
Lecture 11:
Minimum Spanning Trees & Cone
Programming

Prof. Krishna R. Pattipati
Dept. of Electrical and Computer Engineering

University of Connecticut
Contact: krishna@engr.uconn.edu; (860) 486-2890

© K. R. Pattipati, 2001-2016

Outline

VUGRAPH 2

• Review of relevant theory

• Why solve the minimum spanning tree problem?

• Three basic algorithms

 Kruskal (1956)

 Jarnik-Prim-Dijkstra (1930, 1957, 1959)

 Bor’uvka (1926) … a distributed algorithm

• Application to centralized communication network design
problem

• Introduction to Cone Programming

Review of Relevant Graph Theory

VUGRAPH 3

• Undirected graph G = (V, E)

 V = set of vertices (nodes)

 E = set of edges (arcs)

• A graph G is connected if, for every node i, ∃ a path (𝑖 = 𝑣1, 𝑣2, … , 𝑣𝑙 = 𝑗) to
every node 𝑗

• Not connected ⇒ can find two sets of nodes with no edges between them

• Basic result:

 For a connected graph G, if X ∈V is a nonempty subset of V, then ∃ at least one edge (𝑖, 𝑗) ∋ 𝑖 ∈ 𝑋
and 𝑗 ∈ ത𝑋 = (𝑉 − 𝑋)

 You can think of the partition of vector set 𝑉 into 𝑋 and ത𝑋 as a cut in graph 𝐺 and the edge (𝑖, 𝑗)
crosses the cut since it is incident on 𝑋 (one end in 𝑋 the other in ത𝑋)

2

1 4

3
connected not connected

connected

(by definition)

2

1

Spanning Tree and Forest

VUGRAPH 4

• A tree is a connected graph with no cycles (loops, circuits) ⇒ 𝑛 − 1 arcs
(edges)

• A spanning tree of a connected graph G is a tree and contains
all the nodes of G

• A forest (fragment) is a node-disjoint collection of trees

 # of nodes = n

 # of edges = n – 1

 There exists a single path between every pair

 Adding an edge results in exactly one cycle

 Deleting an edge makes the tree disconnectedSpanning tree of graph G

2

1 4

3

2

1 4

3

forest: set of trees spanning tree

How to construct a Spanning tree?

VUGRAPH 5

• How to construct a spanning tree or how to check for the
connectedness of a graph?

 DFS: select an edge (𝑖, 𝑗) ∋ 𝑖 was visited most recently … stack or LIFO or recursion.
Can also get pre- and post-order traversal

 BFS: select an edge (𝑖, 𝑗) ∋ 𝑖 was visited least recently … queue

• Depth-first generation of spanning tree: call dfs(i)

∀ vertex, initialize pre-visit to null
procedure dfs(𝑖)

pre-visit(𝑖)
for (𝑖, 𝑗) ∈ out(i) do

if not visited(𝑗)
parent(𝑗) =𝑖
dfs(𝑗)

end if
end do
post-visit(𝑖)

O(m) complexity

1

2

4 5 6

3

graph dfs spanning tree
1

2

4 5 6

3
⇒

Breadth-first generation of a Spanning tree

VUGRAPH 6

• Breadth-first search generation of spanning tree: call bfs(1)

⇒ For every connected graph 𝐺 with 𝑛 nodes and 𝑚 arcs ∃ a spanning
tree, where 𝑚 ≥ 𝑛 − 1
⇒ 𝐺 is a tree iff number of edges of the tree, 𝑚 = 𝑛 − 1 and connected

∀ vertex, initialize bfs-visit to null
procedure bfs(1)

queue = {1}
while queue not empty do

𝑖 = 𝑞𝑢𝑒𝑢𝑒[1]; 𝑞𝑢𝑒𝑢𝑒 = {2, … }
bfs-visit(𝑖)
for 𝑖, 𝑗 ∈ out(𝑖) do

if not visited 𝑗 & 𝑗∉ queue
𝑞𝑢𝑒𝑢𝑒 = 𝑞𝑢𝑒𝑢𝑒 ∪ {𝑗}

end if
end do

end do

O(m) complexity

1

2

4 5 6

3

graph bfs spanning tree
1

2

4 5 6

3
⇒

1

2 4

3

⇒ need connectedness for it to be a tree

Minimal Spanning Tree (MST) Problem

VUGRAPH 7

• Given an undirected connected graph 𝑮, each of whose edges
has a real-valued cost 𝒄𝒊𝒋,find a spanning tree of the graph
whose total edge cost is minimum

• Can do for directed or undirected graphs … we will consider
undirected graphs only

• Why solve this problem?
 Arises as a sub-problem in communication network design

o Connecting terminals to a specified concentrator (switching node) via a multi-drop link

o Connecting concentrator to a central processing facility

• Want minimum cost connection subject to constraints on:

 Delay (or flow) on each link

 Reliability ⇒ alternate paths or not more than a specified number of
terminals be disconnected if a link fails

o Problem is much more involved than MST (in fact, it is NP-hard!)

