
Lecture 11:
Minimum Spanning Trees & Cone
Programming

Prof. Krishna R. Pattipati
Dept. of Electrical and Computer Engineering

University of Connecticut
Contact: krishna@engr.uconn.edu; (860) 486-2890

© K. R. Pattipati, 2001-2016

Outline

VUGRAPH 2

• Review of relevant theory

• Why solve the minimum spanning tree problem?

• Three basic algorithms

 Kruskal (1956)

 Jarnik-Prim-Dijkstra (1930, 1957, 1959)

 Bor’uvka (1926) … a distributed algorithm

• Application to centralized communication network design
problem

• Introduction to Cone Programming

Review of Relevant Graph Theory

VUGRAPH 3

• Undirected graph G = (V, E)

 V = set of vertices (nodes)

 E = set of edges (arcs)

• A graph G is connected if, for every node i, ∃ a path (𝑖 = 𝑣1, 𝑣2, … , 𝑣𝑙 = 𝑗) to
every node 𝑗

• Not connected ⇒ can find two sets of nodes with no edges between them

• Basic result:

 For a connected graph G, if X ∈V is a nonempty subset of V, then ∃ at least one edge (𝑖, 𝑗) ∋ 𝑖 ∈ 𝑋
and 𝑗 ∈ ത𝑋 = (𝑉 − 𝑋)

 You can think of the partition of vector set 𝑉 into 𝑋 and ത𝑋 as a cut in graph 𝐺 and the edge (𝑖, 𝑗)
crosses the cut since it is incident on 𝑋 (one end in 𝑋 the other in ത𝑋)

2

1 4

3
connected not connected

connected

(by definition)

2

1

Spanning Tree and Forest

VUGRAPH 4

• A tree is a connected graph with no cycles (loops, circuits) ⇒ 𝑛 − 1 arcs
(edges)

• A spanning tree of a connected graph G is a tree and contains
all the nodes of G

• A forest (fragment) is a node-disjoint collection of trees

 # of nodes = n

 # of edges = n – 1

 There exists a single path between every pair

 Adding an edge results in exactly one cycle

 Deleting an edge makes the tree disconnectedSpanning tree of graph G

2

1 4

3

2

1 4

3

forest: set of trees spanning tree

How to construct a Spanning tree?

VUGRAPH 5

• How to construct a spanning tree or how to check for the
connectedness of a graph?

 DFS: select an edge (𝑖, 𝑗) ∋ 𝑖 was visited most recently … stack or LIFO or recursion.
Can also get pre- and post-order traversal

 BFS: select an edge (𝑖, 𝑗) ∋ 𝑖 was visited least recently … queue

• Depth-first generation of spanning tree: call dfs(i)

∀ vertex, initialize pre-visit to null
procedure dfs(𝑖)

pre-visit(𝑖)
for (𝑖, 𝑗) ∈ out(i) do

if not visited(𝑗)
parent(𝑗) =𝑖
dfs(𝑗)

end if
end do
post-visit(𝑖)

O(m) complexity

1

2

4 5 6

3

graph dfs spanning tree
1

2

4 5 6

3
⇒

Breadth-first generation of a Spanning tree

VUGRAPH 6

• Breadth-first search generation of spanning tree: call bfs(1)

⇒ For every connected graph 𝐺 with 𝑛 nodes and 𝑚 arcs ∃ a spanning
tree, where 𝑚 ≥ 𝑛 − 1
⇒ 𝐺 is a tree iff number of edges of the tree, 𝑚 = 𝑛 − 1 and connected

∀ vertex, initialize bfs-visit to null
procedure bfs(1)

queue = {1}
while queue not empty do

𝑖 = 𝑞𝑢𝑒𝑢𝑒[1]; 𝑞𝑢𝑒𝑢𝑒 = {2, … }
bfs-visit(𝑖)
for 𝑖, 𝑗 ∈ out(𝑖) do

if not visited 𝑗 & 𝑗∉ queue
𝑞𝑢𝑒𝑢𝑒 = 𝑞𝑢𝑒𝑢𝑒 ∪ {𝑗}

end if
end do

end do

O(m) complexity

1

2

4 5 6

3

graph bfs spanning tree
1

2

4 5 6

3
⇒

1

2 4

3

⇒ need connectedness for it to be a tree

Minimal Spanning Tree (MST) Problem

VUGRAPH 7

• Given an undirected connected graph 𝑮, each of whose edges
has a real-valued cost 𝒄𝒊𝒋,find a spanning tree of the graph
whose total edge cost is minimum

• Can do for directed or undirected graphs … we will consider
undirected graphs only

• Why solve this problem?
 Arises as a sub-problem in communication network design

o Connecting terminals to a specified concentrator (switching node) via a multi-drop link

o Connecting concentrator to a central processing facility

• Want minimum cost connection subject to constraints on:

 Delay (or flow) on each link

 Reliability ⇒ alternate paths or not more than a specified number of
terminals be disconnected if a link fails

o Problem is much more involved than MST (in fact, it is NP-hard!)

