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• Review of relevant theory

• Why solve the minimum spanning tree problem?

• Three basic algorithms

 Kruskal (1956)

 Jarnik-Prim-Dijkstra (1930, 1957, 1959)

 Bor’uvka (1926) … a distributed algorithm

• Application to centralized communication network design 
problem

• Introduction to Cone Programming



Review of Relevant Graph Theory
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• Undirected graph G = (V, E)

 V = set of vertices (nodes)

 E = set of edges (arcs)

• A graph G is connected if, for every node i, ∃ a path (𝑖 = 𝑣1, 𝑣2, … , 𝑣𝑙 = 𝑗) to 
every node 𝑗

• Not connected ⇒ can find two sets of nodes with no edges between them

• Basic result:

 For a connected graph G, if X ∈V is a nonempty subset of V, then ∃ at least one edge (𝑖, 𝑗) ∋ 𝑖 ∈ 𝑋
and 𝑗 ∈ ത𝑋 = (𝑉 − 𝑋)

 You can think of the partition of vector set 𝑉 into 𝑋 and ത𝑋 as a cut in graph 𝐺 and the edge  (𝑖, 𝑗)
crosses the cut since it is incident on 𝑋 (one end in 𝑋 the other in ത𝑋)
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Spanning Tree and Forest
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• A tree is a connected graph with no cycles (loops, circuits) ⇒ 𝑛 − 1 arcs 
(edges)

• A spanning tree of a connected graph G is a tree and contains 
all the nodes of G

• A forest (fragment ) is a node-disjoint collection of trees

 # of nodes = n

 # of edges = n – 1

 There exists a single path between every pair

 Adding an edge results in exactly one cycle

 Deleting an edge makes the tree disconnectedSpanning tree of graph G
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How to construct a Spanning tree?
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• How to construct a spanning tree or how to check for the 
connectedness of a graph?

 DFS: select an edge (𝑖, 𝑗) ∋ 𝑖 was visited most recently … stack or LIFO or recursion. 
Can also get pre- and post-order traversal

 BFS: select an edge (𝑖, 𝑗) ∋ 𝑖 was visited least recently … queue

• Depth-first generation of spanning tree: call dfs(i)

∀ vertex, initialize pre-visit to null
procedure dfs(𝑖)

pre-visit(𝑖)
for (𝑖, 𝑗) ∈ out(i) do

if not visited(𝑗)
parent(𝑗) =𝑖
dfs(𝑗)

end if
end do
post-visit(𝑖)

O(m) complexity
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Breadth-first generation of a Spanning tree
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• Breadth-first search generation of spanning tree: call bfs(1)

⇒ For every connected graph 𝐺 with 𝑛 nodes and 𝑚 arcs ∃ a spanning 
tree, where 𝑚 ≥ 𝑛 − 1
⇒ 𝐺 is a tree iff number of edges of the tree, 𝑚 = 𝑛 − 1 and connected

∀ vertex, initialize bfs-visit to null
procedure bfs(1)

queue = {1}
while queue not empty do

𝑖 = 𝑞𝑢𝑒𝑢𝑒[1]; 𝑞𝑢𝑒𝑢𝑒 = {2, … }
bfs-visit(𝑖)
for 𝑖, 𝑗 ∈ out(𝑖) do

if not visited 𝑗 & 𝑗∉ queue
𝑞𝑢𝑒𝑢𝑒 = 𝑞𝑢𝑒𝑢𝑒 ∪ {𝑗}

end if
end do

end do

O(m) complexity
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⇒ need connectedness for it to be a tree 



Minimal Spanning Tree (MST) Problem
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• Given an undirected connected graph 𝑮, each of whose edges 
has a real-valued cost 𝒄𝒊𝒋,find a spanning tree of the graph 
whose total edge cost is minimum

• Can do for directed or undirected graphs … we will consider 
undirected graphs only

• Why solve this problem?
 Arises as a sub-problem in communication network design

o Connecting terminals to a specified concentrator (switching node) via a multi-drop link

o Connecting concentrator to a central processing facility

• Want minimum cost connection subject to constraints on:

 Delay (or flow) on each link

 Reliability ⇒ alternate paths or not more than a specified number of 
terminals be disconnected if a link fails

o Problem is much more involved than MST (in fact, it is NP-hard!)

