Lecture 11:
4 Minimum Spanning Trees & Cone
Programming

Prof. Krishna R. Pattipati
Dept. of Electrical and Computer Engineering

University of Connecticut
Contact: krishna@engr.uconn.edu; (860) 486-2890

© K. R. Pattipati, 2001-2016

@ Outline

« Review of relevant theory
* Why solve the minimum spanning tree problem?

 Three basic algorithms
= Kruskal (1956)
= Jarnik-Prim-Dijkstra (1930, 1957, 1959)
= Bor’'uvka (1926) ... a distributed algorithm

 Application to centralized communication network design
problem

* Introduction to Cone Programming

UCONN

@ Review of Relevant Graph Theory

» Undirected graph G = (V, E)
= V = set of vertices (nodes)

= E =set of edges (arcs)

» A graph G is connected if, for every node i, 3 a path (i = v, v,,...,v; = j) to

every node j
2 2
1 4 O/O o
@)
3

connected
connected not connected (by definition)

» Not connected = can find two sets of nodes with no edges between them
 Basic result:

» For a connected graph G, if X €V is a nonempty subset of V, then 3 at least one edge (i,j) 3 i € X
andj e X = (V—X)

= You can think of the partition of vector set V into X and X as a cut in graph G and the edge (i,)
crosses the cut since it is incident on X (one end in X the other in X)

UCONN

@ Spanning Tree and Forest

» A tree is a connected graph with no cycles (loops, circuits) = n — 1 arcs
(edges)

* A spanning tree of a connected graph G is a tree and contains
all the nodes of G

= #ofnodes=n

2 2 h
» #ofedges=n-1
1 4 1 4
— = There exists a single path between every pair
3 3

» Adding an edge results in exactly one cycle

Spanning tree of graph G » Deleting an edge makes the tree disconnected

« A forest (fragment) is a node-disjoint collection of trees

forest: set of trees spanning tree

UCONN

@ How to construct a Spanning tree?

« How to construct a spanning tree or how to check for the
connectedness of a graph?

= DFS: select an edge (i,j) 3 i was visited most recently ... stack or LIFO or recursion.
Can also get pre- and post-order traversal

= BFS: select an edge (i,j) 3 i was visited least recently ... queue

* Depth-first generation of spanning tree: call dfs(7)

V vertex, initialize pre-visit to null
procedure dfs(i)
pre-visit(i) graph dfs spanning tree
for (i,)) € out(i) do 1 1
if not visited(j) =
parent(j) =i
dts(j) 4 5 6 4 5 6
end if
end do
post-visit(i)

O(m) complexity

UCONN

¥ Breadth-first generation of a Spanning tree
 Breadth-first search generation of spanning tree: call bfs(1)

V vertex, initialize bfs-visit to null O(m) complexity
procedure bfs(1) graph bfs spanning tree
queue = {1} 1 1
while queue not empty do N
[= queue[1]; queue = {2, ...} 2 3 2 3
bfs-visit(i)
for (i,j) € out(i) do 4 o 6 4 5 6
if not visited j & j& queue
queue = queue U {j}
end if
end do
end do

= For every connected graph G with n nodes and m arcs 3 a spanning
tree, wherem >n — 1
= G is a tree iff number of edges of the tree, m = n — 1 and connected

1
1>@ 2 04| = need connectedness for it to be a tree
3

UCONN

@ Minimal Spanning Tree (MST) Problem

« Given an undirected connected graph G, each of whose edges
has a real-valued cost ¢;;,find a spanning tree of the graph
whose total edge cost is minimum

 Can do for directed or undirected graphs ... we will consider
undirected graphs only

* Why solve this problem?

» Arises as a sub-problem in communication network design
o Connecting terminals to a specified concentrator (switching node) via a multi-drop link
o Connecting concentrator to a central processing facility

« Want minimum cost connection subject to constraints on:
= Delay (or flow) on each link
= Reliability = alternate paths or not more than a specified number of
terminals be disconnected if a link fails

o Problem is much more involved than MST (in fact, it is NP-hard!)

