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• Review of relevant theory

• Why solve the minimum spanning tree problem?

• Three basic algorithms

 Kruskal (1956)

 Jarnik-Prim-Dijkstra (1930, 1957, 1959)

 Bor’uvka (1926) … a distributed algorithm

• Application to centralized communication network design 
problem

• Introduction to Cone Programming



Review of Relevant Graph Theory

VUGRAPH 3

• Undirected graph G = (V, E)

 V = set of vertices (nodes)

 E = set of edges (arcs)

• A graph G is connected if, for every node i, ∃ a path (𝑖 = 𝑣1, 𝑣2, … , 𝑣𝑙 = 𝑗) to 
every node 𝑗

• Not connected ⇒ can find two sets of nodes with no edges between them

• Basic result:

 For a connected graph G, if X ∈V is a nonempty subset of V, then ∃ at least one edge (𝑖, 𝑗) ∋ 𝑖 ∈ 𝑋
and 𝑗 ∈ ത𝑋 = (𝑉 − 𝑋)

 You can think of the partition of vector set 𝑉 into 𝑋 and ത𝑋 as a cut in graph 𝐺 and the edge  (𝑖, 𝑗)
crosses the cut since it is incident on 𝑋 (one end in 𝑋 the other in ത𝑋)
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Spanning Tree and Forest
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• A tree is a connected graph with no cycles (loops, circuits) ⇒ 𝑛 − 1 arcs 
(edges)

• A spanning tree of a connected graph G is a tree and contains 
all the nodes of G

• A forest (fragment ) is a node-disjoint collection of trees

 # of nodes = n

 # of edges = n – 1

 There exists a single path between every pair

 Adding an edge results in exactly one cycle

 Deleting an edge makes the tree disconnectedSpanning tree of graph G
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How to construct a Spanning tree?
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• How to construct a spanning tree or how to check for the 
connectedness of a graph?

 DFS: select an edge (𝑖, 𝑗) ∋ 𝑖 was visited most recently … stack or LIFO or recursion. 
Can also get pre- and post-order traversal

 BFS: select an edge (𝑖, 𝑗) ∋ 𝑖 was visited least recently … queue

• Depth-first generation of spanning tree: call dfs(i)

∀ vertex, initialize pre-visit to null
procedure dfs(𝑖)

pre-visit(𝑖)
for (𝑖, 𝑗) ∈ out(i) do

if not visited(𝑗)
parent(𝑗) =𝑖
dfs(𝑗)

end if
end do
post-visit(𝑖)

O(m) complexity

1

2

4 5 6

3

graph dfs spanning tree
1

2

4 5 6

3
⇒



Breadth-first generation of a Spanning tree

VUGRAPH 6

• Breadth-first search generation of spanning tree: call bfs(1)

⇒ For every connected graph 𝐺 with 𝑛 nodes and 𝑚 arcs ∃ a spanning 
tree, where 𝑚 ≥ 𝑛 − 1
⇒ 𝐺 is a tree iff number of edges of the tree, 𝑚 = 𝑛 − 1 and connected

∀ vertex, initialize bfs-visit to null
procedure bfs(1)

queue = {1}
while queue not empty do

𝑖 = 𝑞𝑢𝑒𝑢𝑒[1]; 𝑞𝑢𝑒𝑢𝑒 = {2, … }
bfs-visit(𝑖)
for 𝑖, 𝑗 ∈ out(𝑖) do

if not visited 𝑗 & 𝑗∉ queue
𝑞𝑢𝑒𝑢𝑒 = 𝑞𝑢𝑒𝑢𝑒 ∪ {𝑗}

end if
end do

end do

O(m) complexity
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Minimal Spanning Tree (MST) Problem
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• Given an undirected connected graph 𝑮, each of whose edges 
has a real-valued cost 𝒄𝒊𝒋,find a spanning tree of the graph 
whose total edge cost is minimum

• Can do for directed or undirected graphs … we will consider 
undirected graphs only

• Why solve this problem?
 Arises as a sub-problem in communication network design

o Connecting terminals to a specified concentrator (switching node) via a multi-drop link

o Connecting concentrator to a central processing facility

• Want minimum cost connection subject to constraints on:

 Delay (or flow) on each link

 Reliability ⇒ alternate paths or not more than a specified number of 
terminals be disconnected if a link fails

o Problem is much more involved than MST (in fact, it is NP-hard!)