 MST forms a starting point for design

 We will come back to this later

o Also useful in simplex-based network flow algorithms

 Recall for network flows, bfs is a spanning tree.  See Bersekas’ book



Basic Idea of all MST Algorithms
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• Incremental construction edge by edge via the greedy 
method ⇒ do the best thing at every step

• “Smallest edge first strategy w/o forming cycles”

• Any sub-tree of a MST will be called a fragment

• Set of fragments ≡ forest

• Main result:

 Given a fragment 𝐹, let 𝑒 = (𝑖, 𝑗) be a minimum weight edge from 𝐹 where 
node 𝑗 ∉ 𝐹 ⇒ 𝐹 extended by edge 𝑒 and node 𝑗 is a fragment (i.e., part of 
MST) 
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Proof of main result
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 Denote by 𝑇 the MST of which 𝐹 is fragment

 If  𝑒 ∈ 𝑇, we are done; so, assume otherwise

 Then, there is a cycle formed by  e and the edges of 𝑇

 Since 𝑗 ∉ 𝐹, there must be some edge 𝑒′ = (𝑖′, 𝑗) that belongs to the 
cycle, to 𝑇 and to 𝐹

 Deleting (𝑖′, 𝑗) from 𝑇 and adding (𝑖, 𝑗) to 𝑇 results in a spanning 
tree 𝑇′ ∋ cost of 𝑇′ ≤ cost of 𝑇

⇒ 𝑇′ is an MST

⇒ So, 𝐹 extended by 𝑒 must be part of MST

• Three Classical Algorithms

 Kruskal (1956)

 Jarnik-Prim-Dijkstra (1930, 1957, 1959)

 Bor’uvka (1926) …  a distributed algorithm



Three Classical Algorithms
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• Kruskal’s algorithm
 Start with each node as a fragment

 Successively combine two of the fragments by using the edge that has 
minimum weight and when added does not result in a cycle 

• Jarnik-Prim-Dijkstra
 Select an arbitrary node as a fragment

 Enlarge the fragment by successively adding a minimum weight edge

• Bor’uvka 
 For every fragment, select a minimum cost edge incident to it

 Add it to the fragment and inform the fragment that lies at the other end 
of this edge  …. Can do it in a distributed way!

• You can think of these algorithms as edge-coloring
processes
 Blue ⇒ part of MST or accept

 Red ⇒ not part of MST or reject



Kruskal’s algorithm (forest algorithm)
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 Sort edge weights in non-decreasing order  …. Possibly heaps?

 Using the sorted list, include 𝑒 = (𝑖, 𝑗) if it does not form a cycle (color it 
blue)

 If it does, discard the edge (or color it red)

 Stop when all 𝑚 = (𝑛 − 1) edges (tree) have been included or all edges 
have been examined

⇒ Minimum spanning forest (set of fragmented trees)

 Crude version of Kruskal

𝑇 = ∅

while 𝑇 < 𝑛 − 1 & 𝐸 ≠ 0 do

𝑒 = smallest edge in 𝐸

𝐸 = 𝐸 − {𝑒}

if (𝑇 ∪ {𝑒}) has no cycle

𝑇 = 𝑇 ∪ {𝑒}

end if

end do

• Two hurdles:

 Sorting 𝑚 elements requires  
O(m log m)

o May be too much work since 
need only (𝑛 − 1) edges

o Time for heaps??