 MST forms a starting point for design

 We will come back to this later

o Also useful in simplex-based network flow algorithms

 Recall for network flows, bfs is a spanning tree. See Bersekas’ book

Basic Idea of all MST Algorithms

VUGRAPH 8

• Incremental construction edge by edge via the greedy
method ⇒ do the best thing at every step

• “Smallest edge first strategy w/o forming cycles”

• Any sub-tree of a MST will be called a fragment

• Set of fragments ≡ forest

• Main result:

 Given a fragment 𝐹, let 𝑒 = (𝑖, 𝑗) be a minimum weight edge from 𝐹 where
node 𝑗 ∉ 𝐹 ⇒ 𝐹 extended by edge 𝑒 and node 𝑗 is a fragment (i.e., part of
MST)

1

2 3

7
4 5

6

e

1 8

8 4

2
5

3

69

1

2 3

7
4 5

6

7

Fragment 1

Fragment 2

Possible edge
extensions.
Minimum one is e

Proof of main result

VUGRAPH 9

 Denote by 𝑇 the MST of which 𝐹 is fragment

 If 𝑒 ∈ 𝑇, we are done; so, assume otherwise

 Then, there is a cycle formed by e and the edges of 𝑇

 Since 𝑗 ∉ 𝐹, there must be some edge 𝑒′ = (𝑖′, 𝑗) that belongs to the
cycle, to 𝑇 and to 𝐹

 Deleting (𝑖′, 𝑗) from 𝑇 and adding (𝑖, 𝑗) to 𝑇 results in a spanning
tree 𝑇′ ∋ cost of 𝑇′ ≤ cost of 𝑇

⇒ 𝑇′ is an MST

⇒ So, 𝐹 extended by 𝑒 must be part of MST

• Three Classical Algorithms

 Kruskal (1956)

 Jarnik-Prim-Dijkstra (1930, 1957, 1959)

 Bor’uvka (1926) … a distributed algorithm

Three Classical Algorithms

VUGRAPH 10

• Kruskal’s algorithm
 Start with each node as a fragment

 Successively combine two of the fragments by using the edge that has
minimum weight and when added does not result in a cycle

• Jarnik-Prim-Dijkstra
 Select an arbitrary node as a fragment

 Enlarge the fragment by successively adding a minimum weight edge

• Bor’uvka
 For every fragment, select a minimum cost edge incident to it

 Add it to the fragment and inform the fragment that lies at the other end
of this edge …. Can do it in a distributed way!

• You can think of these algorithms as edge-coloring
processes
 Blue ⇒ part of MST or accept

 Red ⇒ not part of MST or reject

Kruskal’s algorithm (forest algorithm)

VUGRAPH 11

 Sort edge weights in non-decreasing order …. Possibly heaps?

 Using the sorted list, include 𝑒 = (𝑖, 𝑗) if it does not form a cycle (color it
blue)

 If it does, discard the edge (or color it red)

 Stop when all 𝑚 = (𝑛 − 1) edges (tree) have been included or all edges
have been examined

⇒ Minimum spanning forest (set of fragmented trees)

 Crude version of Kruskal

𝑇 = ∅

while 𝑇 < 𝑛 − 1 & 𝐸 ≠ 0 do

𝑒 = smallest edge in 𝐸

𝐸 = 𝐸 − {𝑒}

if (𝑇 ∪ {𝑒}) has no cycle

𝑇 = 𝑇 ∪ {𝑒}

end if

end do

• Two hurdles:

 Sorting 𝑚 elements requires
O(m log m)

o May be too much work since
need only (𝑛 − 1) edges

o Time for heaps??

