Lecture 10:
¥ Minimum Cost Network Flows

Prof. Krishna R. Pattipati
Dept. of Electrical and Computer Engineering

University of Connecticut
Contact: krishna@engr.uconn.edu; (860) 486-2890

© K. R. Pattipati, 2001-2016

@ Minimum cost network flows

e Minimum cost network flows
= [P formulation

= Special case: shortest path problem

« Minimum cost circulation problem as a generalization

= Special cases
o Maximum flow problem
o Transportation problem

o Assignment problem
 Dual problem and optimality conditions

 Relaxation algorithms
= RELAX
= e-RELAX

UCONN

@ Minimum cost network flow problem

e Minimum cost network flow (MCNF) problem
= Want to send a specified amount of flow v from s to t 3 the total cost
is a minimum
= LP formulation
o ajj = cost per unit flow through edge (i, j)
o Xjj = flow of commodity through edge (i, j)

min a;x;

s.t, —Z X +Z x =0, Vizst
_Z,XJS“LZ X —v=0
—ijjt+zkxtk+v:0
OSbijSXijSCij

= Special case: shortest path problem
ob;=0,c;,=Lv=1
= Single source-single destination shortest path problem

UCONN

@ Minimum cost circulation problem (MCCP)

= What if a commodity can enter or exit at any node?
min) aXx;
Sto=D X+, % =5,Vi
Zi 5=0
0< bij < X; <
* Minimum cost circulation problem

= Can view max. flow, min. cost and shortest path problems as special cases of the so-
called min. cost circulation problem

= LP formulation of minimum cost circulation problem
min} aXx;

st =) X+, %=0, Vi

= Special case 1: maximum flow problem
o Add return arc (t,s)3 b, =0, c,=xand aq,, = -1
o For all other arcs, set a;; = 0
o LP formulation

Recall flow is skew
min - X, Or max X, symmetric

s.t. —Z,-in +> % =0

0< bij <X <C

UCONN

@ MCCP and special cases

= Special case 2: minimum cost network flow (MCNF) problem
o Add a return arc(t,s) 3 b,=0, c,=v, & a,= 0
Special case 3: general MCNF problem

o add two nodes ¢ and b 3
% arc (a,i) is added if 5,>0
% arc (i,b) is added if 5, < 0
o Alternately, can add a single node ‘0’ with zero supply, with arcs (i,0) if s,> 0

and an arc (0,i) if s5;,< 0. The artificial arcs have cost M >(n-1)C/2 where C is
the largest absolute arc cost in the original network (see Bertsekas, section 5.2)

Special case 4: feasible circulation problem
= a; = 0,Vi,j
Special case 5: shortest path problem
o Add a return arc(z,s) with b, =c, = 1
o For all other arcs, b,=0, ;= and a; is given
o To find shortest paths to all nodes from s, add return arcs (i,s), i # s
3b, =c,= 1

UCONN

@ MCCP and Transportation Problem

= Special case 6: transportation or Hitchcock-Koopman’s problem

sty x <c;
Z‘:l J special case of generalized min. cost flow problem
Zinllxiisbi’ J=1...n
0<x;; Y b =>c

UCONN

@ Dual of the minimum cost circulation problem

= Special case 7: assignment problem (or) weighted bipartite
matching problem ... lecture 8

o LP formulation
min) Z,— X;i &

st), %=1
2. %=1

0<x; <1

 Dual of the minimum cost circulation problem

Primal Dual
min > xa max) > BB =), Cu
St % =2, %=0] = St—A +4; + B — ty <ay

—X; = —C; B =20

X; > b ;=0

UCONN

@ Optimality — KILTER conditions

« Optimality conditions or complementary slackness or
Karush-Kuhn-Tucker or KILTER conditions

X; >0 :>—2,,+ﬂ,j+,8ij—uij:aij
By >0 =X :bij

H; >0 > X; =C;

 Alternatively,
X; =b; =, =0& B, 20= 1, — 4 <a, | known as
b, <x; <¢; =W, =4;=0=>4,-4 =3q; ; KILTER
A== conditions