 How to test for cycles easily

o In other words, both ends of the 
current edge being colored 
belong to the same fragment



Resolving the two hurdles
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• We resolve the first problem by forming a heap

 O(m) computational steps

 Finding next minimum takes O(log m) steps, assuming a binary heap

 If we do this k times, need O(k log m) steps

⇒ total = O(m + k log m) computation for sorting

• We resolve the second problem by maintaining fragments in the form 
of subsets of nodes

 Add a new edge by forming union of two relevant subsets

 Check for cycle formation by invoking FIND twice to check if two vertices of the 
edge belong to the same tree (subset, fragment)

• Example
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• 1 2 3 4 5 6 → 1,2 3 4 5 6 {7}

→ 1,2,4 3 5 6 7 → 1,2,4 3,5 6 7

→ 1,2,4 3,5,7 6 → discard edge (3,7)

→ 1,2,4 3,5,7,6 → {1,2,4,3,5,7,6} done!!
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Efficient storage and sorting procedures
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 Need efficient methods for sorting fragments (subsets or subtrees)

 Need efficient UNION & FIND procedures

• We can accomplish both of these objectives by storing 
fragments as rooted trees

 Nodes of the tree are elements of the fragment

 Each node 𝑖 of the tree has a parent pointer 𝑝𝑖

o Root node ቐ

no pointer
pointer to (−#of elements in the tree)∗∗
pointer to (height of the tree or rank)

 To carry out FIND(𝑖), we follow parent pointers from 𝑖 to the root of the 
tree containing 𝑖 and return the root

 So to find cycle:

o If FIND(𝑖) = FIND(𝑗), we have a cycle!!
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Efficient storage and union of fragments
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if 𝑝𝑥 > 𝑝𝑦 then

𝑝𝑥 = 𝑝𝑥+𝑝𝑦
𝑝𝑦 = 𝑥

else
𝑝𝑦 = 𝑝𝑥+𝑝𝑦
𝑝𝑥 = 𝑦

end if

 To carry out UNION(𝑥, 𝑦), where x and y are 
roots of subsets

• UNION rank

 Keep track of rank (height) of trees

 Do exactly the same as with size except that 𝑝𝑥 and 𝑝𝑦
denote ranks

• Don’t change ranks unless 𝑝𝑥 = 𝑝𝑦

⇒ make 𝑥 point to 𝑦; 𝑝𝑥 = 𝑝𝑦 + 1

• We can make FIND operation more efficient by a heuristic called path 
compression

 When FIND(𝑖) is invoked, after locating root 𝑥 of the tree, make every node on 
the path point to the root

⇒
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 Computational complexity: O(m α(m, n))
(See Tarjan or Horwitz & Sahni for details) 
where α(m, n) = inverse of Ackerman’s 
function 



Ackerman’s function 𝒊, 𝒋 ≥ 𝟏
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𝐴 1, 𝑗 = 2𝑗 , ∀𝑗 ≥ 1

𝐴 𝑖, 1 = 𝐴(𝑖 − 1,2), ∀𝑖 ≥ 2

𝐴 𝑖, 𝑗 = 𝐴 𝑖 − 1, 𝐴 𝑖, 𝑗 − 1 , ∀𝑖, 𝑗 ≥ 2

𝛼 𝑚, 𝑛 = min 𝑖 ≥ 1: 𝐴 𝑖,
𝑚

𝑛
> log 𝑛

• Note that 𝐴(2,1) = 𝐴(1,2) = 4

• 𝐴(3,1) = 𝐴(2,2) = 𝐴(1, 𝐴(2,1)) = 𝐴(1,4) = 24 = 16

• 𝛼 𝑚, 𝑛 = min ∙ ≤ 3, ∀𝑛 < 216 = 65,536

• 𝐴 4,1 = 𝐴 2,16 = 2“big number” which is very large

• For all practical purposes, 𝛼(𝑚, 𝑛) ≤ 4

⇒ Computational complexity O(3m) or O(4m)