 How to test for cycles easily

o In other words, both ends of the
current edge being colored
belong to the same fragment

Resolving the two hurdles

VUGRAPH 12

• We resolve the first problem by forming a heap

 O(m) computational steps

 Finding next minimum takes O(log m) steps, assuming a binary heap

 If we do this k times, need O(k log m) steps

⇒ total = O(m + k log m) computation for sorting

• We resolve the second problem by maintaining fragments in the form
of subsets of nodes

 Add a new edge by forming union of two relevant subsets

 Check for cycle formation by invoking FIND twice to check if two vertices of the
edge belong to the same tree (subset, fragment)

• Example

1 8

8 4

2
5

3

69

1

2 3

7
4 5

6

7

• 1 2 3 4 5 6 → 1,2 3 4 5 6 {7}

→ 1,2,4 3 5 6 7 → 1,2,4 3,5 6 7

→ 1,2,4 3,5,7 6 → discard edge (3,7)

→ 1,2,4 3,5,7,6 → {1,2,4,3,5,7,6} done!!

1

2 3

7
4 5

6

Efficient storage and sorting procedures

VUGRAPH 13

 Need efficient methods for sorting fragments (subsets or subtrees)

 Need efficient UNION & FIND procedures

• We can accomplish both of these objectives by storing
fragments as rooted trees

 Nodes of the tree are elements of the fragment

 Each node 𝑖 of the tree has a parent pointer 𝑝𝑖

o Root node ቐ

no pointer
pointer to (−#of elements in the tree)∗∗
pointer to (height of the tree or rank)

 To carry out FIND(𝑖), we follow parent pointers from 𝑖 to the root of the
tree containing 𝑖 and return the root

 So to find cycle:

o If FIND(𝑖) = FIND(𝑗), we have a cycle!!

5

3

6
7

2

1

4

Efficient storage and union of fragments

VUGRAPH 14

if 𝑝𝑥 > 𝑝𝑦 then

𝑝𝑥 = 𝑝𝑥+𝑝𝑦
𝑝𝑦 = 𝑥

else
𝑝𝑦 = 𝑝𝑥+𝑝𝑦
𝑝𝑥 = 𝑦

end if

 To carry out UNION(𝑥, 𝑦), where x and y are
roots of subsets

• UNION rank

 Keep track of rank (height) of trees

 Do exactly the same as with size except that 𝑝𝑥 and 𝑝𝑦
denote ranks

• Don’t change ranks unless 𝑝𝑥 = 𝑝𝑦

⇒ make 𝑥 point to 𝑦; 𝑝𝑥 = 𝑝𝑦 + 1

• We can make FIND operation more efficient by a heuristic called path
compression

 When FIND(𝑖) is invoked, after locating root 𝑥 of the tree, make every node on
the path point to the root

⇒

1

2

3
4

5

1

2

3

4
5

 Computational complexity: O(m α(m, n))
(See Tarjan or Horwitz & Sahni for details)
where α(m, n) = inverse of Ackerman’s
function

Ackerman’s function 𝒊, 𝒋 ≥ 𝟏

VUGRAPH 15

𝐴 1, 𝑗 = 2𝑗 , ∀𝑗 ≥ 1

𝐴 𝑖, 1 = 𝐴(𝑖 − 1,2), ∀𝑖 ≥ 2

𝐴 𝑖, 𝑗 = 𝐴 𝑖 − 1, 𝐴 𝑖, 𝑗 − 1 , ∀𝑖, 𝑗 ≥ 2

𝛼 𝑚, 𝑛 = min 𝑖 ≥ 1: 𝐴 𝑖,
𝑚

𝑛
> log 𝑛

• Note that 𝐴(2,1) = 𝐴(1,2) = 4

• 𝐴(3,1) = 𝐴(2,2) = 𝐴(1, 𝐴(2,1)) = 𝐴(1,4) = 24 = 16

• 𝛼 𝑚, 𝑛 = min ∙ ≤ 3, ∀𝑛 < 216 = 65,536

• 𝐴 4,1 = 𝐴 2,16 = 2“big number” which is very large

• For all practical purposes, 𝛼(𝑚, 𝑛) ≤ 4

⇒ Computational complexity O(3m) or O(4m)

Overall Kruskal

VUGRAPH 16

set father (parent) array to −1 or rank = 0
form initial heap of 𝑚 edges
𝑒𝑑𝑔𝑒_𝑐𝑜𝑢𝑛𝑡 = 𝑡𝑟𝑒𝑒_𝑐𝑜𝑢𝑛𝑡 = 0; 𝑇 ← ∅
while (𝑡𝑟𝑒𝑒_𝑐𝑜𝑢𝑛𝑡 < 𝑛 − 1 & 𝑒𝑑𝑔𝑒_𝑐𝑜𝑢𝑛𝑡 < 𝑚) do