 MST forms a starting point for design

 We will come back to this later

o Also useful in simplex-based network flow algorithms

 Recall for network flows, bfs is a spanning tree. See Bersekas’ book

Basic Idea of all MST Algorithms

VUGRAPH 8

• Incremental construction edge by edge via the greedy
method ⇒ do the best thing at every step

• “Smallest edge first strategy w/o forming cycles”

• Any sub-tree of a MST will be called a fragment

• Set of fragments ≡ forest

• Main result:

 Given a fragment 𝐹, let 𝑒 = (𝑖, 𝑗) be a minimum weight edge from 𝐹 where
node 𝑗 ∉ 𝐹 ⇒ 𝐹 extended by edge 𝑒 and node 𝑗 is a fragment (i.e., part of
MST)

1

2 3

7
4 5

6

e

1 8

8 4

2
5

3

69

1

2 3

7
4 5

6

7

Fragment 1

Fragment 2

Possible edge
extensions.
Minimum one is e

Proof of main result

VUGRAPH 9

 Denote by 𝑇 the MST of which 𝐹 is fragment

 If 𝑒 ∈ 𝑇, we are done; so, assume otherwise

 Then, there is a cycle formed by e and the edges of 𝑇

 Since 𝑗 ∉ 𝐹, there must be some edge 𝑒′ = (𝑖′, 𝑗) that belongs to the
cycle, to 𝑇 and to 𝐹

 Deleting (𝑖′, 𝑗) from 𝑇 and adding (𝑖, 𝑗) to 𝑇 results in a spanning
tree 𝑇′ ∋ cost of 𝑇′ ≤ cost of 𝑇

⇒ 𝑇′ is an MST

⇒ So, 𝐹 extended by 𝑒 must be part of MST

• Three Classical Algorithms

 Kruskal (1956)

 Jarnik-Prim-Dijkstra (1930, 1957, 1959)

 Bor’uvka (1926) … a distributed algorithm

Three Classical Algorithms

VUGRAPH 10

• Kruskal’s algorithm
 Start with each node as a fragment

 Successively combine two of the fragments by using the edge that has
minimum weight and when added does not result in a cycle

• Jarnik-Prim-Dijkstra
 Select an arbitrary node as a fragment

 Enlarge the fragment by successively adding a minimum weight edge

• Bor’uvka
 For every fragment, select a minimum cost edge incident to it

 Add it to the fragment and inform the fragment that lies at the other end
of this edge …. Can do it in a distributed way!

• You can think of these algorithms as edge-coloring
processes
 Blue ⇒ part of MST or accept

 Red ⇒ not part of MST or reject

Kruskal’s algorithm (forest algorithm)

VUGRAPH 11

 Sort edge weights in non-decreasing order …. Possibly heaps?

 Using the sorted list, include 𝑒 = (𝑖, 𝑗) if it does not form a cycle (color it
blue)

 If it does, discard the edge (or color it red)

 Stop when all 𝑚 = (𝑛 − 1) edges (tree) have been included or all edges
have been examined

⇒ Minimum spanning forest (set of fragmented trees)

 Crude version of Kruskal

𝑇 = ∅

while 𝑇 < 𝑛 − 1 & 𝐸 ≠ 0 do

𝑒 = smallest edge in 𝐸

𝐸 = 𝐸 − {𝑒}

if (𝑇 ∪ {𝑒}) has no cycle

𝑇 = 𝑇 ∪ {𝑒}

end if

end do

• Two hurdles:

 Sorting 𝑚 elements requires
O(m log m)

o May be too much work since
need only (𝑛 − 1) edges

o Time for heaps??