% MST forms a starting point for design
% We will come back to this later

o Also useful in simplex-based network flow algorithms
% Recall for network flows, bfs is a spanning tree. See Bersekas’ book

UCONN

@ Basic Idea of all MST Algorithms

 Incremental construction edge by edge via the greedy
method = do the best thing at every step

« “Smallest edge first strategy w/o forming cycles”
« Any sub-tree of a MST will be called a fragment

* Set of fragments = forest Fragment 1 Possible edge

extensions.
Fragment 2 Minimum one iS e

e Main result:

= Given a fragment F, let e = (i, j) be a minimum weight edge from F where

node j ¢ F = F extended by edge e and node j is a fragment (i.e., part of
MST)
UCONN

@ Proof of main result

Denote by T the MST of which F is fragment

If e € T, we are done; so, assume otherwise

Then, there is a cycle formed by e and the edges of T

Since j ¢ F, there must be some edge e’ = (i’,j) that belongs to the
cycle,to T and to F

Deleting (i’, j) from T and adding (i, j) to T results in a spanning
tree T' 3 costof T' <costof T

= T'is an MST
= So, F extended by e must be part of MST

» Three Classical Algorithms
= Kruskal (1956)
= Jarnik-Prim-Dijkstra (1930, 1957, 1959)
= Bor’'uvka (1926) ... a distributed algorithm

UCONN

@ Three Classical Algorithms

 Kruskal’s algorithm
= Start with each node as a fragment

= Successively combine two of the fragments by using the edge that has
minimum weight and when added does not result in a cycle

 Jarnik-Prim-Dijkstra

= Select an arbitrary node as a fragment

= Enlarge the fragment by successively adding a minimum weight edge
« Bor’'uvka

» For every fragment, select a minimum cost edge incident to it

» Add it to the fragment and inform the fragment that lies at the other end
of this edge Can do it in a distributed way!

* You can think of these algorithms as ed ng
processes

» Blue = part of MST or accept
» Red = not part of MST or reject

UCONN

@ Kruskal’s algorithm (forest algorithm)

UCONN

Sort edge weights in non-decreasing order Possibly heaps?
Using the sorted list, include e = (i, j) if it does not form a cycle (color it

blue)
If it does, discard the edge (or color it red)

Stop when all m = (n — 1) edges (tree) have been included or all edges
have been examined

= Minimum spanning forest (set of fragmented trees)

Crude version of Kruskal

T=0 * Two hurdles:
while |T|<n—-1&E # 0do = Sorting m elements requires
e = smallest edge in E il leg)
o May be too much work since
E=E —{e} need only (n — 1) edges
if (T U {e}) has no cycle o Time for heaps??
T =T U{e} = How to test for cycles easily
end if o In other words, both ends of the
current edge being colored
end do belong to the same fragment

¥2 Resolving the two hurdles

* We resolve the first problem by forming a heap
= O(m) computational steps
» Finding next minimum takes O(log m) steps, assuming a binary heap
= If we do this k times, need O(k log m) steps

= total = O(m + k log m) computation for sorting

« We resolve the second problem by maintaining fragments in the form
of subsets of nodes

» Add a new edge by forming union of two relevant subsets

» Check for cycle formation by invoking FIND twice to check if two vertices of the
edge belong to the same tree (subset, fragment)

- Example
1
{1} {2} {3} {4} {5} {6} - {1,2} {3} {4} {5} {6} {7} 3
- {1,2,4} {3} {5} {6} {7} - {1,2,4} {3,5} {6} {7}
- {1,2,4} {3,5,7} {6} — discard edge (3,7) ! c
- {1,2,4} {3,5,7,6} = {1,2,4,3,5,7,6} done!! 4
6

UCONN

@ Efficient storage and sorting procedures

= Need efficient methods for sorting fragments (subsets or subtrees)
= Need efficient UNION & FIND procedures

« We can accomplish both of these objectives by storing
fragments as rooted trees