Overall Kruskal
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set father (parent) array to −1 or rank = 0
form initial heap of 𝑚 edges
𝑒𝑑𝑔𝑒_𝑐𝑜𝑢𝑛𝑡 = 𝑡𝑟𝑒𝑒_𝑐𝑜𝑢𝑛𝑡 = 0;  𝑇 ← ∅
while (𝑡𝑟𝑒𝑒_𝑐𝑜𝑢𝑛𝑡 < 𝑛 − 1 & 𝑒𝑑𝑔𝑒_𝑐𝑜𝑢𝑛𝑡 < 𝑚) do

𝑒 = edge(𝑖, 𝑗) from top of heap
𝑒𝑑𝑔𝑒_𝑐𝑜𝑢𝑛𝑡 = 𝑒𝑑𝑔𝑒_𝑐𝑜𝑢𝑛𝑡 + 1
remove 𝑒 from heap & restore heap … delete min operation
𝑟1 = FIND(𝑖); 𝑟2 = FIND(𝑗)
if (𝑟1 ≠ 𝑟2) then

𝑇 = 𝑇 ∪ {𝑒}
𝑡𝑟𝑒𝑒_𝑐𝑜𝑢𝑛𝑡 = 𝑡𝑟𝑒𝑒_𝑐𝑜𝑢𝑛𝑡 + 1
UNION(𝑟1, 𝑟2)

end if
end do

• Function FIND(𝑖) {does path compression also}

if 𝑝𝑖 > 0
𝑝𝑖 = FIND(𝑝𝑖)

end if
return  𝑝𝑖



Jarnik-Prim-Dijkstra Single Tree Algorithm
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• Start with a single node as a fragment and repeat the following step  
𝑛 − 1 times

 “If 𝑻 is the current MST generated so far, select a minimum cost edge 
incident to 𝑻 and include it in 𝑻 (or color it blue)”

• Example
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Jarnik-Prim-Dijkstra’s procedure
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• Suppose 𝑇 is the MST generated so far

• Find neighbor nodes 𝑖 to 𝑇 ∋ an edge is incident to both 𝑖
and 𝑇

• With each neighbor 𝑖, associate a light blue edge (𝑘, 𝑖)
⇒ That is, a minimum-cost edge incident to 𝑖 and 𝑇

⇒ Light blue ⇒ candidates for inclusion into 𝑇

• Blue and light blue edges together form a tree spanning 𝑇
and its neighbor edges

• Coloring step
 From among these candidates, select one, say (𝑘′, 𝑖′), of minimum cost 

and include it in the tree

⇒ 𝑇 → 𝑇 ∪ {𝑖′}
 Consider all edges of the form (𝑖′, 𝑗):

o If 𝑗 ∉ 𝑇 & ∄ a light blue edge of the form 𝑘, 𝑗 , color (𝑖′, 𝑗) light blue ⇒
potential candidate

o Else if 𝑗∉ 𝑇 & ∃ a light blue edge of the form 𝑘, 𝑗 & 𝑐𝑘𝑗 > 𝑐𝑖′𝑗 → mark (k, j) red 
(or discard (k, j)) and mark (i’, j) light-blue (or (i’, j) is a potential candidate)



Example
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Step 1 Step 2 Step 3 Step 4
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• Complexity

ቑ
𝑛 − 1 inserts
𝑛 − 1 deletes and restores
max𝑚 − 𝑛 + 1 siftup operations

⇒

run time:𝑂(𝑛𝑑 log 𝑛 + 𝑚 log𝑛)

𝑑 = 2 +
𝑚

𝑛
⇒ 𝑂(𝑚 log

2+
𝑚
𝑛
𝑛)