 MST forms a starting point for design

 We will come back to this later

o Also useful in simplex-based network flow algorithms

 Recall for network flows, bfs is a spanning tree.  See Bersekas’ book



Basic Idea of all MST Algorithms
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• Incremental construction edge by edge via the greedy 
method ⇒ do the best thing at every step

• “Smallest edge first strategy w/o forming cycles”

• Any sub-tree of a MST will be called a fragment

• Set of fragments ≡ forest

• Main result:

 Given a fragment 𝐹, let 𝑒 = (𝑖, 𝑗) be a minimum weight edge from 𝐹 where 
node 𝑗 ∉ 𝐹 ⇒ 𝐹 extended by edge 𝑒 and node 𝑗 is a fragment (i.e., part of 
MST) 
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Proof of main result
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 Denote by 𝑇 the MST of which 𝐹 is fragment

 If  𝑒 ∈ 𝑇, we are done; so, assume otherwise

 Then, there is a cycle formed by  e and the edges of 𝑇

 Since 𝑗 ∉ 𝐹, there must be some edge 𝑒′ = (𝑖′, 𝑗) that belongs to the 
cycle, to 𝑇 and to 𝐹

 Deleting (𝑖′, 𝑗) from 𝑇 and adding (𝑖, 𝑗) to 𝑇 results in a spanning 
tree 𝑇′ ∋ cost of 𝑇′ ≤ cost of 𝑇

⇒ 𝑇′ is an MST

⇒ So, 𝐹 extended by 𝑒 must be part of MST

• Three Classical Algorithms

 Kruskal (1956)

 Jarnik-Prim-Dijkstra (1930, 1957, 1959)

 Bor’uvka (1926) …  a distributed algorithm



Three Classical Algorithms
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• Kruskal’s algorithm
 Start with each node as a fragment

 Successively combine two of the fragments by using the edge that has 
minimum weight and when added does not result in a cycle 

• Jarnik-Prim-Dijkstra
 Select an arbitrary node as a fragment

 Enlarge the fragment by successively adding a minimum weight edge

• Bor’uvka 
 For every fragment, select a minimum cost edge incident to it

 Add it to the fragment and inform the fragment that lies at the other end 
of this edge  …. Can do it in a distributed way!

• You can think of these algorithms as edge-coloring
processes
 Blue ⇒ part of MST or accept

 Red ⇒ not part of MST or reject



Kruskal’s algorithm (forest algorithm)
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 Sort edge weights in non-decreasing order  …. Possibly heaps?

 Using the sorted list, include 𝑒 = (𝑖, 𝑗) if it does not form a cycle (color it 
blue)

 If it does, discard the edge (or color it red)

 Stop when all 𝑚 = (𝑛 − 1) edges (tree) have been included or all edges 
have been examined

⇒ Minimum spanning forest (set of fragmented trees)

 Crude version of Kruskal

𝑇 = ∅

while 𝑇 < 𝑛 − 1 & 𝐸 ≠ 0 do

𝑒 = smallest edge in 𝐸

𝐸 = 𝐸 − {𝑒}

if (𝑇 ∪ {𝑒}) has no cycle

𝑇 = 𝑇 ∪ {𝑒}

end if

end do

• Two hurdles:

 Sorting 𝑚 elements requires  
O(m log m)

o May be too much work since 
need only (𝑛 − 1) edges

o Time for heaps??