= Nodes of the tree are elements of the fragment

= Each node i of the tree has a parent pointer p;

no pointer
o Root node { pointer to (—#of elements in the tree)*x*
pointer to (height of the tree or rank)

= To carry out FIND(i), we follow parent pointers from i to the root of the
tree containing i and return the root

= So to find cycle:
o If FIND(i) = FIND(j), we have a cycle!!
1 3

7
UCONN

@ Efficient storage and union of fragments

= To carry out UNION(x, y), where x and y are if |px| > |py| then
roots of subsets

Px = Px1Py
e UNION rank by =X
= Keep track of rank (height) of trees else Dy = DatDy
= Do exactly the same as with size except that p, and p,, Dy =Y
denote ranks end if

 Don’t change ranks unless p, = p,,

= make x pointtoy; p, =p, + 1
« We can make FIND operation more efficient by a heuristic called path
compression

= When FIND(i) is invoked, after locating root x of the tree, make every node on
the path point to the root

2 > . = Computational complexity: O(m a(m, n))
5 4 Q) (See Tarjan or Horwitz & Sahni for details)
3 where a(m, n) = inverse of Ackerman’s
3 function

UCONN

@ Ackerman’s function i,j > 1

A(L,)H)=2), vj=>1
AL, D =A@ —1,2), Vi=?2
A=A -1AG - 1), Vij=2
a(m,n) = min {i > 1:A (i, E‘) > logn}
Note that A(2,1) = A(1,2) = 4
A1) = A(22) = A(1,AQ21) = A(L4) =2*= 16
a(m,n) = min{-} < 3,¥n < 2'® = 65,536
A(4,1) = A(2,16) = 2 bignumber” whijch is very large

 For all practical purposes, a(m,n) < 4

= Computational complexity O(3m) or O(4m)

UCONN

@ Overall Kruskal

set father (parent) array to —1 or rank = 0
form initial heap of m edges
edge_count = tree_count = 0; T «< @
while (tree_count <n—1 & edge_count < m) do
e = edge(i, j) from top of heap
edge_count = edge_count + 1
remove e from heap & restore heap ... delete min operation
r, = FIND(i); r, = FIND(j)
if (r; # r,) then
T =T U{e}
tree_count = tree_count + 1
UNION(ry, 1)
end if
end do

* Function FIND(i) {does path compression also}

p; = FIND(p;)

end if
return p;

UCONN

@ Jarnik-Prim-Dijkstra Single Tree Algorithm

« Start with a single node as a fragment and repeat the following step
(n — 1) times

= “If T is the current MST generated so far, select a minimum cost edge
incident to T and include it in T (or color it blue)”

- Example
1 1 1
2 2 2
7 7
2 = 2 = 2
7 777
4 4 4 5
1 1
3 2 3
7
: 3 = 2 : 3
4 4 4 405
6
6

UCONN

@ Jarnik-Prim-Dijkstra’s procedure

» Suppose T is the MST generated so far

 Find neighbor nodes i to T 3 an edge is incident to both i
and T

« With each neighbor i, associate a light blue edge (k, i)
= That is, a minimum-cost edge incident to i and T
= Light blue = candidates for inclusion into T

 Blue and light blue edges together form a tree spanning T
and its neighbor edges

 Coloring step

= From among these candidates, select one, say (k’,i"), of minimum cost
and include it in the tree
>T->TuU{i'}

= Consider all edges of the form (i’, j):

o Ifj ¢ T & A alight blue edge of the form (%, j), color (i’, j) light blue =
potential candidate

o Elseif j¢ T &3 alight blue edge of the form (k, j) & ¢xj > ¢;7; - mark (k, j) red
(or discard (k, j)) and mark (i’, j) light-blue (or (i’, j) is a potential candidate)

UCONN

Step 1 Step 4
1 1
2 O/O 03 2 3
o
| I I
40 4 5
6
. Color this red
« Complexity
n — 1 inserts run time: O(nd logn + mlogn)

n — 1 deletes and restores

— m
maxm — n + 1 siftup operations $= [2 * g] = o@m log[2+%] ")