 How to test for cycles easily

o In other words, both ends of the
current edge being colored
belong to the same fragment

Resolving the two hurdles

VUGRAPH 12

• We resolve the first problem by forming a heap

 O(m) computational steps

 Finding next minimum takes O(log m) steps, assuming a binary heap

 If we do this k times, need O(k log m) steps

⇒ total = O(m + k log m) computation for sorting

• We resolve the second problem by maintaining fragments in the form
of subsets of nodes

 Add a new edge by forming union of two relevant subsets

 Check for cycle formation by invoking FIND twice to check if two vertices of the
edge belong to the same tree (subset, fragment)

• Example

1 8

8 4

2
5

3

69

1

2 3

7
4 5

6

7

• 1 2 3 4 5 6 → 1,2 3 4 5 6 {7}

→ 1,2,4 3 5 6 7 → 1,2,4 3,5 6 7

→ 1,2,4 3,5,7 6 → discard edge (3,7)

→ 1,2,4 3,5,7,6 → {1,2,4,3,5,7,6} done!!

1

2 3

7
4 5

6

Efficient storage and sorting procedures

VUGRAPH 13

 Need efficient methods for sorting fragments (subsets or subtrees)

 Need efficient UNION & FIND procedures

• We can accomplish both of these objectives by storing
fragments as rooted trees

 Nodes of the tree are elements of the fragment

 Each node 𝑖 of the tree has a parent pointer 𝑝𝑖

o Root node ቐ

no pointer
pointer to (−#of elements in the tree)∗∗
pointer to (height of the tree or rank)

 To carry out FIND(𝑖), we follow parent pointers from 𝑖 to the root of the
tree containing 𝑖 and return the root

 So to find cycle:

o If FIND(𝑖) = FIND(𝑗), we have a cycle!!

5

3

6
7

2

1

4

Efficient storage and union of fragments

VUGRAPH 14

if 𝑝𝑥 > 𝑝𝑦 then

𝑝𝑥 = 𝑝𝑥+𝑝𝑦
𝑝𝑦 = 𝑥

else
𝑝𝑦 = 𝑝𝑥+𝑝𝑦
𝑝𝑥 = 𝑦

end if

 To carry out UNION(𝑥, 𝑦), where x and y are
roots of subsets

• UNION rank

 Keep track of rank (height) of trees

 Do exactly the same as with size except that 𝑝𝑥 and 𝑝𝑦
denote ranks

• Don’t change ranks unless 𝑝𝑥 = 𝑝𝑦

⇒ make 𝑥 point to 𝑦; 𝑝𝑥 = 𝑝𝑦 + 1

• We can make FIND operation more efficient by a heuristic called path
compression

 When FIND(𝑖) is invoked, after locating root 𝑥 of the tree, make every node on
the path point to the root

⇒

1

2

3
4

5

1

2

3

4
5

 Computational complexity: O(m α(m, n))
(See Tarjan or Horwitz & Sahni for details)
where α(m, n) = inverse of Ackerman’s
function

Ackerman’s function 𝒊, 𝒋 ≥ 𝟏

VUGRAPH 15

𝐴 1, 𝑗 = 2𝑗 , ∀𝑗 ≥ 1

𝐴 𝑖, 1 = 𝐴(𝑖 − 1,2), ∀𝑖 ≥ 2

𝐴 𝑖, 𝑗 = 𝐴 𝑖 − 1, 𝐴 𝑖, 𝑗 − 1 , ∀𝑖, 𝑗 ≥ 2

𝛼 𝑚, 𝑛 = min 𝑖 ≥ 1: 𝐴 𝑖,
𝑚

𝑛
> log 𝑛

• Note that 𝐴(2,1) = 𝐴(1,2) = 4

• 𝐴(3,1) = 𝐴(2,2) = 𝐴(1, 𝐴(2,1)) = 𝐴(1,4) = 24 = 16

• 𝛼 𝑚, 𝑛 = min ∙ ≤ 3, ∀𝑛 < 216 = 65,536

• 𝐴 4,1 = 𝐴 2,16 = 2“big number” which is very large

• For all practical purposes, 𝛼(𝑚, 𝑛) ≤ 4

⇒ Computational complexity O(3m) or O(4m)

Overall Kruskal

VUGRAPH 16

set father (parent) array to −1 or rank = 0
form initial heap of 𝑚 edges
𝑒𝑑𝑔𝑒_𝑐𝑜𝑢𝑛𝑡 = 𝑡𝑟𝑒𝑒_𝑐𝑜𝑢𝑛𝑡 = 0; 𝑇 ← ∅
while (𝑡𝑟𝑒𝑒_𝑐𝑜𝑢𝑛𝑡 < 𝑛 − 1 & 𝑒𝑑𝑔𝑒_𝑐𝑜𝑢𝑛𝑡 < 𝑚) do