 How to test for cycles easily

o In other words, both ends of the 
current edge being colored 
belong to the same fragment



Resolving the two hurdles
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• We resolve the first problem by forming a heap

 O(m) computational steps

 Finding next minimum takes O(log m) steps, assuming a binary heap

 If we do this k times, need O(k log m) steps

⇒ total = O(m + k log m) computation for sorting

• We resolve the second problem by maintaining fragments in the form 
of subsets of nodes

 Add a new edge by forming union of two relevant subsets

 Check for cycle formation by invoking FIND twice to check if two vertices of the 
edge belong to the same tree (subset, fragment)

• Example
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• 1 2 3 4 5 6 → 1,2 3 4 5 6 {7}

→ 1,2,4 3 5 6 7 → 1,2,4 3,5 6 7

→ 1,2,4 3,5,7 6 → discard edge (3,7)

→ 1,2,4 3,5,7,6 → {1,2,4,3,5,7,6} done!!
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Efficient storage and sorting procedures
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 Need efficient methods for sorting fragments (subsets or subtrees)

 Need efficient UNION & FIND procedures

• We can accomplish both of these objectives by storing 
fragments as rooted trees

 Nodes of the tree are elements of the fragment

 Each node 𝑖 of the tree has a parent pointer 𝑝𝑖

o Root node ቐ

no pointer
pointer to (−#of elements in the tree)∗∗
pointer to (height of the tree or rank)

 To carry out FIND(𝑖), we follow parent pointers from 𝑖 to the root of the 
tree containing 𝑖 and return the root

 So to find cycle:

o If FIND(𝑖) = FIND(𝑗), we have a cycle!!
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Efficient storage and union of fragments
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if 𝑝𝑥 > 𝑝𝑦 then

𝑝𝑥 = 𝑝𝑥+𝑝𝑦
𝑝𝑦 = 𝑥

else
𝑝𝑦 = 𝑝𝑥+𝑝𝑦
𝑝𝑥 = 𝑦

end if

 To carry out UNION(𝑥, 𝑦), where x and y are 
roots of subsets

• UNION rank

 Keep track of rank (height) of trees

 Do exactly the same as with size except that 𝑝𝑥 and 𝑝𝑦
denote ranks

• Don’t change ranks unless 𝑝𝑥 = 𝑝𝑦

⇒ make 𝑥 point to 𝑦; 𝑝𝑥 = 𝑝𝑦 + 1

• We can make FIND operation more efficient by a heuristic called path 
compression

 When FIND(𝑖) is invoked, after locating root 𝑥 of the tree, make every node on 
the path point to the root

⇒
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 Computational complexity: O(m α(m, n))
(See Tarjan or Horwitz & Sahni for details) 
where α(m, n) = inverse of Ackerman’s 
function 



Ackerman’s function 𝒊, 𝒋 ≥ 𝟏
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𝐴 1, 𝑗 = 2𝑗 , ∀𝑗 ≥ 1

𝐴 𝑖, 1 = 𝐴(𝑖 − 1,2), ∀𝑖 ≥ 2

𝐴 𝑖, 𝑗 = 𝐴 𝑖 − 1, 𝐴 𝑖, 𝑗 − 1 , ∀𝑖, 𝑗 ≥ 2

𝛼 𝑚, 𝑛 = min 𝑖 ≥ 1: 𝐴 𝑖,
𝑚

𝑛
> log 𝑛

• Note that 𝐴(2,1) = 𝐴(1,2) = 4

• 𝐴(3,1) = 𝐴(2,2) = 𝐴(1, 𝐴(2,1)) = 𝐴(1,4) = 24 = 16

• 𝛼 𝑚, 𝑛 = min ∙ ≤ 3, ∀𝑛 < 216 = 65,536

• 𝐴 4,1 = 𝐴 2,16 = 2“big number” which is very large

• For all practical purposes, 𝛼(𝑚, 𝑛) ≤ 4

⇒ Computational complexity O(3m) or O(4m)



Overall Kruskal
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set father (parent) array to −1 or rank = 0
form initial heap of 𝑚 edges
𝑒𝑑𝑔𝑒_𝑐𝑜𝑢𝑛𝑡 = 𝑡𝑟𝑒𝑒_𝑐𝑜𝑢𝑛𝑡 = 0;  𝑇 ← ∅
while (𝑡𝑟𝑒𝑒_𝑐𝑜𝑢𝑛𝑡 < 𝑛 − 1 & 𝑒𝑑𝑔𝑒_𝑐𝑜𝑢𝑛𝑡 < 𝑚) do