UCONN

@ Heap Implementation

for each node 1
adj_list = set of edges incident to 1

undefined ifi € T U {neighbor T}
blue(i) =< light blue edge incidenttoi ifi € {neighbor T}
blue edge ifieT
0 ifi € T U {neighbor T}
cost(i) = { cost of light blue edge if i € {neighbor T}
—00 ifieT
fori=1,..,n do
cost(i) = o
h=0;i=1

while i # null do
cost(i) = —oo
for (i,j) € adj_list(i) do
if(c;; < cost(j))
cost(j) = ¢;j; blue(j) = (i, j)
if j¢h
insert j into h
else
siftup j
i= min of heap for which original min was added

UCONN

@ Bor’uvka’s distributed algorithm

» Bor’uvka’s distributed algorithm
= First assume that all edge weights c;; are distinct

= Start with a set of fragments

» Each fragment determines its own minimum edge and informs the fragment that
lies at the other end

» The algorithm correctly terminates!!

« How does each fragment decide on it minimum weight arc?

= See P. Humblet, “A distributed algorithm for minimum weight directed
spanning trees,” IEEE Trans. On Comm., vol. COM-31, pp 756-762

« What can go wrong when have non-distinct costs? 2
= Cycles 0&10
Y 1 . 3

UCONN

¥# Proof and algorithm extension
o If all edge weights are different, have a unique MST

= Suppose non-unique = at least two MSTs, say T and T’
= Let (i,j) = arg min {c,,,} and assume (i,j) € T
= Suppose add (i,j) to T"

= Cycle

= Can throw away an arc (k,l) and get a new spanning tree with
less cost

= T' not optimal

= contradiction

* To extend Bor’uvka’s algorithm to non-distinct weight
case, do the following:

= In the case of equal weight, break the tie in favor of an edge with a
minimum identity end node and if these nodes are the same, break
the tie in favor of an edge whose other node has a smaller identity

= In this case, we are guaranteed a unique MST
UCONN

@ Application: communication network design

» We will illustrate the MST application via a simple example

2 1 j -
Cij 1 2 3 4 5
11 - 33510
2 3 - 6 4 8
4 5 3 3 6 -3 5
2 N® OQ«——3 4 5 4 3 - 7
2 3 510 8 5 7 -
Central facility fij £ 5,Vi,j
« Problem w/o constraints is MST
5
4
Cost =14
2 3
1

UCONN

@ Prim’s version

« Step 0: initialize each node i with a weighting factor w; 3
" w; =0; w; =—00, Vi #1
"l Ci—w=tj=031F1
= t;; = saving gained by removing the central connection and
creating a link connection

= {initially then all t;; = oo except ¢;; representing the cost of
connecting each node to the center}

* find min{tij = tqm}

« Step 1: {in the example, connect 2 or 3 ... Say, we select (1,2)}

- Step 2: if constraints are not violated
add link (g, m)
setw,, =0
readjust constraints and recalculate all ¢;;

go back to Step 1 optimum
Else: 40 (3) 05 4 5
Set tqm = 23 2U3
go back to Step 1 Oy @
= {add link (3,1), then (4,3), and finally (5,2)} P costl? L costl5

UCONN

b} Kruskal’s version and Esau-Williams algorithm
e Kruskal’s version:

= Select minimum cost links one at a time, check for constraints and repeat
procedure

= Ordering: (1,2) (1,3) (4,3) (5,2) ... same as Prim ... cost = 17
« Esau-Williams algorithm:
. Step 0: let tij = Cijj — Cil,Vi,j

{t;; = ameasure of difference in cost of connecting node i to node j vs.
connecting node i to node 1}

t24= C24_C21=4_3=1
t42= C42_C41=4_5=—1

{= node 2 is closer to the center than to node 4 and node 4 is closer to 2
than to the center}

t53:C53_C51:5_10:_5
t35:C35_C31:5_3:2
In addition, t21 = t31 = t41 = t51 =0

= Step 1: select min{t; = t,,} and consider connecting i to j
UCONN

@ Esau-Williams algorithm - continued

= Step 2: if constraints are not violated
Add link (I,m)
Label node [with node m label showing [connected to m
Reevaluate constraints and update trade-off functions