Color this red



Heap Implementation
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for each node i
adj_list = set of edges incident to i

blue(𝑖) =൞

undefined if 𝑖 ∉ 𝑇 ∪ {neighbor 𝑇}

light blue edge incident to 𝑖 if 𝑖 ∈ neighbor 𝑇
blue edge if 𝑖 ∈ 𝑇

cost(𝑖) = ቐ
∞ if 𝑖 ∉ 𝑇 ∪ {neighbor 𝑇}

cost of light blue edge if 𝑖 ∈ neighbor 𝑇
−∞ if 𝑖 ∈ 𝑇

for 𝑖 = 1, … , 𝑛 do
cost(𝑖) = ∞

ℎ = ∅; 𝑖 = 1
while 𝑖 ≠ 𝑛𝑢𝑙𝑙 do

cost(𝑖) = −∞
for 𝑖, 𝑗 ∈ 𝑎𝑑𝑗_𝑙𝑖𝑠𝑡(𝑖) do

if(𝑐𝑖𝑗 < cost(𝑗))
cost(𝑗) = 𝑐𝑖𝑗; blue(𝑗) = (𝑖, 𝑗)
if  𝑗∉ ℎ

insert 𝑗 into ℎ
else

siftup 𝑗
𝑖= min of heap for which original min was added



Bor’uvka’s distributed algorithm
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• Bor’uvka’s distributed algorithm
 First assume that all edge weights 𝑐𝑖𝑗 are distinct

 Start with a set of fragments

 Each fragment determines its own minimum edge and informs the fragment that 
lies at the other end

 The algorithm correctly terminates!!

• How does each fragment decide on it minimum weight arc?

 See P. Humblet, “A distributed algorithm for minimum weight directed 
spanning trees,” IEEE Trans. On Comm., vol. COM-31, pp 756-762

• What can go wrong when have non-distinct costs?

⇒ Cycles

8 5

12 30

18 3 16

264

1

2 3
4

5 6

7

2

10
5

3

4

1

2 3
4

5

7

5

12

3

4

1

2 3
4

5

7

2

done!!

1

2

3
1

11



Proof and algorithm extension
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• If all edge weights are different, have a unique MST

 Suppose non-unique ⇒ at least two MSTs, say 𝑇 and 𝑇′

 Let (𝑖,𝑗) = arg min {𝑐𝑙𝑚} and assume (𝑖,𝑗) ∊ 𝑇

 Suppose add (𝑖,𝑗) to 𝑇′

⇒ Cycle

⇒ Can throw away an arc (𝑘,𝑙) and get a new spanning tree with 
less cost

⇒ 𝑇′ not optimal

⇒ contradiction

• To extend Bor’uvka’s algorithm to non-distinct weight 
case, do the following:

 In the case of equal weight, break the tie in favor of an edge with a 
minimum identity end node and if these nodes are the same, break 
the tie in favor of an edge whose other node has a smaller identity

 In this case, we are guaranteed a unique MST



Application: communication network design
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• We will illustrate the MST application via a simple example

• Problem w/o constraints is MST

5
4

2 3

1

𝑓𝑖𝑗 ≤ 5, ∀𝑖, 𝑗

𝑐𝑖𝑗
𝑗 →

𝑖
↓

1 2 3 4 5

1 3 3 5 10

2 3 6 4 8

3 3 6 3 5

4 5 4 3 7

5 10 8 5 7











1 Central facility

4

2

5

1

3
3

2
2

Cost = 14



Prim’s version
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• Step 0: initialize each node 𝑖 with a weighting factor 𝑤𝑖 ∋

 𝑤1 = 0; 𝑤𝑖 = −∞, ∀𝑖 ≠ 1

 𝑡𝑖𝑗 ← 𝑐𝑖𝑗 − 𝑤𝑖 ⇒ 𝑡𝑖𝑗 = ∞ ∋ 𝑖 ≠ 1

 𝑡𝑖𝑗 = saving gained by removing the central connection and 
creating a link connection

 {initially then all 𝑡𝑖𝑗 = ∞ except 𝑡1𝑗 representing the cost of 
connecting each node to the center}

 find min{𝑡𝑖𝑗 = 𝑡𝑞𝑚}

• Step 1: {in the example, connect 2 or 3 ... Say, we select (1,2)}

• Step 2: if constraints are not violated 
add link (𝑞,𝑚)

set 𝑤𝑚 = 0

readjust constraints and recalculate all 𝑡𝑖𝑗

go back to Step 1

Else:
set 𝑡𝑞𝑚 = ∞

go back to Step 1

 {add link (3,1), then (4,3), and finally (5,2)}

4

1

2 3

(3)