X =C=>p6;=0& ;20>

= A = (—price of node i) or (—Lagrange multiplier) or dual variable

3

A
2= i

out-of-Kilter

L in Kilter

aij T

A 4

1
bij Cij Xij

Kilter diagram

UCONN

¥% MCNF Algorithms

* Primal simplex methods
= Non-zero feasible flow pattern (bfs) is a spanning tree*
= Pivoting: how to go from one bfs to another, while reducing primal cost?
o Add an edge to the tree that creates a negative cost cycle

o Remove the edge from the current tree to get back the spanning tree (next bfs)

= Software: RNET: The Rutgers Minimum Cost Network Flow Subroutines
(Grigoriadis, 1980); NETFLO: Algorithms for Network Programming (Kennington &
Helgason, 1980)

 Primal-dual methods

= Start with (x,p) pair satisfying CS conditions and maintains the CS property
throughout

= Qut-of-kilter methods: shortest augmenting path methods
= RELAX: Relaxation Algorithm for network flows (Bertsekas & Tseng, 1985-1991)

» ¢-RELAX ~ Auction-like algorithm (Bertsekas and Eckstein, 1988)

» For problems with lower and upper bound constraints, also need to keep track of arcs with flows at
lower bound and arcs with flows at upper bound (see Bertsekas’ book, section 5.3)

UCONN

@ Primal-dual algorithms for MCNF

* Most successful methods employ primal-dual concepts
= RELAX
= ¢-RELAX
o RELAX is at least 4 — 10 times faster than out-of-Kilter
o €-RELAX is parallelizable

« RELAX and e-RELAX algorithms are based on primal-dual concepts

= Assume: g;,

o No loss in generality, since can scale rational numbers so that
they are integers

bj; & ¢;; are integers

o Ifirrational, scale numbers to machine precision

» If p; = —/;, then Kilter conditions are of the form:

A A

ij—ii Pi — B

aij T aij T

A\ 4
A 4

UCONN

@ Lagrangian function

 Primal-dual from classical Lagrangian framework
= Let us consider the dual formulation from the classical duality
framework

o Define Lagrange multipliers p; for each of the n conservation of
flow constraints

o But, leave the lower and upper bound constraints on x;; alone =
partial dualization

o Lagrangian function

MinL(X, p) =2 e (@ + Py = PX =20 (B — 1),
s.t. b, <x;<¢;,V(i, J)eE

ij?

L =P — P;
= price of node i — price of node j
= tension of edge (i, j)

UCONN

7

UCONN

Dual of MCNF

o Dual problem is:

max, q(p)
s.t. no constrainton p,= p,>or <0
where

q(p)=min, _, _. L(x, p)
- Z(i,j)eE minbijﬁxijﬁcij (aij + pJ - pi)xij

- Z(i,j)eE mlnbijﬁxijﬁcij (aij _tij)Xij = Z(i,j)eE Qij (tij)

where
qij (tij) = bﬁg}(jgcij (aij _tij) Xij
bij if a; >t
= x;(t;) =qany x; e{b, . c;} ifa; =t
Ci if a; <t;

o Observations
“* L(x, p) and g(p) are separable in network edges

7

UCONN

Inactive, Balanaced and Active arcs

% For a given p;, p; (or equivalently, t), gij (t;) is easily evaluated via
scalar minimization

0 (t)= (a; —tjb; ift,<a;= p;<p; +3;
Ui (aij —tij)cij if iza,=>p2p;+y

A A

i ti) cost of arc (i, j)

balanced || |

. ’/ —> L =pi— P ‘ ‘
k———Inactive Active — bj; Cij
slope: —¢;;

% For a given p;, pj (or equivalently, t; = pi— pj), we say that arc (i, j) is:
> Inactive if tj < a; (or) pi <pj+ ajj
> Balanced if tjj = aj; (or) pi = pj+ ajj
> Active if tj > a;; (or) pi > pj+ ajj

\ 4

Y2 Arc status and CS conditions

What do CS conditions mean in terms of inactive, balanced & active arcs?