𝑒 = edge(𝑖, 𝑗) from top of heap
𝑒𝑑𝑔𝑒_𝑐𝑜𝑢𝑛𝑡 = 𝑒𝑑𝑔𝑒_𝑐𝑜𝑢𝑛𝑡 + 1
remove 𝑒 from heap & restore heap … delete min operation
𝑟1 = FIND(𝑖); 𝑟2 = FIND(𝑗)
if (𝑟1 ≠ 𝑟2) then

𝑇 = 𝑇 ∪ {𝑒}
𝑡𝑟𝑒𝑒_𝑐𝑜𝑢𝑛𝑡 = 𝑡𝑟𝑒𝑒_𝑐𝑜𝑢𝑛𝑡 + 1
UNION(𝑟1, 𝑟2)

end if
end do

• Function FIND(𝑖) {does path compression also}

if 𝑝𝑖 > 0
𝑝𝑖 = FIND(𝑝𝑖)

end if
return 𝑝𝑖

Jarnik-Prim-Dijkstra Single Tree Algorithm

VUGRAPH 17

• Start with a single node as a fragment and repeat the following step
𝑛 − 1 times

 “If 𝑻 is the current MST generated so far, select a minimum cost edge
incident to 𝑻 and include it in 𝑻 (or color it blue)”

• Example

1 8

8 4

2
5

3

69

1

2 3

7
4 5

6

7

1

2

1

2

4

1

2

1

2

7
4

7

1

4

2

1

2

7
4 5

7

1
1

2

1

4

2 3

1

2 3

7
4 5

7

1

4

2 3

6

1

2 3

7
4 5

6

7

⇒ ⇒ ⇒

⇒ ⇒

Jarnik-Prim-Dijkstra’s procedure

VUGRAPH 18

• Suppose 𝑇 is the MST generated so far

• Find neighbor nodes 𝑖 to 𝑇 ∋ an edge is incident to both 𝑖
and 𝑇

• With each neighbor 𝑖, associate a light blue edge (𝑘, 𝑖)
⇒ That is, a minimum-cost edge incident to 𝑖 and 𝑇

⇒ Light blue ⇒ candidates for inclusion into 𝑇

• Blue and light blue edges together form a tree spanning 𝑇
and its neighbor edges

• Coloring step
 From among these candidates, select one, say (𝑘′, 𝑖′), of minimum cost

and include it in the tree

⇒ 𝑇 → 𝑇 ∪ {𝑖′}
 Consider all edges of the form (𝑖′, 𝑗):

o If 𝑗 ∉ 𝑇 & ∄ a light blue edge of the form 𝑘, 𝑗 , color (𝑖′, 𝑗) light blue ⇒
potential candidate

o Else if 𝑗∉ 𝑇 & ∃ a light blue edge of the form 𝑘, 𝑗 & 𝑐𝑘𝑗 > 𝑐𝑖′𝑗 → mark (k, j) red
(or discard (k, j)) and mark (i’, j) light-blue (or (i’, j) is a potential candidate)

Example

VUGRAPH 19

Step 1 Step 2 Step 3 Step 4

1

2 3

7
4 5

6

1

2 3

7
4

6

1

2 3

7
4 5

6

1

2 3

7
4

• Complexity

ቑ
𝑛 − 1 inserts
𝑛 − 1 deletes and restores
max𝑚 − 𝑛 + 1 siftup operations

⇒

run time:𝑂(𝑛𝑑 log 𝑛 + 𝑚 log𝑛)

𝑑 = 2 +
𝑚

𝑛
⇒ 𝑂(𝑚 log

2+
𝑚
𝑛
𝑛)

Color this red

Heap Implementation

VUGRAPH 20

for each node i
adj_list = set of edges incident to i

blue(𝑖) =൞

undefined if 𝑖 ∉ 𝑇 ∪ {neighbor 𝑇}

light blue edge incident to 𝑖 if 𝑖 ∈ neighbor 𝑇
blue edge if 𝑖 ∈ 𝑇

cost(𝑖) = ቐ
∞ if 𝑖 ∉ 𝑇 ∪ {neighbor 𝑇}

cost of light blue edge if 𝑖 ∈ neighbor 𝑇
−∞ if 𝑖 ∈ 𝑇

for 𝑖 = 1, … , 𝑛 do
cost(𝑖) = ∞

ℎ = ∅; 𝑖 = 1
while 𝑖 ≠ 𝑛𝑢𝑙𝑙 do

cost(𝑖) = −∞
for 𝑖, 𝑗 ∈ 𝑎𝑑𝑗_𝑙𝑖𝑠𝑡(𝑖) do

if(𝑐𝑖𝑗 < cost(𝑗))
cost(𝑗) = 𝑐𝑖𝑗; blue(𝑗) = (𝑖, 𝑗)
if 𝑗∉ ℎ

insert 𝑗 into ℎ
else

siftup 𝑗
𝑖= min of heap for which original min was added

Bor’uvka’s distributed algorithm

VUGRAPH 21

• Bor’uvka’s distributed algorithm
 First assume that all edge weights 𝑐𝑖𝑗 are distinct

 Start with a set of fragments

 Each fragment determines its own minimum edge and informs the fragment that
lies at the other end

 The algorithm correctly terminates!!