𝑒 = edge(𝑖, 𝑗) from top of heap
𝑒𝑑𝑔𝑒_𝑐𝑜𝑢𝑛𝑡 = 𝑒𝑑𝑔𝑒_𝑐𝑜𝑢𝑛𝑡 + 1
remove 𝑒 from heap & restore heap … delete min operation
𝑟1 = FIND(𝑖); 𝑟2 = FIND(𝑗)
if (𝑟1 ≠ 𝑟2) then

𝑇 = 𝑇 ∪ {𝑒}
𝑡𝑟𝑒𝑒_𝑐𝑜𝑢𝑛𝑡 = 𝑡𝑟𝑒𝑒_𝑐𝑜𝑢𝑛𝑡 + 1
UNION(𝑟1, 𝑟2)

end if
end do

• Function FIND(𝑖) {does path compression also}

if 𝑝𝑖 > 0
𝑝𝑖 = FIND(𝑝𝑖)

end if
return 𝑝𝑖

Jarnik-Prim-Dijkstra Single Tree Algorithm

VUGRAPH 17

• Start with a single node as a fragment and repeat the following step
𝑛 − 1 times

 “If 𝑻 is the current MST generated so far, select a minimum cost edge
incident to 𝑻 and include it in 𝑻 (or color it blue)”

• Example

1 8

8 4

2
5

3

69

1

2 3

7
4 5

6

7

1

2

1

2

4

1

2

1

2

7
4

7

1

4

2

1

2

7
4 5

7

1
1

2

1

4

2 3

1

2 3

7
4 5

7

1

4

2 3

6

1

2 3

7
4 5

6

7

⇒ ⇒ ⇒

⇒ ⇒

Jarnik-Prim-Dijkstra’s procedure

VUGRAPH 18

• Suppose 𝑇 is the MST generated so far

• Find neighbor nodes 𝑖 to 𝑇 ∋ an edge is incident to both 𝑖
and 𝑇

• With each neighbor 𝑖, associate a light blue edge (𝑘, 𝑖)
⇒ That is, a minimum-cost edge incident to 𝑖 and 𝑇

⇒ Light blue ⇒ candidates for inclusion into 𝑇

• Blue and light blue edges together form a tree spanning 𝑇
and its neighbor edges

• Coloring step
 From among these candidates, select one, say (𝑘′, 𝑖′), of minimum cost

and include it in the tree

⇒ 𝑇 → 𝑇 ∪ {𝑖′}
 Consider all edges of the form (𝑖′, 𝑗):

o If 𝑗 ∉ 𝑇 & ∄ a light blue edge of the form 𝑘, 𝑗 , color (𝑖′, 𝑗) light blue ⇒
potential candidate

o Else if 𝑗∉ 𝑇 & ∃ a light blue edge of the form 𝑘, 𝑗 & 𝑐𝑘𝑗 > 𝑐𝑖′𝑗 → mark (k, j) red
(or discard (k, j)) and mark (i’, j) light-blue (or (i’, j) is a potential candidate)

Example

VUGRAPH 19

Step 1 Step 2 Step 3 Step 4

1

2 3

7
4 5

6

1

2 3

7
4

6

1

2 3

7
4 5

6

1

2 3

7
4

• Complexity

ቑ
𝑛 − 1 inserts
𝑛 − 1 deletes and restores
max𝑚 − 𝑛 + 1 siftup operations

⇒

run time:𝑂(𝑛𝑑 log 𝑛 + 𝑚 log𝑛)

𝑑 = 2 +
𝑚

𝑛
⇒ 𝑂(𝑚 log

2+
𝑚
𝑛
𝑛)

