertsekas and Eckstein, 1988)

• For problems with lower and upper bound constraints, also need to keep track of arcs with flows at 
lower bound and arcs with flows at upper bound (see Bertsekas’ book, section 5.3)



Primal-dual algorithms for MCNF
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• Most successful methods employ primal-dual concepts

 RELAX

 𝜖-RELAX

o RELAX is at least 4 − 10 times faster than out-of-Kilter

o 𝝐-RELAX is parallelizable

• RELAX and 𝜖-RELAX algorithms are based on primal-dual concepts

 Assume: ai j , bi j & ci j are integers

o No loss in generality, since can scale rational numbers so that
they are integers

o If irrational, scale numbers to machine precision

 If pi = −λi, then Kilter conditions are of the form:
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Lagrangian function

VUGRAPH 11

• Primal-dual from classical Lagrangian framework
 Let us consider the dual formulation from the classical duality 

framework

o Define Lagrange multipliers pi for each of the n conservation of 
flow constraints

o But, leave the lower and upper bound constraints on xij alone ⇒
partial dualization

o Lagrangian function
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Dual of MCNF
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o Dual problem is:

o Observations

L(x, p) and q(p) are separable in network edges
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 For a given pi, pj (or equivalently, tij), qij (tij) is easily evaluated via 
scalar minimization

 For a given pi, pj (or equivalently, tij = pi − pj ), we say that arc (i, j) is:

 Inactive if tij < aij (or)   pi  < pj + aij

 Balanced if tij = aij (or)   pi  = pj + aij

 Active if tij > aij (or)   pi  > pj + aij

Inactive, Balanaced and Active arcs
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• What do CS conditions mean in terms of inactive, balanced & active arcs?

 Inactive ⇒ 𝑥𝑖𝑗
∗ = 𝑏𝑖𝑗

 Balanced ⇒ 𝑏𝑖𝑗 ≤ x∗ ≤ 𝑐𝑖𝑗

 Active ⇒ 𝑥𝑖𝑗
∗ = 𝑐𝑖𝑗

⇒ and, of course, all conservation constraints are satisfied

• Deficit of a node i: export – import

 At optimality:  di  = 0, ∀i ∈ V

 Also, note that σ𝑖∈𝑉 𝑑𝑖 = 0, ∀ flow

• Suppose we change pi only

 what does q(p) look like?

Arc status and CS conditions
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q(p) • Breakpoints correspond to points where one or more 

edges incident to node i are balanced
• Only at breakpoints we can set xij in the range (bij, cij)

• In the linear portion:

xij = cij if (i, j) is active

xij =bij if (i, j) is inactive



Idea: Adjust flows and prices to reduce deficits
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• Idea: suppose have a flow-price pair (x, p) ∋
 Complementary slackness conditions are satisfied, but

 Conservation of flow constraints need not be met

• If conservation constraints are satisfied ⇒ di  = 0

⇒ Solution (x, p) is optimal, since simultaneous primal and dual feasibility 
implies optimality

• Otherwise, ∃ nodes such that di > 0 for some nodes & di < 0 for some 
other nodes, since Σi di = 0

• So, we need to work towards di  = 0, ∀i ∈ V
 If di < 0 (⇒ export < import ... U.S.A.), we can do the following:

o Look at balanced unsaturated outgoing edges, i.e., those edges with xij < cij

(or unsaturated edges)

 Increase the flow on outgoing edges

 Equivalently, look at balanced incoming edges, i.e., those with xji > bji, i.e., edges 
with flow > minimal flow,

o Decrease the flow along these edges

 Note:

o We perform increase and decrease operations ∋ capacity constraints are not 
violated

o pi did not change
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Flow adjustment for surplus nodes 

VUGRAPH 16

 If increase and decrease operations make di  = 0, we are done

 Otherwise, the result is:

o Active - all outgoing balanced edges at their maximum flow, cij

o Inactive - all incoming balanced edges at their minimum flow, bji

 If new di is still < 0, we must make an inactive outgoing edge balanced

o This we can do by increasing pi until the next breakpoint, i.e., until another 
edge becomes balanced

o Repeat  the whole process again (up iteration, equivalently, tij ↑ or price adjustment step)

 If di > 0 (⇒ import < export or have surplus ... China, Japan, Mexico), we can do the 
opposite

⇒ Increase imports & decrease exports

o Look at inactive & balanced incoming edges (j, i)

o Those edges with xji < cji, and

o Look at active & balanced outgoing edges (i, j) ⇒ those edges with xij > bij

o Find by how much we can increase imports & decrease exports by operating each 
incoming edge at its capacity (upper bound) & outgoing edge at its lower bound ... let us 
denote this by ∆C

 If ∆C > 0

o Reduce price of pi ∋ one of the active outgoing edges become balanced or an inactive 
incoming edge becomes balanced

o Set flows on all incoming balanced arcs (including the new one) at maximum & set flows 
on all outgoing balanced arcs (including the new one) at minimum



Jamming problem
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 Otherwise if any adjacent node j has dj < 0

⇒ coordinate ascent methods (or one variable at a time adjustment)!!