• How does each fragment decide on it minimum weight arc?

 See P. Humblet, “A distributed algorithm for minimum weight directed
spanning trees,” IEEE Trans. On Comm., vol. COM-31, pp 756-762

• What can go wrong when have non-distinct costs?

⇒ Cycles

8 5

12 30

18 3 16

264

1

2 3
4

5 6

7

2

10
5

3

4

1

2 3
4

5

7

5

12

3

4

1

2 3
4

5

7

2

done!!

1

2

3
1

11

Proof and algorithm extension

VUGRAPH 22

• If all edge weights are different, have a unique MST

 Suppose non-unique ⇒ at least two MSTs, say 𝑇 and 𝑇′

 Let (𝑖,𝑗) = arg min {𝑐𝑙𝑚} and assume (𝑖,𝑗) ∊ 𝑇

 Suppose add (𝑖,𝑗) to 𝑇′

⇒ Cycle

⇒ Can throw away an arc (𝑘,𝑙) and get a new spanning tree with
less cost

⇒ 𝑇′ not optimal

⇒ contradiction

• To extend Bor’uvka’s algorithm to non-distinct weight
case, do the following:

 In the case of equal weight, break the tie in favor of an edge with a
minimum identity end node and if these nodes are the same, break
the tie in favor of an edge whose other node has a smaller identity

 In this case, we are guaranteed a unique MST

Application: communication network design

VUGRAPH 23

• We will illustrate the MST application via a simple example

• Problem w/o constraints is MST

5
4

2 3

1

𝑓𝑖𝑗 ≤ 5, ∀𝑖, 𝑗

𝑐𝑖𝑗
𝑗 →

𝑖
↓

1 2 3 4 5

1 3 3 5 10

2 3 6 4 8

3 3 6 3 5

4 5 4 3 7

5 10 8 5 7











1 Central facility

4

2

5

1

3
3

2
2

Cost = 14

Prim’s version

VUGRAPH 24

• Step 0: initialize each node 𝑖 with a weighting factor 𝑤𝑖 ∋

 𝑤1 = 0; 𝑤𝑖 = −∞, ∀𝑖 ≠ 1

 𝑡𝑖𝑗 ← 𝑐𝑖𝑗 − 𝑤𝑖 ⇒ 𝑡𝑖𝑗 = ∞ ∋ 𝑖 ≠ 1

 𝑡𝑖𝑗 = saving gained by removing the central connection and
creating a link connection

 {initially then all 𝑡𝑖𝑗 = ∞ except 𝑡1𝑗 representing the cost of
connecting each node to the center}

 find min{𝑡𝑖𝑗 = 𝑡𝑞𝑚}

• Step 1: {in the example, connect 2 or 3 ... Say, we select (1,2)}

• Step 2: if constraints are not violated
add link (𝑞,𝑚)

set 𝑤𝑚 = 0

readjust constraints and recalculate all 𝑡𝑖𝑗

go back to Step 1

Else:
set 𝑡𝑞𝑚 = ∞

go back to Step 1

 {add link (3,1), then (4,3), and finally (5,2)}

4

1

2 3

(3)

(1)

5

(4)

cost: 17

(2)

optimum

4

1

2 3

5

cost: 15

Kruskal’s version and Esau-Williams algorithm

VUGRAPH 25

• Kruskal’s version:

 Select minimum cost links one at a time, check for constraints and repeat
procedure

 Ordering: (1,2) (1,3) (4,3) (5,2) … same as Prim … cost = 17

• Esau-Williams algorithm:

 Step 0: let 𝑡𝑖𝑗 = 𝑐𝑖𝑗 − 𝑐𝑖1, ∀𝑖, 𝑗

{𝑡𝑖𝑗 = a measure of difference in cost of connecting node 𝑖 to node 𝑗 vs.
connecting node 𝑖 to node 1}

𝑡24 = 𝑐24 − 𝑐21 = 4 − 3 = 1

𝑡42 = 𝑐42 − 𝑐41 = 4 − 5 = −1

{⇒ node 2 is closer to the center than to node 4 and node 4 is closer to 2
than to the center}