= Inactive = xj; = by;

= Balanced = b;; <x* <c;;
. .
" Active = x;; = ¢j;
= and, of course, all conservation constraints are satisfied

Deficit of a node i: export — import
di= > X- > X; VieV
Si,j)eE) Sj,i)eE)

v

v -
outflow inflow

= At optimality: di=0,VieV

= Also, note that }};c, d; = 0, V flow
Suppose we change p; only

» what does q(p) look like?

a(p) : « Breakpoints correspond to points where one or more
breakpoint . . :
edges incident to node i are balanced
* Only at breakpoints we can set x;; in the range (b;;, c;))
* In the linear portion:

x;; = C;; if (i, J) is active

xij =by; if (i, j) is inactive

v

P

UCONN

¥2 Idea: Adjust flows and prices to reduce deficits

 Idea: suppose have a flow-price pair (X, p) 3
= Complementary slackness conditions are satisfied, but
= Conservation of flow constraints need not be met
* If conservation constraints are satisfied = di =0
= Solution (X, p) is optimal, since simultaneous primal and dual feasibility
implies optimality

« Otherwise, 3 nodes such that d; > 0 for some nodes & d; < 0 for some
other nodes, since X, di = 0

« So, we need to work towards d; =0, Vi € V
= If dj<0 (= export <import ... U.S.A.), we can do the following:

o Look at balanced unsaturated outgoing edges, i.e., those edges with x; < ¢;

(or unsaturated edges) g

% Increase the flow on outgoing edges %= *i+MiM=d;.d;,¢, =X}
d.=d. +0, d —d -0

= Equivalently, look at balanced incoming edges, i.e., those w1th X;; > bj;
with flow > minimal flow, 5
o Decrease the flow along these edges ;= X; —min{-d;,d;, x; —b;}
= Note: d=d+5, d=d,-6

J

i 1.€., edges

o We perform increase and decrease operations 3 capacity constraints are not
violated

o p did not change
UCONN

@ Flow adjustment for surplus nodes

= Ifincrease and decrease operations make d; = 0, we are done
» QOtherwise, the result is:
o Active - all outgoing balanced edges at their maximum flow, ¢j;
o Inactive - all incoming balanced edges at their minimum flow, b;;
= If new dis still < 0, we must make an inactive outgoing edge balanced

o This we can do by increasing piuntil the next breakpoint, i.e., until another
edge becomes balanced

o Repeat the whole process again (up iteration, equivalently, t;; 1 or price adjustment step)

= If di> 0 (= import < export or have surplus ... China, Japan, Mexico), we can do the
opposite

= Increase imports & decrease exports

o Look at inactive & balanced incoming edges (], i)

o Those edges with x;i < ¢ji, and

o Look at active & balanced outgoing edges (i, j) = those edges with x;; > b;;

O

Find by how much we can increase imports & decrease exports by operating each
incoming edge at its capacity (upper bound) & outgoing edge at its lower bound ... let us
denote this by AC

= IfAC>0

o Reduce price of pi 3 one of the active outgoing edges become balanced or an inactive
incoming edge becomes balanced

o Set flows on all incoming balanced arcs (including the new one) at maximum & set flows
on all outgoing balanced arcs (including the new one) at minimum

UCONN

@ Jamming problem

= Otherwise if any adjacent node j has d, <0

o

if (j,i) is an incoming arc: X;i = X;i +Min{d;, —d;, C;; =X}
| d=d -5 d=d +6
flow adjustment 5
if (i, j) is an outgoing arc: X = %; —mMin{d;, —d;, X; —b;}
d=d -5 d=d+6

= coordinate ascent methods (or one variable at a time adjustment)!!
» Problem with the approach — jamming

= Because q(p) is sum of non-differentiable concave functions

= Can’t change p; or p;to improve .