• Problem with the approach – jamming

 Because q(p) is sum of non-differentiable concave functions

 Can’t change p1 or p2 to improve

 Use more complicated directions ⇒ RELAX

 Use 𝜖-relaxation ⇒ 𝜖-relaxation algorithms

o Move, even if  dual cost decreases, but only by a

small ± 𝜖 beyond maximum in a direction

o Similar to auction for the assignment problem
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Basic ideas of RELAX
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• Choose a starting flow - price pair (x, p) satisfying complementary 
slackness

 Example: p = 0 and xij = bij for aij > 0

• Repeat until ∄ a node with positive deficit

 Obtain a new (x, p) by carrying out

o Single node price adjustment (or)

o Single node flow adjustment (or)

o Multiple node price (or) flow adjustment

• Single node price adjustment
 We will describe an algorithm for di > 0 ... think of Japan, China or 

Mexico

 The algorithm for di < 0 is similar ... think of U.S.A.

 Suppose have a node with di < 0 

o You must have one as long as di ≠ 0, ∀i

o Recall that Σi di = 0 ∀ flow

 Q: what is the maximum price change I can have at node i w/o 
violating the complementary slackness conditions?



 di > 0 ⇒ import <export ... China, Japan, Mexico

 We can reduce di by increasing flows on incoming edges & reducing flows on outgoing edges

 Need outgoing edges (i, j) and incoming edges (j, i) ∋

 Let 

⇒ So, for an outgoing edge (i, j) ∈ Bi
+ ∪ {active}, we can reduce pi to at most (pj + aij )

⇒ For an incoming edge (j, i) ∈ Bi
− ∪ {inactive}, we can reduce pi to at most (pj − aji) without 

violating C-S conditions

• Formally

• If pinew < pi OK ... what if pinew = pi?

 We can still do it provided imports can be increased & exports decreased ∋ the residual capacity 
of all balanced incoming and outgoing edges are such that:

⇒ All incoming balanced edges at their capacity & all outgoing balanced edges at their minimum 
can’t resolve deficit

Formalization of RELAX
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• Single node price adjustment algorithm
 Start with a node with di > 0

 Compute pinew & set pi  = pinew

 If δi ≤ di then

o di  = di − δi

o xji  = cji,  ∀j ∈ Bi
−

o xij = bij,  ∀j ∈ Bi
+

 Else terminate

• What does it all mean?
 Consider

 Suppose want to reduce pi

⇒ p = p − αei; ei = ith unit vector

 What is the directional derivative?

Single node price adjustment algorithm
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• When inactive edges are at LB, active edges at UB, incoming balanced edges at UB, 
and outgoing balanced edges at LB

• Proof: use the facts that active ⇒ xij  = cij , inactive ⇒ xij  = bij

• So, we can improve q(p) only if di − δi ≥ 0 ... if di  = δi, dual value will be same, but 
deficit dinew = 0

• We have used essentially this idea for the assignment problem

• We can extend this idea to multiple directions to avoid jamming

Directional derivative
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Single node flow adjustment
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• Very simple

 If di  > 0, reduce outgoing flows or increase incoming flows

• Single node flow adjustment algorithm

 Start with a node i having di > 0  …. surplus

 Repeat

o Choose a node j ∋ j ∈ 𝐵𝑖
− (incoming balanced edge) & dj < 0 … deficit (or)

o A node j ∋ j ∈ 𝐵𝑖
+ (outgoing balanced edge) & dj < 0

 If j ∈ Bi
−

o δ = min{−dj, di, cji − xji}

o di  = di − δ 

o dj = dj + δ 

o xji = xji + δ

o If di  = 0 terminate, else go to repeat

 Else if j ∈ Bi
+

o δ = min{−dj, di, xij − bij }

o di  = di − δ

o dj = dj + δ 

o xij = xij − δ

o if di  = 0 terminate, else go to repeat

 Else terminate

• pi
s do not change in a single node flow adjustment step

• What can go wrong with single node price & flow adjustment procedures?