Go to Step 1
else . .
Optimum solution
sett,, = o 4 5
Go back to Step 1
end if 2 3

= We get optimal solution here

» For details, see:

o Chandy, K. H and R. A. Russel, “The design of multi-point linkages in a
teleprocessing tree network,” IEEE T-Comp., vol. C-21, Oct. 1972, pp. 1062-
1066

o A. Kreshnebaum and W. Chose, “A unified algorithm for designing multi-drop
teleprocessing network,” IEEE T-Comm., vol. COM-22, Nov. 1974, pp. 1762-

1772

1

UCONN

@ Variations

* On-line algorithms

Maintain a set of blue trees
To process an edge, color it blue

If this forms a cycle of blue edges, discard a maximum-cost blue-edge on
the cycle

Complexity O(m log n)

See: F. Maffioli, “Complexity of Optimum Undirected Tree Problems: A
Survey of Recent Results,” Analysis and Design of Algorithms in

Combinatorial Optimization, Springer-Verlag, NY, 1981

e Alternative cost structures

Can change c;; to any monotonic function of ¢;;

 How much can you increase/decrease the cost of an edge
without affecting the minimality of the spanning tree?

Complexity <O(4m) ... see Tarjan

* Degree constraints at nodes = NP-complete

UCONN

Degree < 2 at each node =Hamiltonian path problem

@ A bit more detailed history

* Late 1940s: Linear programming
SLP:minc' xst. Ax=b;x>0

* 1950s: Quadratic programming; minimize a convex quadratlc
function over a polyhedron T

QP:min%gTQ>_<+gT>_<+c st. Ax=b;Gx>h

* 1960s: Geometric programming

n K +Incgy,
GP: mchOk (1_ ‘J"‘Olkj Cy > 0...posynomial function GP': mlnln[Ze 21+)j

j=1 Y

H

yj=Inx;

y+InC.k)j<0 |—1 2’. m

K n K al
st.) ¢, (H X |<Li=12,..,mc, >0 st. In(Ze(
k=1 j=1

* 1990s: Conic programming (second order cone programming (SOCP),
semi-definite programming (SDP), robust optimization, etc.)

« Excellent presentation: http://www.robots.ox.ac.uk/~az/lectures/bi/vandenberghe_1_2.pdf
UCONN

@ Conic Programming

* Cone: Aset Cisaconeif x € Cimplies ax € Ctfor all a > o.
A cone that i1s also convex 1s a convex cone.

= Cone, but not convex: y=|x|, union of first and third quadrants,...

= Convex cones

1.R! ={x:x >0,i=12,..,n}

2.Q. ., ={(t,x) e R" || x ||< t}...second order cone

3. C = The set of all poitive semi-definite (SD) matrices, P = SD cone

(useful in semi-definite programming (SDP))

Example of 2:

tl X Ice-cream or
4. 2 is special case of 3with P =| Lorentz cone

* Conic Programming:

* Generalized linear programming problems 5 ,
with the addition of nonlinear convex cones \/

UCONN

@ Varieties of Conic Programs & Applications

» Varieties of Conic Programs

= Linear programming (LP)

Convex Quadratic programming (QP)
Quadratically constrained QP (QCQP)

Geometric programming (GP)

More difficult &
More general

Second order cone programming (SOCP)

v

Semi-definite programming (SDP)
 Applications
= Signal processing & communications

= Finance

Machine learning

Robust control

Combinatorial optimization

UCONN

@ Second order Cone Programming (SOCP)
« What is SOCP?

min c' X
s.t. Ax=Db
IC. x+d. |,<e x+ f;i=12,..,p
where x,c,e, e R";C. e R"*":d. e R""; f. e R,Ac R™",beR"
 Special cases
1k =1=¢ x+f >0=LP
2. Convex QP is a special case of SOCP

CQP: min X' Qx+c' x st. Ax=b;Cx<d;Q=>0

SOCP: mlnt+c xst. Ax=b;Cx<d;t>x"Qx

(Note: C... ={(t,Q"*x) e R™ :||Q"*x||< t}...second order cone)

= Recall support vector machines is a convex QP ~ SOCP
UCONN

@ SOCP and variants

 Special cases and variants

3. Quadratically constrained LP:e, =

S.t.