P2
= Use more complicated directions = RELAX K
= Use e-relaxation = e-relaxation algorithms LD} | frContours of
. constant q(p)
o Move, even if dual cost decreases, but only by a e
small + € beyond maximum in a direction > Py

o Similar to auction for the assignment problem

UCONN

@ Basic ideas of RELAX

« Choose a starting flow - price pair (X, p) satisfying complementary
slackness

u Example: p= 0 and Xij = bij for ajj = 0
« Repeat until A a node with positive deficit
= Obtain a new (X, p) by carrying out
o Single node price adjustment (or)

o Single node flow adjustment (or)
o Multiple node price (or) flow adjustment

» Single node price adjustment

= We will describe an algorithm for d; > 0 ... think of Japan, China or
Mexico

» The algorithm for d; < 0 is similar ... think of U.S.A.

= Suppose have a node with d; < 0

o You must have one as long as d; # 0, Vi
o Recall that £, d, = 0 V flow

" (Q: what is the maximum price change I can have at node i w/o
violating the complementary slackness conditions?

UCONN

@ Formalization of RELLAX

= d; >0 = import <export ... China, Japan, Mexico
= We can reduce d; by increasing flows on incoming edges & reducing flows on outgoing edges
= Need outgoing edges (i, j) and incoming edges (j, i) 3 X; >b; = p,=2q; + p;
X; <C; = p;<p+3;
" Let B :{j (i, j) is balanced, x; > by }

B ={j:(j.i) is balanced, x;; <c; }

] Jl

= So, for an outgoing edge (i, j) € B;" U {active}, we can reduce pito at most (p; + a;;)

= For an incoming edge (j, i) € B;” U {inactive}, we can reduce pito at most (p; — a;;) without
violating C-S conditions

« Formally

jeB;"U (active) jeBi U (inactive)

= Pipew = Max (pj+aij):(iij)EE1X|J>b,J,(pJ_aJI) (J |)EE,XJI>C

- If Pinew < Pi OK... what if Pinew = pi?

»= We can still do it provided imports can be increased & exports decreased 3 the residual capacity
of all balanced incoming and outgoing edges are such that:

3=3 (6 x)+ X (3=

jeBi jeB’
= All incoming balanced edges at their capacity & all outgoing balanced edges at their minimum
can’t resolve deficit

UCONN

@ Single node price adjustment algorithm

» Single node price adjustment algorithm
» Start with a node with di> 0
= Compute p;..,, & set Pi = Pinew
= If §; <djthen
O di - di— 5i
o Xji = Gji, Vj (S Bi_
o Xjj = bij, Vj (S Bi+
= Else terminate

« What does it all mean?
= Consider

q(p) = Z q; (t;) = Z g; (P — ;)

(i,))eE (i,])eE

= Suppose want to reduce p;
= p=p—ag; &= ith unit vector
= What is the directional derivative?

UCONN

Y2 Directional derivative
_[ag(p—as,—p))—-ay(p. - p))]
ACEe.p)= S |
(e p) (k%;Ea'Lno ~

= Z i (Qi’E)

(k. i)<E
0 ifk=iorj=i
b, ifk=i1&(i,])is balanced or inactive
hi&,p)=4 ¢; Ifk=Ii&(,])isactive
~|-b, ifj=i&(k,i)is inactive
—C,; Ifj=1&(k,i)is balanced or active

=AC(e;, p)=D. ¢+ D, bi— D ci— D by

(.5 (i.J) (k.i) (ki)

active balanced or balanced or inactive
inactive active
Outflow Inflow

« When inactive edges are at LB, active edges at UB, incoming balanced edges at UB,
and outgoing balanced edges at LB

= di - Z (Cki _in)_ Z (Xik _bik) = di _5i
keB; keB;
* Proof: use the facts that active = X = ¢j;, inactive = X = bjj
* So, we can improve g(p) only if di— d; >0 ... if di = ¢;, dual value will be same, but
defiCIt dinew = 0
« We have used essentially this idea for the assignment problem
» We can extend this idea to multiple directions to avoid jamming