Color this red

Heap Implementation

VUGRAPH 20

for each node i
adj_list = set of edges incident to i

blue(𝑖) =൞

undefined if 𝑖 ∉ 𝑇 ∪ {neighbor 𝑇}

light blue edge incident to 𝑖 if 𝑖 ∈ neighbor 𝑇
blue edge if 𝑖 ∈ 𝑇

cost(𝑖) = ቐ
∞ if 𝑖 ∉ 𝑇 ∪ {neighbor 𝑇}

cost of light blue edge if 𝑖 ∈ neighbor 𝑇
−∞ if 𝑖 ∈ 𝑇

for 𝑖 = 1, … , 𝑛 do
cost(𝑖) = ∞

ℎ = ∅; 𝑖 = 1
while 𝑖 ≠ 𝑛𝑢𝑙𝑙 do

cost(𝑖) = −∞
for 𝑖, 𝑗 ∈ 𝑎𝑑𝑗_𝑙𝑖𝑠𝑡(𝑖) do

if(𝑐𝑖𝑗 < cost(𝑗))
cost(𝑗) = 𝑐𝑖𝑗; blue(𝑗) = (𝑖, 𝑗)
if 𝑗∉ ℎ

insert 𝑗 into ℎ
else

siftup 𝑗
𝑖= min of heap for which original min was added

Bor’uvka’s distributed algorithm

VUGRAPH 21

• Bor’uvka’s distributed algorithm
 First assume that all edge weights 𝑐𝑖𝑗 are distinct

 Start with a set of fragments

 Each fragment determines its own minimum edge and informs the fragment that
lies at the other end

 The algorithm correctly terminates!!

• How does each fragment decide on it minimum weight arc?

 See P. Humblet, “A distributed algorithm for minimum weight directed
spanning trees,” IEEE Trans. On Comm., vol. COM-31, pp 756-762

• What can go wrong when have non-distinct costs?

⇒ Cycles

8 5

12 30

18 3 16

264

1

2 3
4

5 6

7

2

10
5

3

4

1

2 3
4

5

7

5

12

3

4

1

2 3
4

5

7

2

done!!

1

2

3
1

11

Proof and algorithm extension

VUGRAPH 22

• If all edge weights are different, have a unique MST

 Suppose non-unique ⇒ at least two MSTs, say 𝑇 and 𝑇′

 Let (𝑖,𝑗) = arg min {𝑐𝑙𝑚} and assume (𝑖,𝑗) ∊ 𝑇

 Suppose add (𝑖,𝑗) to 𝑇′

⇒ Cycle

⇒ Can throw away an arc (𝑘,𝑙) and get a new spanning tree with
less cost

⇒ 𝑇′ not optimal

⇒ contradiction

• To extend Bor’uvka’s algorithm to non-distinct weight
case, do the following:

 In the case of equal weight, break the tie in favor of an edge with a
minimum identity end node and if these nodes are the same, break
the tie in favor of an edge whose other node has a smaller identity

 In this case, we are guaranteed a unique MST

Application: communication network design

VUGRAPH 23

• We will illustrate the MST application via a simple example

• Problem w/o constraints is MST

5
4

2 3

1

𝑓𝑖𝑗 ≤ 5, ∀𝑖, 𝑗

𝑐𝑖𝑗
𝑗 →

𝑖
↓

1 2 3 4 5

1 3 3 5 10

2 3 6 4 8

3 3 6 3 5

4 5 4 3 7

5 10 8 5 7

1 Central facility

4

2

5

1

3
3

2
2

Cost = 14

Prim’s version

VUGRAPH 24

• Step 0: initialize each node 𝑖 with a weighting factor 𝑤𝑖 ∋

 𝑤1 = 0; 𝑤𝑖 = −∞, ∀𝑖 ≠ 1

 𝑡𝑖𝑗 ← 𝑐𝑖𝑗 − 𝑤𝑖 ⇒ 𝑡𝑖𝑗 = ∞ ∋ 𝑖 ≠ 1

 𝑡𝑖𝑗 = saving gained by removing the central connection and
creating a link connection

 {initially then all 𝑡𝑖𝑗 = ∞ except 𝑡1𝑗 representing the cost of
connecting each node to the center}

 find min{𝑡𝑖𝑗 = 𝑡𝑞𝑚}

• Step 1: {in the example, connect 2 or 3 ... Say, we select (1,2)}

• Step 2: if constraints are not violated
add link (𝑞,𝑚)

set 𝑤𝑚 = 0

readjust constraints and recalculate all 𝑡𝑖𝑗

go back to Step 1

Else:
set 𝑡𝑞𝑚 = ∞

go back to Step 1

 {add link (3,1), then (4,3), and finally (5,2)}

4

1

2 3

(3)

(1)

5

(4)

cost: 17

(2)

optimum

4

1

2 3

5

cost: 15

Kruskal’s version and Esau-Williams algorithm

VUGRAPH 25

• Kruskal’s version:

 Select minimum cost links one at a time, check for constraints and repeat
procedure

 Ordering: (1,2) (1,3) (4,3) (5,2) … same as Prim … cost = 17

• Esau-Williams algorithm:

 Step 0: let 𝑡𝑖𝑗 = 𝑐𝑖𝑗 − 𝑐𝑖1, ∀𝑖, 𝑗

{𝑡𝑖𝑗 = a measure of difference in cost of connecting node 𝑖 to node 𝑗 vs.
connecting node 𝑖 to node 1}

𝑡24 = 𝑐24 − 𝑐21 = 4 − 3 = 1

𝑡42 = 𝑐42 − 𝑐41 = 4 − 5 = −1

{⇒ node 2 is closer to the center than to node 4 and node 4 is closer to 2
than to the center}

𝑡53 = 𝑐53 − 𝑐51 = 5 − 10 = −5

𝑡35 = 𝑐35 − 𝑐31 = 5 − 3 = 2

In addition, 𝑡21 = 𝑡31 = 𝑡41 = 𝑡51 = 0

 Step 1: select min{tij = tlm} and consider connecting 𝑖 to 𝑗

Esau-Williams algorithm - continued

VUGRAPH 26

 Step 2: if constraints are not violated

Add link (𝑙,𝑚)

Label node 𝑙 with node 𝑚 label showing 𝑙 connected to 𝑚

Reevaluate constraints and update trade-off functions

Go to Step 1

else

set tlm = ∞

Go back to Step 1

end if

 We get optimal solution here

 For details, see:
o Chandy, K. H and R. A. Russel, “The design of multi-point linkages in a

teleprocessing tree network,” IEEE T-Comp., vol. C-21, Oct. 1972, pp. 1062-
1066

o A. Kreshnebaum and W. Chose, “A unified algorithm for designing multi-drop
teleprocessing network,” IEEE T-Comm., vol. COM-22, Nov. 1974, pp. 1762-
1772

Optimum solution

4

1

2 3

5

Variations

VUGRAPH 27

• On-line algorithms
 Maintain a set of blue trees

 To process an edge, color it blue

 If this forms a cycle of blue edges, discard a maximum-cost blue-edge on
the cycle

 Complexity O(m log n)

 See: F. Maffioli, “Complexity of Optimum Undirected Tree Problems: A
Survey of Recent Results,” Analysis and Design of Algorithms in
Combinatorial Optimization, Springer-Verlag, NY, 1981

• Alternative cost structures
 Can change 𝑐𝑖𝑗 to any monotonic function of 𝑐𝑖𝑗

• How much can you increase/decrease the cost of an edge
without affecting the minimality of the spanning tree?
 Complexity ≤ O(4m) … see Tarjan

• Degree constraints at nodes ⇒ NP-complete
 Degree ≤ 2 at each node ⇒Hamiltonian path problem

A bit more detailed history

VUGRAPH 28

• Late 1940s: Linear programming

• 1950s: Quadratic programming; minimize a convex quadratic
function over a polyhedron

• 1960s: Geometric programming

• 1990s: Conic programming (second order cone programming (SOCP),
semi-definite programming (SDP), robust optimization, etc.)

• Excellent presentation: http://www.robots.ox.ac.uk/~az/lectures/b1/vandenberghe_1_2.pdf

: min . . ; 0
T

x
SLP c x s t Ax b x

1
: min . . ;

2

T T

x
QP x Qx d x c s t Ax b Gx h

0

0 0

1 1

1 1

: min ; 0...posynomial function

. . 1; 1,2,.., ; 0

jk

ijk

nK
a

k j k
x

k j

nK
a

ik j ik

k j

GP c x c

s t c x i m c

ln

1

ln

1

: min ln

. . ln 0; 1,2,..,

T
okok

T
ikik

K
a y c

y
k

K
a y c

k

GP e

s t e i m

lnj jy x

Conic Programming

VUGRAPH 29

• Cone: A set C is a cone if x ∈ C implies αx ∈ C for all α > 0.
A cone that is also convex is a convex cone.

 Cone, but not convex: y=|x|, union of first and third quadrants,…

 Convex cones

• Conic Programming:

• Generalized linear programming problems
with the addition of nonlinear convex cones

1

1

1. { : 0, 1,2,.., }

2. {(,) :|| || }...second order cone

3. The set of all poitive semi-definite (SD) matrices,

 (useful in semi-definite programming (SDP))

4. 2 is special

n

i

n

n

R x x i n

Q t x R x t

C P SD cone

case of 3 with
n

T

tI x
P

x t

Example of 2:
Ice-cream or
Lorentz cone

Varieties of Conic Programs & Applications

VUGRAPH 30

• Varieties of Conic Programs

 Linear programming (LP)

 Convex Quadratic programming (QP)

 Quadratically constrained QP (QCQP)

 Geometric programming (GP)

 Second order cone programming (SOCP)

 Semi-definite programming (SDP)

• Applications

 Signal processing & communications

 Finance

 Machine learning

 Robust control

 Combinatorial optimization

More difficult &
More general

Second order Cone Programming (SOCP)

VUGRAPH 31

• What is SOCP?