4. SOCP is a special case of SDP...

UCONN

min

AX =
IC.

|><

min

c' x

b
+d; ;<

f. = x'C/C.x+2x'C'd,

+d’d. —f <0

used to approximate integer program:s

>0,1=12,..,m

@ Example 1: Robust LP

 Inequality constraint with uncertain coefficients

a; x <b where a, € ellipsoid E centerd at & ,E={4, + Ru:|Jull,<1}

= b >maxa x=4 x+maxu' R’ x=4a x+| R x|l

XeE = ullst—

=||R" x||,< -4 x+b = second order cone constraint

« What if g; is Gaussian

a. ~N(4,%),= =RR' andwant P{a; x<b}># .

Note:z=a; x—b, ~ N(& x—b,x'RR'X),0, |R" x|,

Equ(,,)
0

b —&i Xy ooy L1
P00, 200 = e

= @7 (1) | RY x[l,< b, — &/ x

« Robust LP is a SOCP for n > 0.5
minc' x st. @ (n) || R x|,<b -4 x,i=12,..,p

~u*24y = Normal CDF

UCONN

@ Example 2: LP with random cost

« Arises in shortest path problems or network flow problems
¢ ~N(¢,%;)

= ¢ x~N(€ x,x' 2 X)

« Expected cost-variance trade-off (the so-called Markovitz
model of risk in portfolio theory when it is formulated as a
maximization problem)

min¢' X +yx' = X
X

st.®(n) | R"x|l,<b, ~& x,i=12...,p

y > 0 risk aversion parameter

UCONN

@ Example 3: Sparse signal reconstruction

* x is a long signal (say, 1000 samples) with very few non-
zero components (say, 10)

« Want to reconstruct the signal from noisy m (say, 100)
noisy measurements

b =Ax+n;n~N(0,5%l,)
* L, regularization (Robust least squares)

_ 7> 0 regularization parameter
f =min|| Ax—bll; +#Ix]f;

L, regularization (LASSO: least absolute shrinkage and
selection operator)

|) ‘ ! S T ' ‘\

2

1l

of | T

! ‘

?

0 200 200 600 800 1000

Original x

f =min || Ax bl +IIx _—
- L, reconstruction L, reconstruction
error

UCONN

@ Recall Primal-dual path following algorithm for LP

= Initialize X, >0, Po>0, 4,, (@ =0.9-1)

fork=0,12,...K.
t=p, X,
If t<e, stop
else% calculate affine direction
uo=tin

A 0 0 gxa AXk _D
solve] 0 A" I |Id, |=-| A"4 +p,—c |;D, =Diag(x,); P, = Diag(p,) , . .
D 4a Affine direction
k pa D

Pk 0 C—l k Pkg
calculate
o) o\ o . by
Boa = mln{l,a (imaligo) (dxai)},ﬂda = mln{l,a (ig:aligo) (dpai)}
_ T - - - 3 When u << 1, it
Mo = (Xk +ﬂpagxa) (Bk +ﬁdagpa) / n; Centermg parameter Oy = (:uak //uk) IL[ak ll’lk’
A o oTld Ax. b ¢ becomes a
solve {0 AT Hdl] __ ATJ +p, —c centering direction
Pk 0 Dk gp Dk Pkg+gxa nga _Gk/ukg

¢ Mehrotra’s
— i i “X%i \\-. — i H — Py .
f, = min {La Mmin (d—xi)},ﬂd = mmn {1’ T (d_)} correction
Xea =X+ B0 A = A+ B4, P = Py +44d,
end
end