Price adjustment procedure
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• Price adjustment

 pi → pinew & dinew = 0

⇒ Can’t work with node i

 pi  → pinew & dinew > 0, but directional derivative di − δi < 0

⇒ Can’t adjust pinew ⇒ jammed

 In  the  latter  case,  we  can  attempt  a  flow  adjustment  
procedure   

. . . then, the resulting possibilities are:

o di  = 0 ⇒ can’t work with node i

o di  > 0 & dj  > 0,  ∀ j ∈ Bi
− ∪ Bi

+

⇒ “All rich neighbors”

⇒ We are stuck and can’t move

o So, need alternate mechanisms in case when:

di  > 0,  dj > 0,  ∀ j ∈ Bi
− ∪ Bi

+  & di − dj < 0



Directional derivative for complex price adjustments
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• Idea: Employ more complex ascent procedures than the simple 
coordinate ascent scheme

 Constructing complex ascent steps

o Suppose want to change prices at a subset S of nodes (S ≠V )

o Consider the cut separating S and V − S

o These are the incoming and outgoing edges from V − S to S and S to V − S, 
respectively

o Suppose want to decrease prices at all nodes i ∈ S ⇒

o Then, the directional derivative of q(p) along v is:

o Since ∃ a one-to-one relationship between S and v
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RELAX steps -1
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o Again if ∆C(S, p) < 0 ⇒ can’t perform ascent step

 But can perform flow adjustment if ∃ a node j ∋ dj < 0 & j∈ S

o In fact, we can embed the single node & multiple node price/flow 
adjustments into an overall algorithm as follows:

o One iteration of overall RELAX

 Inputs (x, p); outputs (x, p)new

Step 1: Choose a node i with di  > 0 (a similar procedure for di  < 0)

 If no such node, terminate (⇒ optimum)

 Label node i by ′O′  . . . set S = ∅

Step 2: Choose a labeled but unscanned node k (initially, k = i) . . . S = S ∪ {k}
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RELAX steps - 2
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Step 3: Scan the label of node k as follows:

 Give the label “k” to all unlabeled nodes m ∋ :

Bk
− = {m : (m,k) is balanced & xmk < cmk}

Bk
+ = {m : (k,m) is balanced & xmk > bmk}

 If v is the corresponding vector to S and ∆C(v, p) > 0 

Go to Step 5

 Else if any of the labeled nodes m is ∋ dm < 0 

Go to Step 4

 Else

Go to Step 2

Step 4: (flow augmentation step)

 A directed path p from i with di  > 0 to a node m with dm < 0 has been found

 What we want to do is either increase incoming flow to i from m or reduce 
outgoing flow from i to m; To do this define:

P +  = {(k, n) ∈ P  :  (k, n) is oriented in the direction from i to m} 

P − = {(k, n) ∈ P  :  (k, n) is oriented in the direction from m to i}



RELAX steps - 3
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 If b kn < xkn, we can reduce outgoing flow  

 If xkn < ckn, we can increase incoming flow so,

 Go to next iteration

Step 5: Let

where L is the set of labeled nodes

 Set

 Go to next iteration

Note:  Need to initiate iterations with both di  > 0 & di  < 0
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Illustration of RELAX - 1
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o Select node 1: step 5:  = max(-1,-5)= -1; p1 = p1 -  =1; p2 = p3 = p4 =0 

o Select node 1 again: step 5: x13=2; d1=-1;  = max(1-5)= -4; p1 = p1 -  =5; p2 = p3 = p4 =0

o Nodes 1 and 2 will give ascent direction:  =-2; p1 = p1 -  =7; p2 = p2 -  =2; p3 = p4 =0

o Easier to see  from the C equation on slide 25

o Flow augmentation along path 1-2-4: x12=1; x24=1; d1=0; d4=-3

o Nodes 1 and 2 will give ascent direction:  =-2; p1 = p1 -  =9; p2 = p2 -  =4; p3 = p4 =0

o Flow augmentation along path (2,3,4): x23=2; x34=2; d2=0; d4=-1

o Flow augmentation along edge (3,4): x34=3; d3=0, d4=0; Done !