• Special cases

 Recall support vector machines is a convex QP ~ SOCP

2

1x 1 x

min

s.t.

 || || ; 1, 2,..,

where , , ; ; ; , ,i i

T

x

T

i ii i

k n kn m n m

i ii i

c x

Ax b

C x d e x f i p

x c e R C R d R f R A R b R

,

1/2 1 1/2

1

1. 1 0

2. Convex QP is a special case of SOCP

 CQP: min . . ; ; 0

 SOCP: min . . ; ;

 (Note: {(,) :|| || }...second

T

ii i

T T

x

T T

x t

n

n

k e x f LP

x Qx c x s t Ax b C x d Q

t c x s t Ax b C x d t x Qx

C t Q x R Q x t

 order cone)

SOCP and variants

VUGRAPH 32

• Special cases and variants

2

3. Quadratically constrained LP: 0

 min

s.t.

 || || 2 0

4. SOCP is a special case of SDP... used to approximate integer programs

 min

i

T

x

T T TT T

i i i ii i i i i i

T

x

e

c x

Ax b

C x d f x C C x x C d d d f

c

1

s.t.

 0, 1,2,..,
i

T

i ii k i

T T

i ii i

x

Ax b

e x f I C x d
i m

C x d e x f

Example 1: Robust LP

VUGRAPH 33

• Inequality constraint with uncertain coefficients

• What if ai is Gaussian

• Robust LP is a SOCP for > 0.5

2

2

2
|| || 1

2

ˆ ˆwhere ellipsoid centerd at , { :|| || 1}

ˆ ˆmax max || ||

ˆ|| || second order cone constraint

T

i i i ii i

T T T TT T

i i ii i i
x E u

TT

ii i

a x b a a a R u u

b a x a x u R x a x R x

R x a x b

2

2

/2

2

1

2

ˆ~ (,), and want { }

ˆ: ~ (,), || ||

ˆ 1
(0) () ; ()

|| || 2

ˆ() || ||

TT

i i ii i i i i

T T T T T

i ii i i i z i

T
y

uii

T

i

TT

ii i

a N a R R P a x b

Note z a x b N a x b x R R x R x

b a x
P z y e du Normal CDF

R x

R x b a x

1

2
ˆmin . . () || || , 1, 2,..,

T TT

ii i
x

c x s t R x b a x i p

Example 2: LP with random cost

VUGRAPH 34

• Arises in shortest path problems or network flow problems

• Expected cost-variance trade-off (the so-called Markovitz
model of risk in portfolio theory when it is formulated as a
maximization problem)

 > 0 risk aversion parameter

ˆ ~N(,)

ˆ~ (,)

c

T T T

c

c c

c x N c x x x

1

2

ˆmin

ˆ. . () || || , 1, 2,..,

T T

c
x

TT

ii

c x x x

s t R x b a x i p

Example 3: Sparse signal reconstruction

VUGRAPH 35

• x is a long signal (say, 1000 samples) with very few non-
zero components (say, 10)

• Want to reconstruct the signal from noisy m (say, 100)
noisy measurements

• L2 regularization (Robust least squares)

 > 0 regularization parameter

• L1 regularization (LASSO: least absolute shrinkage and
selection operator)

2 ; ~ (0,)mb Ax n n N I

2 2

2 2min || || + || ||
x

f Ax b x

2

2 1min || || + || ||
x

f Ax b x

Original x L2 reconstruction
error

L1 reconstruction

VUGRAPH 36

 Initialize 00 00, 0, , (0.9 1)px

maxfor 0,1,2,

 =

If , stop

else% calculate affine direction

 /

0 0

 solve 0 ; Diag(); Diag(

0

T

k k

k

xa

T T

a k k k k k

k k pa k k

k

k k

t p x

t

t n

A d

A I d A p c D x P

P D d D

Ax b

P e

(: 0) (: 0)

3

 min 1, min ; min 1, min

)

 calculate

) () / ;Centering parameter

0 0

 solve

(/

 0

0

ki ki

xai
xa

pai
i pai

x p

pa d d

ak pa

k

da
i d i d

T

k xa k pa k

T

d a

k

a k k

p

x d p d n

A

A I

P D

 (: 0) (: 0)