𝑒 = edge(𝑖, 𝑗) from top of heap
𝑒𝑑𝑔𝑒_𝑐𝑜𝑢𝑛𝑡 = 𝑒𝑑𝑔𝑒_𝑐𝑜𝑢𝑛𝑡 + 1
remove 𝑒 from heap & restore heap … delete min operation
𝑟1 = FIND(𝑖); 𝑟2 = FIND(𝑗)
if (𝑟1 ≠ 𝑟2) then

𝑇 = 𝑇 ∪ {𝑒}
𝑡𝑟𝑒𝑒_𝑐𝑜𝑢𝑛𝑡 = 𝑡𝑟𝑒𝑒_𝑐𝑜𝑢𝑛𝑡 + 1
UNION(𝑟1, 𝑟2)

end if
end do

• Function FIND(𝑖) {does path compression also}

if 𝑝𝑖 > 0
𝑝𝑖 = FIND(𝑝𝑖)

end if
return  𝑝𝑖



Jarnik-Prim-Dijkstra Single Tree Algorithm
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• Start with a single node as a fragment and repeat the following step  
𝑛 − 1 times

 “If 𝑻 is the current MST generated so far, select a minimum cost edge 
incident to 𝑻 and include it in 𝑻 (or color it blue)”

• Example
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Jarnik-Prim-Dijkstra’s procedure
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• Suppose 𝑇 is the MST generated so far

• Find neighbor nodes 𝑖 to 𝑇 ∋ an edge is incident to both 𝑖
and 𝑇

• With each neighbor 𝑖, associate a light blue edge (𝑘, 𝑖)
⇒ That is, a minimum-cost edge incident to 𝑖 and 𝑇

⇒ Light blue ⇒ candidates for inclusion into 𝑇

• Blue and light blue edges together form a tree spanning 𝑇
and its neighbor edges

• Coloring step
 From among these candidates, select one, say (𝑘′, 𝑖′), of minimum cost 

and include it in the tree

⇒ 𝑇 → 𝑇 ∪ {𝑖′}
 Consider all edges of the form (𝑖′, 𝑗):

o If 𝑗 ∉ 𝑇 & ∄ a light blue edge of the form 𝑘, 𝑗 , color (𝑖′, 𝑗) light blue ⇒
potential candidate

o Else if 𝑗∉ 𝑇 & ∃ a light blue edge of the form 𝑘, 𝑗 & 𝑐𝑘𝑗 > 𝑐𝑖′𝑗 → mark (k, j) red 
(or discard (k, j)) and mark (i’, j) light-blue (or (i’, j) is a potential candidate)



Example
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Step 1 Step 2 Step 3 Step 4
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• Complexity

ቑ
𝑛 − 1 inserts
𝑛 − 1 deletes and restores
max𝑚 − 𝑛 + 1 siftup operations

⇒

run time:𝑂(𝑛𝑑 log 𝑛 + 𝑚 log𝑛)

𝑑 = 2 +
𝑚

𝑛
⇒ 𝑂(𝑚 log

2+
𝑚
𝑛
𝑛)