UCONN

@ Single node flow adjustment

« Very simple

» Ifdi >0, reduce outgoing flows or increase incoming flows
« Single node flow adjustment algorithm
Start with a node i having di> 0 surplus

Repeat
o Chooseanodej3je€ B; (incoming balanced edge) & dj <0 ... deficit (or)
o Anodej>3je€ B; (outgoing balanced edge) & dj <0
Ifje B
o 0= min{—dj, di, Cji — in}
o di=di—o
o) dj = dj +0
o Xji = Xjit 0
o Ifd; =0 terminate, else go to repeat
Elseif j € B;*

o 0= min{—dj, di, Xjj— bij}
@) di = di—5

o} dj = dj +0

O Xjj =Xij—5

O

if di = 0 terminate, else go to repeat

Else terminate

« p;* do not change in a single node flow adjustment step

« What can go wrong with single node price & flow adjustment procedures?
UCONN

@ Price adjustment procedure

* Price adjustment
. pi — pinew & dinew =0
= Can’t work with node i
" Di — Pinew & dinew > 0, but directional derivative di—d; <0
= Can’t adjust pinew = jammed

= In the latter case, we can attempt a flow adjustment
procedure

.. . then, the resulting possibilities are:
o di =0 = can’t work with node i
0di>0&d;>0, VjeEB UB/
= “All rich neighbors”
= We are stuck and can’t move
o So, need alternate mechanisms in case when:
di>0,dj>0, VjeB UB"&di—dj<0

UCONN

Directional derivative for complex price adjustments

» Idea: Employ more complex ascent procedures than the simple
coordinate ascent scheme

= Constructing complex ascent steps
o Suppose want to change prices at a subset S of nodes (S #V)
o Consider the cut separating S and V — S

o These are the incoming and outgoing edges from V—-Sto Sand StoV — S,
respectively

o Suppose want to decrease prices at allnodesi€S= p =p-a) e =p+av
o Then, the directional derivative of g(p) along v is:
AC(v, p) = Z (v, p) = Z i (S, p) =AC(S, p)
(k,j)eE (k,j)eE

o Since 3 a one-to-one relationship between S and v

0 if k,jeSork,jeV -S

b. ifk=1,ieS & jeV -S&(i,)) is balanced or inactive
i (S, p) =4¢; ifk=1,ieS&jeV-S&(i,])is active

~|-b, ifj=iieS&keV-S&(K,i)is active

ifj=1,jeS &k eV -S &(k,i) is balanced or active

UCONN

7

UCONN

RELAX steps -1

AC(S,p)= D ¢+ D, b— > bi— > ¢

i

ieS ieS keV-S keV-S

jeV-S jeV-S ieS ieS
(i, j) active (i, j) balanced (k,i) inactive (k,i) balanced

or inactive or active

=20 2 0y-b)— 2L (ci—x)

ieS ieS ieV-S
jev-S§ jes
(i,]) balanced (j,i) balanced

o Again if AC(S, p) < 0 = can’t perform ascent step

% But can perform flow adjustment if 3 anodej3dj<0&je S

o In fact, we can embed the single node & multiple node price/flow

adjustments into an overall algorithm as follows:

o One iteration of overall RELAX

s Inputs (x, p); outputs (X, P)new

Step 1: Choose a node i with d; > 0 (a similar procedure for d; < 0)
% If no such node, terminate (= optimum)

< Label nodeiby O ...setS=0

Step 2: Choose a labeled but unscanned node k (initially, k =1i)...S=S U {k}

@ RELAX steps - 2

Step 3: Scan the label of node k as follows:
*»» Give the label “k” to all unlabeled nodes m 3 :
B, ={m: (mKk)is balanced & x_, <c,.}

B,*={m: (km) is balanced & x_, > b .}
% Ifvis the corresponding vector to S and AC(v, p) >0