(1)

5

(4)

cost: 17

(2)

optimum
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Kruskal’s version and Esau-Williams algorithm 
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• Kruskal’s version:

 Select minimum cost links one at a time, check for constraints and repeat 
procedure

 Ordering: (1,2) (1,3) (4,3) (5,2) … same as Prim … cost = 17

• Esau-Williams algorithm:

 Step 0: let 𝑡𝑖𝑗 = 𝑐𝑖𝑗 − 𝑐𝑖1, ∀𝑖, 𝑗

{𝑡𝑖𝑗 = a measure of difference in cost of connecting node 𝑖 to node 𝑗 vs. 
connecting node 𝑖 to node 1}

𝑡24 = 𝑐24 − 𝑐21 = 4 − 3 = 1

𝑡42 = 𝑐42 − 𝑐41 = 4 − 5 = −1

{⇒ node 2 is closer to the center than to node 4 and node 4 is closer to 2 
than to the center}

𝑡53 = 𝑐53 − 𝑐51 = 5 − 10 = −5

𝑡35 = 𝑐35 − 𝑐31 = 5 − 3 = 2

In addition, 𝑡21 = 𝑡31 = 𝑡41 = 𝑡51 = 0

 Step 1: select min{tij = tlm} and consider connecting 𝑖 to 𝑗



Esau-Williams algorithm - continued
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 Step 2: if constraints are not violated

Add link (𝑙,𝑚)

Label node 𝑙 with node 𝑚 label showing 𝑙 connected to 𝑚

Reevaluate constraints and update trade-off functions

Go to Step 1

else

set tlm = ∞

Go back to Step 1

end if 

 We get optimal solution here

 For details, see:
o Chandy, K. H and R. A. Russel, “The design of multi-point linkages in a 

teleprocessing tree network,” IEEE T-Comp., vol. C-21, Oct. 1972, pp. 1062-
1066

o A. Kreshnebaum and W. Chose, “A unified algorithm for designing multi-drop 
teleprocessing network,” IEEE T-Comm., vol. COM-22, Nov. 1974, pp. 1762-
1772

Optimum solution
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Variations
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• On-line algorithms
 Maintain a set of blue trees

 To process an edge, color it blue

 If this forms a cycle of blue edges, discard a maximum-cost blue-edge on 
the cycle

 Complexity O(m log n)

 See: F. Maffioli, “Complexity of Optimum Undirected Tree Problems: A 
Survey of Recent Results,” Analysis and Design of Algorithms in 
Combinatorial Optimization, Springer-Verlag, NY, 1981

• Alternative cost structures
 Can change 𝑐𝑖𝑗 to any monotonic function of 𝑐𝑖𝑗

• How much can you increase/decrease the cost of an edge 
without affecting the minimality of the spanning tree?
 Complexity  ≤ O(4m) … see Tarjan

• Degree constraints at nodes ⇒ NP-complete
 Degree ≤ 2 at each node ⇒Hamiltonian path problem



A bit more detailed  history
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• Late 1940s:  Linear programming

• 1950s:  Quadratic programming; minimize a convex quadratic 
function over a polyhedron 

• 1960s: Geometric programming

• 1990s: Conic programming (second order cone programming (SOCP),  
semi-definite programming (SDP), robust optimization, etc.) 

• Excellent presentation: http://www.robots.ox.ac.uk/~az/lectures/b1/vandenberghe_1_2.pdf 
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Conic Programming
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• Cone: A set C is a cone if x ∈ C implies αx ∈ C for all α > 0. 
A cone that is also convex is a convex cone. 