Performance of RELAX
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• Practical details

 Need to initiate iterations with both di  > 0 & di  < 0

 Can convert problem ∋ bij = 0

o Simply use:

 Use linked lists to represent data

o [start node, end node, cap., aij + pj − pi, xij , next arc with same start node, next 
arc with the same end node]

• Computational comparison

• 𝜖-relaxation algorithm

 Satisfy complementary slackness only approximately

 Essentially to avoid executing multi-node price and flow adjustments of 
RELAX ⇒ well-suited for distributed implementation

( , ) ( , )

ˆ ˆ ˆ   &   min

ˆ ˆ ˆs.t.       ,

ˆ0

ij ij ij ij ij ij ij iji j

ij ji ii j j i

ij ij ij

x x b c c b x a

x x s i V

x c b

    

   

  

 

 

Problem RELAX Out-of-Kilter RNET

Transportation 37.32 251.85 96.22

Assignment 9.31 56.89 40.37
Uncapacitated & Highly 

Cap.Transportation
32.09 192.88 41.94

Large Uncap. Problems 295 2217 882



What does ε-relaxation mean?
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• Algorithm uses single node price and flow adjustment

• Basic  result:  if 𝜖 < 
1
n
, (xij)  is  primal feasible and (x, p) satisfy 𝜖-CS 

conditions, then (xij ) is optimal (assuming aij, bij, & cij are integers ⇒ xij is 
also integer)

• To be different, let us consider di < 0 case

 di < 0 ⇒ export < import ⇒ USA

o Increase flows on 𝜖+–balanced outgoing edges

o Decrease flows on 𝜖−–balanced incoming edges

o Increase price of node i . . . this is where 𝜖-relaxation comes in

Idea of 𝝐-Relaxation Algorithm
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p1

p2

e



𝝐-Relaxation Algorithm
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o Also:

 xij < cij ⇒ 𝜖-balanced + 𝜖-inactive

 xij > bij ⇒ 𝜖-balanced + 𝜖-active

 We use 𝜖+-balanced outgoing arcs ⇒ (xij < cij) & 𝜖−-balanced incoming 
edges (xij > bij) . . . these are admissible arcs

𝜖+-balanced ⇒ xij < cij

𝜖−-balanced ⇒ xji > bji

 Just as in max. flow, we can construct an admissible graph

o (Residual graph) Gx ∋ ∃ an (i, j),  ∀𝜖+-balanced edge (i, j) with xij < cij &  a  
reverse edge (j, i), ∀𝜖–-balanced edge (j, i) with xji > bji

o Store admissible graph as a forward star . . . outlist (or push list)

 Mechanization

o Suppose i is a node with di  < 0

Step 1: Remove arcs from the top of the i’s push list

 If di  < 0 and ∃ an edge (i, j) go to Step 2 (i.e., increase outgoing flow or 
exports)

 If di  < 0 and ∃ an edge (j, i) go to Step 3 (i.e., decrease incoming flow or 
imports)

 If the push list is empty, go to Step 4 (price change) 

 If di  = 0, but an edge was found, stop

admissible arcs



Mechanization
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Step 2: (Decrease deficit by increasing outflows)

 δ = min{−di, cij − xij}, xij = xij + δ, di  = di + δ , dj = dj −  δ

 (note: dj is not involved ⇒ local computation) 

 If δ = cij − xij , delete (i, j) from the push list 

 Go to Step 1

Step 3: (Decrease deficit by decreasing inflows)

 δ = min{−di, xji − bji},  xji = xji − δ,  di  = di + δ,  dj = dj − δ

 If d = xji − bji, delete (i, j) from the push list

 Go to Step 1

Step 4: (Scan / price increase)  

 By scanning all vertices incident to i, set

pi  = min{{pj + aij + 𝜖: (i, j) ∈ E & xij < cij }∪{pj − aji + 𝜖: (j, i) ∈ E & xji > bji}}

 Construct a new push list for i, containing exactly only those incident 
arcs which are admissible with the new value of pi

 Go to Step 1



Mechanization
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 Why node prices must increase?

o When we enter Step 4 of the algorithm

 xij = cij ⇒ pi  ≥ pj + aij + 𝜖

 xji = bji ⇒ pi  ≥ pj − aji + 𝜖

 When Step 4 is entered

pi  < min{pj + aij + 𝜖: (i, j) ∈ E, xij < cij}

pi  < min{pj − aji + 𝜖: (j, i) ∈ E, xji < bji}

⇒ pi must increase in Step 4

 If set is empty ⇒ outgoing xij = cij , incoming xji = bji ⇒ infeasible since di  < 0

 If dk > 0 at the beginning, pk does not change throughout . . . this is because a 
node with di < 0 will continue to be part of up iterations

⇒ di ↑ 0 ↔ dk ↓

 Finite termination with complexity O(n3 log nc); c = max(i,j)∈A aij

 Extremely slow compared to RELAX on sequential computers

 Asynchronous version of the algorithm converges

o Proof similar to distributed Bellman-Ford’s version of shortest path algorithm



Summary
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• Minimum cost network flow problem

 Special cases

 Kilter Conditions

• Best algorithms based on primal-dual concepts

 RELAX 

 𝜖-RELAX, slow but parallelizable