UCONN

Primal-dual path following algorithm for QP

A £

" QF: min%ng+gT5+c st. Ax>b; Amxn

KKT :Qx~ATA+d =0;Ax-~ p~b=0; p4

= Initializ Po> 0, 4, > 0, (@ = 0.9-0.99)

fork=0,12,...K,,

t :B; A
If t<eg, stop
else
Mo =t/m
Q -A" 0| d, Qx —A" 4, +d
solv{A 0 -l Hgla —{ AX,—Pp,—b];Ak = Diag(4,); B, = Diag(p,)
0 R A dn DRe-oyue
calculate

B. = min{mig)(l, A /dlai)’imig(l’_pki /dpai)}
ty = Qo+ B,d,.)" (P, + B,d,,) | m; Centering parameter o, = (s / 11,)°

Q -A" 014, Qx ~A 4 +d
sove A 0 -1{|d, |=- AX, - p—b
0 R A gp DFRe+d, oc_jp — O 4

B={B:p.+pd,20& 4, +pd, >0}
Ko = X +aﬂc_jk;i~k+1 Zi'k +aﬂg/1; Ek+l :Ek +aﬁ(_jp

end
end

UCONN

@ Primal and dual for SOCP

Recall Cone LP Explicit form:
. T

min ¢ X min ¢’ x

s.t. Ax=b X

s.t. Ax=Db
”gi ”2Sti;i :1,2,--1 P
Cx-u;=-d;;i=12,.,p
e x—t,=—f;i=12..,p

IC.x+d, |,<e x+ f;i=12,.p
where x,c,e, e R";C, e R“™";d, e R"*; f, e R,Ac R™" ,beR"

 Dual (easy to see from Lagrangian)

max. Q@—Zp:(gréi + 1) Useful in robust SVM and a
p = number of other applications.
s.t. (ZQT S. +§i7iJ+ AT A=c Interior point methods extend
=1 here. See Anderson et al.

Io; Il,<7:i;1=L2,..,p

« KKT or CS conditions: Ui ll.<t =7 =g l,=0

| ll,<yi =t =lu|l,=0

7i =l i ol Ui I, =4 = yu; =,
See: Anderson et al. “Interior-point methods for large-scale cone programming,”
http://www.seas.ucla.edu/~vandenbe/publications/mlbook.pdf

Lobo et al. “Applications of second order cone programming,” Linear Algebra and its
Applications, 284, pp. 193-228, 1998.

UCONN

http://www.seas.ucla.edu/~vandenbe/publications/mlbook.pdf

Barrier method for SOCP

« Lagrangian of Barrier version of Cone LP

A £

In| (&f x+)’ =IC;x+d, |} |+ 4" (0 - Ax)

fi (x)

M=

min L(x, 4)= ng—%

I
[N

e KKT conditions

V,L=c-AA-23 2 (el x+), ~C] (C,x+d,)] =0

50 variables and 50
cone constraints in R©
102

102 |

duality gap
>

10~ 4

106 w =50 ‘1= 200 = 2

0 20 40 60 80
Newton iterations

http://www.robots.ox.ac.uk/~az/lectures
/bi1/vandenberghe 1 2.pdf

 Algorithm: Given a strictly feasible x (e.g., phase I LP), t=t ~1, u~10-

20, tolerance ¢

= Centering step: compute x* (t) and A" (t) setx=x" (t)and A = A" (t)

= Stopping criterion: Terminate if p/t< & Else go to next step.

» Increase t: t = ut and go to Centering step.

» Convergence typically in 20-50 iterations. Primal-dual path following

algorithms exist. See Anderson et al.

UCONN

http://www.robots.ox.ac.uk/~az/lectures/b1/vandenberghe_1_2.pdf

@ Summary

» Spanning tree algorithms
» Kruskal
* Prim
= Distributed
 Applications to communication network design problem

* Introduction to Cone Programming

UCONN