𝑡53 = 𝑐53 − 𝑐51 = 5 − 10 = −5

𝑡35 = 𝑐35 − 𝑐31 = 5 − 3 = 2

In addition, 𝑡21 = 𝑡31 = 𝑡41 = 𝑡51 = 0

 Step 1: select min{tij = tlm} and consider connecting 𝑖 to 𝑗

Esau-Williams algorithm - continued

VUGRAPH 26

 Step 2: if constraints are not violated

Add link (𝑙,𝑚)

Label node 𝑙 with node 𝑚 label showing 𝑙 connected to 𝑚

Reevaluate constraints and update trade-off functions

Go to Step 1

else

set tlm = ∞

Go back to Step 1

end if

 We get optimal solution here

 For details, see:
o Chandy, K. H and R. A. Russel, “The design of multi-point linkages in a

teleprocessing tree network,” IEEE T-Comp., vol. C-21, Oct. 1972, pp. 1062-
1066

o A. Kreshnebaum and W. Chose, “A unified algorithm for designing multi-drop
teleprocessing network,” IEEE T-Comm., vol. COM-22, Nov. 1974, pp. 1762-
1772

Optimum solution

4

1

2 3

5

Variations

VUGRAPH 27

• On-line algorithms
 Maintain a set of blue trees

 To process an edge, color it blue

 If this forms a cycle of blue edges, discard a maximum-cost blue-edge on
the cycle

 Complexity O(m log n)

 See: F. Maffioli, “Complexity of Optimum Undirected Tree Problems: A
Survey of Recent Results,” Analysis and Design of Algorithms in
Combinatorial Optimization, Springer-Verlag, NY, 1981

• Alternative cost structures
 Can change 𝑐𝑖𝑗 to any monotonic function of 𝑐𝑖𝑗

• How much can you increase/decrease the cost of an edge
without affecting the minimality of the spanning tree?
 Complexity ≤ O(4m) … see Tarjan

• Degree constraints at nodes ⇒ NP-complete
 Degree ≤ 2 at each node ⇒Hamiltonian path problem

A bit more detailed history

VUGRAPH 28

• Late 1940s: Linear programming

• 1950s: Quadratic programming; minimize a convex quadratic
function over a polyhedron

• 1960s: Geometric programming

• 1990s: Conic programming (second order cone programming (SOCP),
semi-definite programming (SDP), robust optimization, etc.)

• Excellent presentation: http://www.robots.ox.ac.uk/~az/lectures/b1/vandenberghe_1_2.pdf

: min . . ; 0
T

x
SLP c x s t Ax b x 

1
: min . . ;

2

T T

x
QP x Qx d x c s t Ax b Gx h   

0

0 0

1 1

1 1

: min ; 0...posynomial function

. . 1; 1,2,.., ; 0

jk

ijk

nK
a

k j k
x

k j

nK
a

ik j ik

k j

GP c x c

s t c x i m c

 

 

 
 

 

 
   

 

 

 

 

 

ln

1

ln

1

: min ln

. . ln 0; 1,2,..,

T
okok

T
ikik

K
a y c

y
k

K
a y c

k

GP e

s t e i m









 
 
 

 
  

 





lnj jy x


Conic Programming

VUGRAPH 29

• Cone: A set C is a cone if x ∈ C implies αx ∈ C for all α > 0.
A cone that is also convex is a convex cone.

 Cone, but not convex: y=|x|, union of first and third quadrants,…

 Convex cones

• Conic Programming:

• Generalized linear programming problems
with the addition of nonlinear convex cones

1

1

1. { : 0, 1,2,.., }

2. {(,) :|| || }...second order cone

3. The set of all poitive semi-definite (SD) matrices,

 (useful in semi-definite programming (SDP))

4. 2 is special

n

i

n

n

R x x i n

Q t x R x t

C P SD cone







  

  

 

case of 3 with
n

T

tI x
P

x t

 
  
 

Example of 2:
Ice-cream or
Lorentz cone

Varieties of Conic Programs & Applications

VUGRAPH 30

• Varieties of Conic Programs

 Linear programming (LP)

 Convex Quadratic programming (QP)

 Quadratically constrained QP (QCQP)

 Geometric programming (GP)

 Second order cone programming (SOCP)

 Semi-definite programming (SDP)

• Applications

 Signal processing & communications

 Finance

 Machine learning

 Robust control

 Combinatorial optimization

More difficult &
More general

Second order Cone Programming (SOCP)

VUGRAPH 31

• What is SOCP?