Color this red



Heap Implementation

VUGRAPH 20

for each node i
adj_list = set of edges incident to i

blue(𝑖) =൞

undefined if 𝑖 ∉ 𝑇 ∪ {neighbor 𝑇}

light blue edge incident to 𝑖 if 𝑖 ∈ neighbor 𝑇
blue edge if 𝑖 ∈ 𝑇

cost(𝑖) = ቐ
∞ if 𝑖 ∉ 𝑇 ∪ {neighbor 𝑇}

cost of light blue edge if 𝑖 ∈ neighbor 𝑇
−∞ if 𝑖 ∈ 𝑇

for 𝑖 = 1, … , 𝑛 do
cost(𝑖) = ∞

ℎ = ∅; 𝑖 = 1
while 𝑖 ≠ 𝑛𝑢𝑙𝑙 do

cost(𝑖) = −∞
for 𝑖, 𝑗 ∈ 𝑎𝑑𝑗_𝑙𝑖𝑠𝑡(𝑖) do

if(𝑐𝑖𝑗 < cost(𝑗))
cost(𝑗) = 𝑐𝑖𝑗; blue(𝑗) = (𝑖, 𝑗)
if  𝑗∉ ℎ

insert 𝑗 into ℎ
else

siftup 𝑗
𝑖= min of heap for which original min was added



Bor’uvka’s distributed algorithm
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• Bor’uvka’s distributed algorithm
 First assume that all edge weights 𝑐𝑖𝑗 are distinct

 Start with a set of fragments

 Each fragment determines its own minimum edge and informs the fragment that 
lies at the other end

 The algorithm correctly terminates!!

• How does each fragment decide on it minimum weight arc?

 See P. Humblet, “A distributed algorithm for minimum weight directed 
spanning trees,” IEEE Trans. On Comm., vol. COM-31, pp 756-762

• What can go wrong when have non-distinct costs?

⇒ Cycles
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Proof and algorithm extension
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• If all edge weights are different, have a unique MST

 Suppose non-unique ⇒ at least two MSTs, say 𝑇 and 𝑇′

 Let (𝑖,𝑗) = arg min {𝑐𝑙𝑚} and assume (𝑖,𝑗) ∊ 𝑇

 Suppose add (𝑖,𝑗) to 𝑇′

⇒ Cycle

⇒ Can throw away an arc (𝑘,𝑙) and get a new spanning tree with 
less cost

⇒ 𝑇′ not optimal

⇒ contradiction

• To extend Bor’uvka’s algorithm to non-distinct weight 
case, do the following:

 In the case of equal weight, break the tie in favor of an edge with a 
minimum identity end node and if these nodes are the same, break 
the tie in favor of an edge whose other node has a smaller identity

 In this case, we are guaranteed a unique MST



Application: communication network design
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• We will illustrate the MST application via a simple example

• Problem w/o constraints is MST

5
4

2 3

1

𝑓𝑖𝑗 ≤ 5, ∀𝑖, 𝑗

𝑐𝑖𝑗
𝑗 →

𝑖
↓

1 2 3 4 5

1 3 3 5 10

2 3 6 4 8

3 3 6 3 5

4 5 4 3 7

5 10 8 5 7











1 Central facility
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3
3

2
2

Cost = 14



Prim’s version

VUGRAPH 24

• Step 0: initialize each node 𝑖 with a weighting factor 𝑤𝑖 ∋

 𝑤1 = 0; 𝑤𝑖 = −∞, ∀𝑖 ≠ 1

 𝑡𝑖𝑗 ← 𝑐𝑖𝑗 − 𝑤𝑖 ⇒ 𝑡𝑖𝑗 = ∞ ∋ 𝑖 ≠ 1

 𝑡𝑖𝑗 = saving gained by removing the central connection and 
creating a link connection

 {initially then all 𝑡𝑖𝑗 = ∞ except 𝑡1𝑗 representing the cost of 
connecting each node to the center}

 find min{𝑡𝑖𝑗 = 𝑡𝑞𝑚}

• Step 1: {in the example, connect 2 or 3 ... Say, we select (1,2)}

• Step 2: if constraints are not violated 
add link (𝑞,𝑚)

set 𝑤𝑚 = 0

readjust constraints and recalculate all 𝑡𝑖𝑗

go back to Step 1

Else:
set 𝑡𝑞𝑚 = ∞

go back to Step 1

 {add link (3,1), then (4,3), and finally (5,2)}

4

1

2 3

(3)

(1)

5

(4)

cost: 17

(2)

optimum

4

1

2 3

5

cost: 15



Kruskal’s version and Esau-Williams algorithm 
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• Kruskal’s version:

 Select minimum cost links one at a time, check for constraints and repeat 
procedure

 Ordering: (1,2) (1,3) (4,3) (5,2) … same as Prim … cost = 17

• Esau-Williams algorithm:

 Step 0: let 𝑡𝑖𝑗 = 𝑐𝑖𝑗 − 𝑐𝑖1, ∀𝑖, 𝑗

{𝑡𝑖𝑗 = a measure of difference in cost of connecting node 𝑖 to node 𝑗 vs. 
connecting node 𝑖 to node 1}

𝑡24 = 𝑐24 − 𝑐21 = 4 − 3 = 1

𝑡42 = 𝑐42 − 𝑐41 = 4 − 5 = −1

{⇒ node 2 is closer to the center than to node 4 and node 4 is closer to 2 
than to the center}

𝑡53 = 𝑐53 − 𝑐51 = 5 − 10 = −5

𝑡35 = 𝑐35 − 𝑐31 = 5 − 3 = 2

In addition, 𝑡21 = 𝑡31 = 𝑡41 = 𝑡51 = 0

 Step 1: select min{tij = tlm} and consider connecting 𝑖 to 𝑗



Esau-Williams algorithm - continued
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 Step 2: if constraints are not violated

Add link (𝑙,𝑚)

Label node 𝑙 with node 𝑚 label showing 𝑙 connected to 𝑚

Reevaluate constraints and update trade-off functions

Go to Step 1

else

set tlm = ∞

Go back to Step 1

end if 

 We get optimal solution here

 For details, see:
o Chandy, K. H and R. A. Russel, “The design of multi-point linkages in a 

teleprocessing tree network,” IEEE T-Comp., vol. C-21, Oct. 1972, pp. 1062-
1066

o A. Kreshnebaum and W. Chose, “A unified algorithm for designing multi-drop 
teleprocessing network,” IEEE T-Comm., vol. COM-22, Nov. 1974, pp. 1762-
1772

Optimum solution

4

1

2 3

5



Variations
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• On-line algorithms
 Maintain a set of blue trees

 To process an edge, color it blue

 If this forms a cycle of blue edges, discard a maximum-cost blue-edge on 
the cycle

 Complexity O(m log n)

 See: F. Maffioli, “Complexity of Optimum Undirected Tree Problems: A 
Survey of Recent Results,” Analysis and Design of Algorithms in 
Combinatorial Optimization, Springer-Verlag, NY, 1981

• Alternative cost structures
 Can change 𝑐𝑖𝑗 to any monotonic function of 𝑐𝑖𝑗

• How much can you increase/decrease the cost of an edge 
without affecting the minimality of the spanning tree?
 Complexity  ≤ O(4m) … see Tarjan

• Degree constraints at nodes ⇒ NP-complete
 Degree ≤ 2 at each node ⇒Hamiltonian path problem



A bit more detailed  history
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• Late 1940s:  Linear programming

• 1950s:  Quadratic programming; minimize a convex quadratic 
function over a polyhedron 

• 1960s: Geometric programming

• 1990s: Conic programming (second order cone programming (SOCP),  
semi-definite programming (SDP), robust optimization, etc.) 

• Excellent presentation: http://www.robots.ox.ac.uk/~az/lectures/b1/vandenberghe_1_2.pdf 
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Conic Programming
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• Cone: A set C is a cone if x ∈ C implies αx ∈ C for all α > 0. 
A cone that is also convex is a convex cone. 

 Cone, but not convex: y=|x|, union of first and third quadrants,…

 Convex cones

• Conic Programming:

• Generalized linear programming problems 
with the addition of nonlinear convex cones 

1

1

1. { : 0, 1,2,.., }

2. {( , ) :|| || }...second order cone

3.  The set of all poitive semi-definite (SD) matrices, 

    (useful in semi-definite programming (SDP))

4. 2 is special 

n

i

n

n

R x x i n

Q t x R x t

C P SD cone







  

  

 

case of 3 with 
n

T

tI x
P

x t

 
  
 

Example of 2: 
Ice-cream or 
Lorentz cone



Varieties of Conic Programs & Applications
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• Varieties of Conic Programs

 Linear programming (LP) 

 Convex Quadratic programming (QP) 

 Quadratically constrained QP (QCQP)

 Geometric programming (GP)

 Second order cone programming (SOCP)

 Semi-definite programming (SDP)

• Applications

 Signal processing & communications

 Finance

 Machine learning

 Robust control

 Combinatorial optimization

More difficult & 
More general



Second order  Cone Programming (SOCP)
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• What is SOCP?