Go to Step 5

% Else if any of the labeled nodes mis3d, <0
Go to Step 4

% Else
Go to Step 2

Step 4: (flow augmentation step)
% A directed path p from i with d; > 0 to a node m with d,, < 0 has been found

% What we want to do is either increase incoming flow to i from m or reduce
outgoing flow from i to m; To do this define:

P*={(k,n)€P : (k n)isoriented in the direction from i to m}

P-={(k,n) € P : (k, n)is oriented in the direction from m to i}

UCONN

@ RELAX steps - 3

% If b, <Xk, we can reduce outgoing flow

% If Xin < Cxn, we can increase incoming flow so,

6 =min {d, ~d, {x, ~by,: (k1) € P3Gy % 1 (k) < P}

X, —0 If (k,n)eP*
:>an = . -
X,+0 If (k,n)eP

++ Go to next iteration

Step 5: Let 5—max{{pk_pm_akm 'k eS;meV =S; (k,m) active}, }
{p.+a,—p, keSS, meV-S; (mKk) inactive}
Set
X =Dy, Vbalanced arcs3keS, melL, meV -S
X = Ci» VDalanced arcssk e S, me L, meV =S

where L is the set of labeled nodes

= Set (p -5 ifkeS
Ploes =1 ifk eV —S
+»» Go to next iteration

Note: Need to initiate iterations with both d; >0& d; <0

UCONN

o Select node 1: step 5: & = max(-1,-5)= -1; p,=p,-8=1; p, =p,=p, =0

o Select node 1 again: step 5: X,,=2; d,=-1; 6 = max(1-5)= -4; p, =p, - 8 =5; D, =p,=p,=0
o Nodes 1 and 2 will give ascent direction: 6 =-2; p, =p, -8 =7; p, =p. -0 =2; p, =p, =0
o Easier to see 5 from the AC equation on slide 25
o Flow augmentation along path 1-2-4: x,,=1; x,,=1; d,=0; d =-3
o Nodes 1 and 2 will give ascent direction: 6 =-2; p, =p,-8=9; p, =p,-8=4; p,=p, =0
o Flow augmentation along path (2,3,4): x,,=2; x,,=2; d,=0; d =-1

o Flow augmentation along edge (3,4): x,,=3; d,=0, d,=0; Done!
UCONN

V2 Performance of RELAX

» Practical details
= Need to initiate iterations with both di >0 & di <0
= Can convert problem 3 b;; =0
o Simply use:
%;=x%;—b; & € =c;—b, = min Zizj %,
s.t. Z(i'j)xij —Z(mxji =§, VieV

: : 0<Xx. <c.—h

= Use linked lists to represent data UL

o [start node, end node, cap., aj; + pj — pi, Xij, next arc with same start node, next
arc with the same end node]

« Computational comparison

Problem RELAX | Out-of-Kilter RNET
Transportation 37.32 251.85 96.22
Assignment 9.31 56.89 40.37
Uncapacitated & Highly
Cap. Transportation 32.09 192.88 41.94
Large Uncap. Problems 295 2217 882

 e-relaxation algorithm

= Satisfy complementary slackness only approximately

= Essentially to avoid executing multi-node price and flow adjustments of

RELAX = well-suited for distributed implementation
UCONN

@ What does e-relaxation mean?

UCONN

Pi — Pj KILTER ‘
aij T
bij C;j 'Xij
v
CS

X <Ci=> PPty
X; >bu:> P2 p; +3;
inactive p; < p; +a;

balanced p; < p; +a;

activearc = p,> p; +a,

8¢ 0 6009

PP A
aij+a€f 77777
ay 2)
b >
1] CIJ XIJ
v
e—CS

pi<p;+a; +e
P> p;+a; +e

P, < p; +a; —€ (e—inactive)
;= p; +a; —€ (¢ —balanced)
p = p; +a; +¢ (¢" —balanced)

p, > p; +@; +¢ (e—active)

so, e—balancedarc = p;+a; —e<p, < p; +q; +e

A

a;j (tij)