1 1 1

 min 1, min ; min 1, min

 ; ;

ki ki

x
xi pi

i pi

x

T

k

x p

p d

k k

k p k k xa pa k k

d
i d i d

k k p k k k d k

d

d

d A p c

d D P e d d e

px x d

Ax b

d

end

end

k d pp d

Recall Primal-dual path following algorithm for LP

Affine direction

When ak<< k, it
becomes a
centering direction

Mehrotra’s
correction

VUGRAPH 37

 QP:

 Initialize 0 00, 0, (0.9 0.99)p

maxfor 0,1,2,

 =

If , stop

else

 /

0

 solve 0 ; Diag(); Diag()

0

 calculate

T

kk

k

T

kxa

k ka k k k k

k k pa k k k

T

k

k

k k

t p

t

t m

Q A d d

A I d Ax p b P p

P d D P e e

Qx A

0

3

: 0 :
 min{ min(1, /), min (1, /)

 }

) () / ;Centering parameter

0

 solv

/

e 0

0

(

i pi

T

k

a ki ai ki pai
i d i d

ak a a ak k

k

a k pa k

T

x

k k p

d p

d p d

Qx

d m

Q A d

A I d

P d

1 1 1

0 & { :

0}

; ;

end

end

k

k k

k k p k k

kk p

k k k k k k k p

T d

Ax p b

D P e d d e

p d d

px x d d p

A

d

Primal-dual path following algorithm for QP
1

min . . ; x
2

: 0; 0; 0; 0; 0

T T

x

T

i i i i

x Qx d x c s t Ax b A m n

KKT Qx A d Ax p b p p

Primal and dual for SOCP

VUGRAPH 38

• Recall Cone LP

• Dual (easy to see from Lagrangian)

• KKT or CS conditions:

2

1x 1 x

min

s.t.

 || || ; 1, 2,..,

where , , ; ; ; , ,i i

T

x

T

i ii i

k n kn m n m

i ii i

c x

Ax b

C x d e x f i p

x c e R C R d R f R A R b R

2

:

min

s.t.

 || || ; 1, 2,..,

 ; 1, 2,..,

 ; 1, 2,..,

T

x

i i

i ii

T

i i i

Explicit form

c x

Ax b

u t i p

C x u d i p

e x t f i p

,{ , }

1

1

2

max

s.t.

 || || ; 1, 2,..,

ii

p
T T

i i i i

i

p
T T

i ii i

i

i i

b d f

C e A c

i p

See: Anderson et al. “Interior-point methods for large-scale cone programming,”
http://www.seas.ucla.edu/~vandenbe/publications/mlbook.pdf
Lobo et al. “Applications of second order cone programming,” Linear Algebra and its
Applications, 284, pp. 193-228, 1998.

2 2

2 2

2 2

|| || || || 0

|| || || || 0

|| || ,|| ||

i ii i

i ii i

i i i ii i i i

u t

t u

u t u t

Useful in robust SVM and a
number of other applications.
Interior point methods extend
here. See Anderson et al.

http://www.seas.ucla.edu/~vandenbe/publications/mlbook.pdf

Barrier method for SOCP

VUGRAPH 39

• Lagrangian of Barrier version of Cone LP

• KKT conditions

• Algorithm: Given a strictly feasible x (e.g., phase I LP), t=t01, 10-
20, tolerance

 Centering step: compute x* (t) and * (t) set x = x* (t) and = * (t)

 Stopping criterion: Terminate if p/t< . Else go to next step.

 Increase t: t = t and go to Centering step.

• Convergence typically in 20-50 iterations. Primal-dual path following
algorithms exist. See Anderson et al.

2 2

2

1
()

1
min (,)= ln () || || ()

i

p
T T T

i ii i
x

i
f x

L x c x e x f C x d b Ax
t

1

2 1
() () 0

()

() 0

p
TT T

i i ix i i i

i i

L c A e x f e C C x d
t f x

L Ax b

50 variables and 50
cone constraints in R6

http://www.robots.ox.ac.uk/~az/lectures
/b1/vandenberghe_1_2.pdf

http://www.robots.ox.ac.uk/~az/lectures/b1/vandenberghe_1_2.pdf

Summary

VUGRAPH 40

• Spanning tree algorithms

 Kruskal

 Prim

 Distributed

• Applications to communication network design problem

• Introduction to Cone Programming