• Special cases

 Recall support vector machines is a convex QP ~ SOCP

2

1x 1 x

min

s.t.

 || || ; 1, 2,..,

where , , ; ; ; , ,i i

T

x

T

i ii i

k n kn m n m

i ii i

c x

Ax b

C x d e x f i p

x c e R C R d R f R A R b R
 



   

     

,

1/2 1 1/2

1

1. 1 0

2. Convex QP is a special case of SOCP

 CQP: min . . ; ; 0

 SOCP: min . . ; ;

 (Note: {(,) :|| || }...second

T

ii i

T T

x

T T

x t

n

n

k e x f LP

x Qx c x s t Ax b C x d Q

t c x s t Ax b C x d t x Qx

C t Q x R Q x t



    

   

   

   order cone)

SOCP and variants

VUGRAPH 32

• Special cases and variants

2

3. Quadratically constrained LP: 0

 min

s.t.

 || || 2 0

4. SOCP is a special case of SDP... used to approximate integer programs

 min

i

T

x

T T TT T

i i i ii i i i i i

T

x

e

c x

Ax b

C x d f x C C x x C d d d f

c





      

 
 

1

s.t.

 0, 1,2,..,
i

T

i ii k i

T T

i ii i

x

Ax b

e x f I C x d
i m

C x d e x f





  
   
   

Example 1: Robust LP

VUGRAPH 33

• Inequality constraint with uncertain coefficients

• What if ai is Gaussian

• Robust LP is a SOCP for  > 0.5

2

2

2
|| || 1

2

ˆ ˆwhere ellipsoid centerd at , { :|| || 1}

ˆ ˆmax max || ||

ˆ|| || second order cone constraint

T

i i i ii i

T T T TT T

i i ii i i
x E u

TT

ii i

a x b a a a R u u

b a x a x u R x a x R x

R x a x b

 

      

     

    

2

2

/2

2

1

2

ˆ~ (,), and want { }

ˆ: ~ (,), || ||

ˆ 1
(0) () ; ()

|| || 2

ˆ() || ||

TT

i i ii i i i i

T T T T T

i ii i i i z i

T
y

uii

T

i

TT

ii i

a N a R R P a x b

Note z a x b N a x b x R R x R x

b a x
P z y e du Normal CDF

R x

R x b a x
















    

   


      

  



1

2
ˆmin . . () || || , 1, 2,..,

T TT

ii i
x

c x s t R x b a x i p   

Example 2: LP with random cost

VUGRAPH 34

• Arises in shortest path problems or network flow problems

• Expected cost-variance trade-off (the so-called Markovitz
model of risk in portfolio theory when it is formulated as a
maximization problem)

 > 0 risk aversion parameter

ˆ ~N(,)

ˆ~ (,)

c

T T T

c

c c

c x N c x x x



 

1

2

ˆmin

ˆ. . () || || , 1, 2,..,

T T

c
x

TT

ii

c x x x

s t R x b a x i p





 

   

Example 3: Sparse signal reconstruction

VUGRAPH 35

• x is a long signal (say, 1000 samples) with very few non-
zero components (say, 10)

• Want to reconstruct the signal from noisy m (say, 100)
noisy measurements

• L2 regularization (Robust least squares)

 > 0 regularization parameter

• L1 regularization (LASSO: least absolute shrinkage and
selection operator)

2 ; ~ (0,)mb Ax n n N I 

2 2

2 2min || || + || ||
x

f Ax b x 

2

2 1min || || + || ||
x

f Ax b x 

Original x L2 reconstruction
error

L1 reconstruction

VUGRAPH 36

 Initialize 00 00, 0, , (0.9 1)px     

maxfor 0,1,2,

 =

If , stop

else% calculate affine direction

 /

0 0

 solve 0 ; Diag(); Diag(

0

T

k k

k

xa

T T

a k k k k k

k k pa k k

k

k k

t p x

t

t n

A d

A I d A p c D x P

P D d D

Ax b

P e















   
   

        
       





     
 

(: 0) (: 0)

3

 min 1, min ; min 1, min

)

 calculate

) () / ;Centering parameter

0 0

 solve

(/

 0

0

ki ki

xai
xa

pai
i pai

x p

pa d d

ak pa

k

da
i d i d

T

k xa k pa k

T

d a

k

a k k

p

x d p d n

A

A I

P D

   

    



 







  



     (: 0) (: 0)

1 1 1

 min 1, min ; min 1, min

 ; ;

ki ki

x
xi pi

i pi

x

T

k

x p

p d

k k

k p k k xa pa k k

d
i d i d

k k p k k k d k

d

d

d A p c

d D P e d d e

px x d

Ax b

d









  