• Special cases

 Recall support vector machines is a convex QP ~ SOCP

2
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SOCP and variants
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• Special cases and variants

2

3. Quadratically constrained LP: 0

       min  

s.t.   

       || ||  2 0

4. SOCP is a special case of SDP... used  to approximate integer programs
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Example 1: Robust LP
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• Inequality constraint with uncertain coefficients

• What if ai is Gaussian

• Robust LP is a SOCP for  > 0.5
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Example 2: LP with random cost
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• Arises in shortest path problems or network flow problems

• Expected cost-variance trade-off (the so-called Markovitz
model of risk in portfolio theory when it is formulated as a 
maximization problem)

 > 0 risk aversion parameter
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Example 3: Sparse signal reconstruction
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• x is a long signal (say, 1000 samples) with very few non-
zero components (say, 10)

• Want to reconstruct the signal from noisy m (say, 100) 
noisy measurements 

• L2 regularization (Robust least squares)

 > 0 regularization parameter

• L1 regularization (LASSO: least absolute shrinkage and 
selection operator)

2 ; ~ (0, )mb Ax n n N I 

2 2

2 2min || ||  + || ||
x
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2

2 1min || ||  + || ||
x

f Ax b x 

Original x L2 reconstruction
error

L1 reconstruction
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 Initialize 00 00, 0, , ( 0.9 1)px     

maxfor 0,1,2,
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If   ,  stop

else .....% calculate affine direction
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Recall Primal-dual path following algorithm for LP

Affine direction

When ak<< k, it 
becomes a 
centering direction

Mehrotra’s
correction
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 QP: 

 Initialize 0 00, 0, ( 0.9 0.99)p     

maxfor 0,1,2,
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Primal and dual for SOCP
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• Recall Cone LP

• Dual (easy to see from Lagrangian) 

• KKT or CS conditions:
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See:  Anderson et al. “Interior-point methods for large-scale cone programming,” 
http://www.seas.ucla.edu/~vandenbe/publications/mlbook.pdf
Lobo et al.  “Applications of second order cone programming,” Linear Algebra and its 
Applications, 284, pp. 193-228, 1998. 
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Useful in robust SVM and a 
number of other applications.
Interior point methods extend 
here. See Anderson et al. 

http://www.seas.ucla.edu/~vandenbe/publications/mlbook.pdf


Barrier method for SOCP

VUGRAPH 39

• Lagrangian of Barrier version of Cone LP

• KKT conditions

• Algorithm:  Given a strictly feasible x (e.g., phase I LP), t=t01,  10-
20, tolerance 

 Centering step: compute x* (t) and * (t) set x = x* (t) and  = * (t) 

 Stopping criterion: Terminate if p/t< .  Else go to next step. 

 Increase t: t = t and go to Centering step. 

• Convergence typically in 20-50 iterations.  Primal-dual path following 
algorithms exist.  See Anderson et al. 

2 2

2

1
( )

1
min ( , )= ln ( ) || || ( )

i

p
T T T

i ii i
x

i
f x

L x c x e x f C x d b Ax
t

 


      
 

1

2 1
( ) ( ) 0

( )

( ) 0

p
TT T

i i ix i i i

i i

L c A e x f e C C x d
t f x

L Ax b




        
 

    



50 variables and 50 
cone constraints in R6

http://www.robots.ox.ac.uk/~az/lectures
/b1/vandenberghe_1_2.pdf

http://www.robots.ox.ac.uk/~az/lectures/b1/vandenberghe_1_2.pdf


Summary
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• Spanning tree algorithms

 Kruskal

 Prim

 Distributed

• Applications to communication network design problem

• Introduction to Cone Programming