 Cone, but not convex: y=|x|, union of first and third quadrants,…

 Convex cones

• Conic Programming:

• Generalized linear programming problems 
with the addition of nonlinear convex cones 

1

1

1. { : 0, 1,2,.., }

2. {( , ) :|| || }...second order cone

3.  The set of all poitive semi-definite (SD) matrices, 

    (useful in semi-definite programming (SDP))

4. 2 is special 
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Example of 2: 
Ice-cream or 
Lorentz cone



Varieties of Conic Programs & Applications
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• Varieties of Conic Programs

 Linear programming (LP) 

 Convex Quadratic programming (QP) 

 Quadratically constrained QP (QCQP)

 Geometric programming (GP)

 Second order cone programming (SOCP)

 Semi-definite programming (SDP)

• Applications

 Signal processing & communications

 Finance

 Machine learning

 Robust control

 Combinatorial optimization

More difficult & 
More general



Second order  Cone Programming (SOCP)
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• What is SOCP?

• Special cases

 Recall support vector machines is a convex QP ~ SOCP
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SOCP and variants
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• Special cases and variants

2

3. Quadratically constrained LP: 0

       min  

s.t.   

       || ||  2 0

4. SOCP is a special case of SDP... used  to approximate integer programs
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Example 1: Robust LP
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• Inequality constraint with uncertain coefficients

• What if ai is Gaussian

• Robust LP is a SOCP for  > 0.5
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Example 2: LP with random cost
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• Arises in shortest path problems or network flow problems

• Expected cost-variance trade-off (the so-called Markovitz
model of risk in portfolio theory when it is formulated as a 
maximization problem)

 > 0 risk aversion parameter
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Example 3: Sparse signal reconstruction
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• x is a long signal (say, 1000 samples) with very few non-
zero components (say, 10)

• Want to reconstruct the signal from noisy m (say, 100) 
noisy measurements 

• L2 regularization (Robust least squares)

 > 0 regularization parameter

• L1 regularization (LASSO: least absolute shrinkage and 
selection operator)

2 ; ~ (0, )mb Ax n n N I 

2 2

2 2min || ||  + || ||
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x

f Ax b x 

Original x L2 reconstruction
error

L1 reconstruction
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 Initialize 00 00, 0, , ( 0.9 1)px     
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   =
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end

k d pp d 

Recall Primal-dual path following algorithm for LP

Affine direction

When ak<< k, it 
becomes a 
centering direction

Mehrotra’s
correction
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 QP: 

 Initialize 0 00, 0, ( 0.9 0.99)p     
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Primal-dual path following algorithm for QP
1
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Primal and dual for SOCP
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• Recall Cone LP

• Dual (easy to see from Lagrangian) 

• KKT or CS conditions:
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See:  Anderson et al. “Interior-point methods for large-scale cone programming,” 
http://www.seas.ucla.edu/~vandenbe/publications/mlbook.pdf
Lobo et al.  “Applications of second order cone programming,” Linear Algebra and its 
Applications, 284, pp. 193-228, 1998. 
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Useful in robust SVM and a 
number of other applications.
Interior point methods extend 
here. See Anderson et al. 

http://www.seas.ucla.edu/~vandenbe/publications/mlbook.pdf


Barrier method for SOCP
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• Lagrangian of Barrier version of Cone LP

• KKT conditions

• Algorithm:  Given a strictly feasible x (e.g., phase I LP), t=t01,  10-
20, tolerance 

 Centering step: compute x* (t) and * (t) set x = x* (t) and  = * (t) 

 Stopping criterion: Terminate if p/t< .  Else go to next step. 

 Increase t: t = t and go to Centering step. 

• Convergence typically in 20-50 iterations.  Primal-dual path following 
algorithms exist.  See Anderson et al. 
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50 variables and 50 
cone constraints in R6

http://www.robots.ox.ac.uk/~az/lectures
/b1/vandenberghe_1_2.pdf

http://www.robots.ox.ac.uk/~az/lectures/b1/vandenberghe_1_2.pdf


Summary
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• Spanning tree algorithms

 Kruskal

 Prim

 Distributed

• Applications to communication network design problem

• Introduction to Cone Programming