 

 







 

   
   

      
          

   



 

end

end

k d pp d 

Recall Primal-dual path following algorithm for LP

Affine direction

When ak<< k, it
becomes a
centering direction

Mehrotra’s
correction

VUGRAPH 37

 QP:

 Initialize 0 00, 0, (0.9 0.99)p     

maxfor 0,1,2,

 =

If , stop

else

 /

0

 solve 0 ; Diag(); Diag()

0

 calculate

T

kk

k

T

kxa

k ka k k k k

k k pa k k k

T

k

k

k k

t p

t

t m

Q A d d

A I d Ax p b P p

P d D P e e

Qx A













 







     
    

           
        





 

0

3

: 0 :
 min{ min(1, /), min (1, /)

 }

) () / ;Centering parameter

0

 solv

/

e 0

0

(

i pi

T

k

a ki ai ki pai
i d i d

ak a a ak k

k

a k pa k

T

x

k k p

d p

d p d

Qx

d m

Q A d

A I d

P d








 

     

 

  

   
   

     
     

 

 





1 1 1

0 & { :

0}

; ;

end

end

k

k k

k k p k k

kk p

k k k k k k k p

T d

Ax p b

D P e d d e

p d d

px x d d p

A

d







 



 

  

      

 
 

  
 

  

   

    







Primal-dual path following algorithm for QP
1

min . . ; x
2

: 0; 0; 0; 0; 0

T T

x

T

i i i i

x Qx d x c s t Ax b A m n

KKT Qx A d Ax p b p p  

  

        

Primal and dual for SOCP

VUGRAPH 38

• Recall Cone LP

• Dual (easy to see from Lagrangian)

• KKT or CS conditions:

2

1x 1 x

min

s.t.

 || || ; 1, 2,..,

where , , ; ; ; , ,i i

T

x

T

i ii i

k n kn m n m

i ii i

c x

Ax b

C x d e x f i p

x c e R C R d R f R A R b R
 



   

     
2

:

min

s.t.

 || || ; 1, 2,..,

 ; 1, 2,..,

 ; 1, 2,..,

T

x

i i

i ii

T

i i i

Explicit form

c x

Ax b

u t i p

C x u d i p

e x t f i p



 

   

   

 
,{ , }

1

1

2

max

s.t.

 || || ; 1, 2,..,

ii

p
T T

i i i i

i

p
T T

i ii i

i

i i

b d f

C e A c

i p

  
  

  

 





 

 
   

 

 





See: Anderson et al. “Interior-point methods for large-scale cone programming,”
http://www.seas.ucla.edu/~vandenbe/publications/mlbook.pdf
Lobo et al. “Applications of second order cone programming,” Linear Algebra and its
Applications, 284, pp. 193-228, 1998.

2 2

2 2

2 2

|| || || || 0

|| || || || 0

|| || ,|| ||

i ii i

i ii i

i i i ii i i i

u t

t u

u t u t

 

 

   

   

   

    

Useful in robust SVM and a
number of other applications.
Interior point methods extend
here. See Anderson et al.

http://www.seas.ucla.edu/~vandenbe/publications/mlbook.pdf

Barrier method for SOCP

VUGRAPH 39

• Lagrangian of Barrier version of Cone LP

• KKT conditions

• Algorithm: Given a strictly feasible x (e.g., phase I LP), t=t01,  10-
20, tolerance 

 Centering step: compute x* (t) and * (t) set x = x* (t) and  = * (t)

 Stopping criterion: Terminate if p/t< . Else go to next step.

 Increase t: t = t and go to Centering step.

• Convergence typically in 20-50 iterations. Primal-dual path following
algorithms exist. See Anderson et al.

2 2

2

1
()

1
min (,)= ln () || || ()

i

p
T T T

i ii i
x

i
f x

L x c x e x f C x d b Ax
t

 


      
 

1

2 1
() () 0

()

() 0

p
TT T

i i ix i i i

i i

L c A e x f e C C x d
t f x

L Ax b




        
 

    



50 variables and 50
cone constraints in R6

http://www.robots.ox.ac.uk/~az/lectures
/b1/vandenberghe_1_2.pdf

http://www.robots.ox.ac.uk/~az/lectures/b1/vandenberghe_1_2.pdf

Summary

VUGRAPH 40

• Spanning tree algorithms

 Kruskal

 Prim

 Distributed

• Applications to communication network design problem

• Introduction to Cone Programming