e-inactive

Xij = e-balanced
> t” =pi pJ
aij* € / N
hj <Xij <Gj Xij = Cij
e-active

@ Idea of e-Relaxation Algorithm

« Algorithm uses single node price and flow adjustment

&

« Basic result: ife < % (xij) is primal feasible and (x, p) satisfy e-CS

P

conditions, then (x;;) is optimal (assuming ajj, bij, & Cj; are integers = X;j is
also integer)
* To be different, let us consider d; < 0 case
» (i <0 = export < import = USA
o Increase flows on e*—balanced outgoing edges

o Decrease flows on e “—balanced incoming edges
o Increase price of node i ... this is where e-relaxation comes in

UCONN

@ e-Relaxation Algorithm

UCONN

o Also:

X/

o0

*

X/

0’0

Xij < Cij = e-balanced + e-inactive
Xij > bij = e-balanced + e-active

= We use e*-balanced outgoing arcs = (X < ¢jj) & € -balanced incoming
edges (xij > bj) . . . these are admissible arcs

e*-balanced = X < ¢j;
e -balanced = x;i > bji

} admissible arcs

= Just as in max. flow, we can construct an admissible graph
o (Residual graph) Gx 3 F an (i, j), Ve*-balanced edge (i, j) with x; < cjj & a
reverse edge (j, i), Ve -balanced edge (j, i) with x; > b;;
o Store admissible graph as a forward star . . . outlist (or push list)
= Mechanization
o Suppose iis a node with d; <0
Step 1: Remove arcs from the top of the i’s push list

\/
0‘0

o

K/ X/
0’0 0’0

If di <0 and 3 an edge (i, j) go to Step 2 (i.e., increase outgoing flow or
exports)

% If di <0 and 3 an edge (], i) go to Step 3 (i.e., decrease incoming flow or

imports)
If the push list is empty, go to Step 4 (price change)
If di = 0, but an edge was found, stop

7

UCONN

Mechanization

Step 2: (Decrease deficit by increasing outflows)

% 0= min{—di, Cij — Xij}, Xij = Xij t 0, di=di+ 9, dj = dj— 0
(note: d; is not involved = local computation)

If 0 = cij— X;j, delete (i, j) from the push list

» Go to Step 1

K/ K/
0’0 0’0)

*

L)

)

Step 3: (Decrease deficit by decreasing inflows)
% o =min{-d;, X;i— bji}, Xji =Xi—d, di=di+9, dj=dj—o
% If d = x;— bji, delete (i, j) from the push list
s GotoStepl

Step 4: (Scan / price increase)

% By scanning all vertices incident to i, set
pi = min{{p; + ajj+ €: (I, J) € E & X;j < Cjj Ju{p; — aji + €: (J, I) € E & X;i > bji}}
% Construct a new push list for i, containing exactly only those incident
arcs which are admissible with the new value of p;

 GotoStepl

@ Mechanization

= Why node prices must increase?
o When we enter Step 4 of the algorithm

X/

* Xj=Cj=>pizpjtajte
¢ Xi=hi=>pi=pj—ajte
% When Step 4 is entered
pi < min{p; + ajj+ €: (i, J) € E, x;j < Cij}
pi < min{pj— aji + €: (j, i) € E, Xji < bji}
= pi must increase in Step 4
= If set is empty = outgoing X;j = Cjj, incoming X;i = b;; = infeasible since di <0
= If d, > 0 at the beginning, p, does not change throughout . . . this is because a
node with d; < 0 will continue to be part of up iterations
=010 di |

= Finite termination with complexity O(n3log nc); ¢ = maxjea aij
= Extremely slow compared to RELAX on sequential computers
= Asynchronous version of the algorithm converges

o Proof similar to distributed Bellman-Ford’s version of shortest path algorithm

UCONN

@ Summary

« Minimum cost network flow problem
= Special cases
» Kilter Conditions
 Best algorithms based on primal-dual concepts
= RELAX
= ¢-RELAX, slow but parallelizable

UCONN

