Lecture 11:
 Minimum Spanning Trees \& Cone Programming

Prof. Krishna R. Pattipati

Dept. of Electrical and Computer Engineering
University of Connecticut
Contact: krishna@engr.uconn.edu; (860) 486-2890

Outline

- Review of relevant theory
-Why solve the minimum spanning tree problem?
- Three basic algorithms
- Kruskal (1956)
- Jarnik-Prim-Dijkstra (1930, 1957, 1959)
- Bor'uvka (1926) ... a distributed algorithm
- Application to centralized communication network design problem
- Introduction to Cone Programming

Review of Relevant Graph Theory

- Undirected graph $G=(V, E)$
- $V=$ set of vertices (nodes)
- $E=$ set of edges (arcs)
- A graph G is connected if, for every node i, \exists a path $\left(i=v_{1}, v_{2}, \ldots, v_{l}=j\right)$ to every node j

- Not connected \Rightarrow can find two sets of nodes with no edges between them
- Basic result:
- For a connected graph G, if $X \in V$ is a nonempty subset of V, then \exists at least one edge $(i, j) \ni i \in X$ and $j \in \bar{X}=(V-X)$
- You can think of the partition of vector set V into X and \bar{X} as a cut in graph G and the edge (i, j) crosses the cut since it is incident on X (one end in X the other in \bar{X})

Spanning Tree and Forest

- A tree is a connected graph with no cycles (loops, circuits) $\Rightarrow n-1$ arcs (edges)
- A spanning tree of a connected graph G is a tree and contains all the nodes of G

Spanning tree of graph G

- $\#$ of nodes $=n$
- $\quad \#$ of edges $=n-1$
- There exists a single path between every pair
- Adding an edge results in exactly one cycle
- Deleting an edge makes the tree disconnected
- A forest (fragment) is a node-disjoint collection of trees

forest: set of trees

spanning tree

How to construct a Spanning tree?

- How to construct a spanning tree or how to check for the connectedness of a graph?
- DFS: select an edge $(i, j) \ni i$ was visited most recently ... stack or LIFO or recursion. Can also get pre- and post-order traversal
- BFS: select an edge (i, j) $\ni i$ was visited least recently ... queue
- Depth-first generation of spanning tree: call dfs(i)
\forall vertex, initialize pre-visit to null procedure dfs(i)
pre-visit(i)
for $(i, j) \in \operatorname{out}(i)$ do
if not visited (j) parent $(j)=i$ dfs (j)
end if
end do
post-visit(i)
$O(m)$ complexity

Breadth-first generation of a Spanning tree

- Breadth-first search generation of spanning tree: call bfs(1)
\forall vertex, initialize bfs-visit to null procedure bfs(1)
queue $=\{1\}$
while queue not empty do

$$
i=\text { queue }[1] ; \text { queue }=\{2, \ldots\}
$$

bfs-visit (i)
for $(i, j) \in \operatorname{out}(i)$ do
if not visited $j \& j \notin$ queue queue $=$ queue $\cup\{j\}$
end if
end do
end do
$O(m)$ complexity

\Rightarrow For every connected graph G with n nodes and m arcs \exists a spanning tree, where $m \geq n-1$
$\Rightarrow G$ is a tree iff number of edges of the tree, $m=n-1$ and connected

Minimal Spanning Tree (MST) Problem

- Given an undirected connected graph G, each of whose edges has a real-valued cost $c_{i j}$, find a spanning tree of the graph whose total edge cost is minimum
- Can do for directed or undirected graphs ... we will consider undirected graphs only
- Why solve this problem?
- Arises as a sub-problem in communication network design
- Connecting terminals to a specified concentrator (switching node) via a multi-drop link
- Connecting concentrator to a central processing facility
- Want minimum cost connection subject to constraints on:
- Delay (or flow) on each link
- Reliability \Rightarrow alternate paths or not more than a specified number of terminals be disconnected if a link fails
- Problem is much more involved than MST (in fact, it is NP-hard!)
* MST forms a starting point for design
* We will come back to this later
- Also useful in simplex-based network flow algorithms
* Recall for network flows, bfs is a spanning tree. See Bersekas' book

Basic Idea of all MST Algorithms

- Incremental construction edge by edge via the greedy method \Rightarrow do the best thing at every step
- "Smallest edge first strategy w/o forming cycles"
- Any sub-tree of a MST will be called a fragment
- Set of fragments \equiv forest

$$
\text { Fragment } 1
$$

- Main result:
- Given a fragment F, let $e=(i, j)$ be a minimum weight edge from F where node $j \notin F \Rightarrow F$ extended by edge e and node j is a fragment (i.e., part of MST)

Proof of main result

- Denote by T the MST of which F is fragment
- If $e \in T$, we are done; so, assume otherwise
- Then, there is a cycle formed by e and the edges of T
- Since $j \notin F$, there must be some edge $e^{\prime}=\left(i^{\prime}, j\right)$ that belongs to the cycle, to T and to F
- Deleting $\left(i^{\prime}, j\right)$ from T and adding (i, j) to T results in a spanning tree $T^{\prime} \ni \operatorname{cost}$ of $T^{\prime} \leq \operatorname{cost}$ of T
$\Rightarrow T^{\prime}$ is an MST
\Rightarrow So, F extended by e must be part of MST
- Three Classical Algorithms
- Kruskal (1956)
- Jarnik-Prim-Dijkstra $(1930,1957,1959)$
- Bor'uvka (1926) ... a distributed algorithm

Three Classical Algorithms

- Kruskal's algorithm
- Start with each node as a fragment
- Successively combine two of the fragments by using the edge that has minimum weight and when added does not result in a cycle
- Jarnik-Prim-Dijkstra
- Select an arbitrary node as a fragment
- Enlarge the fragment by successively adding a minimum weight edge
- Bor'uvka
- For every fragment, select a minimum cost edge incident to it
- Add it to the fragment and inform the fragment that lies at the other end of this edge Can do it in a distributed way!
- You can think of these algorithms as edge-coloring processes
- Blue \Rightarrow part of MST or accept
- Red \Rightarrow not part of MST or reject

Kruskal's algorithm (forest algorithm)

- Sort edge weights in non-decreasing order Possibly heaps?
- Using the sorted list, include $e=(i, j)$ if it does not form a cycle (color it blue)
- If it does, discard the edge (or color it red)
- Stop when all $m=(n-1)$ edges (tree) have been included or all edges have been examined
\Rightarrow Minimum spanning forest (set of fragmented trees)
- Crude version of Kruskal

$$
\begin{aligned}
& T=\emptyset \\
& \text { while }|T|<n-1 \& E \neq 0 \text { do } \\
& \quad e=\text { smallest edge in } E \\
& E=E-\{e\} \\
& \quad \text { if }(T \cup\{e\}) \text { has no cycle } \\
& \quad T=T \cup\{e\} \\
& \text { end if } \\
& \text { end do }
\end{aligned}
$$

- Two hurdles:
- Sorting m elements requires $O(m \log m)$
- May be too much work since need only ($n-1$) edges
- Time for heaps??
- How to test for cycles easily
- In other words, both ends of the current edge being colored belong to the same fragment

Resolving the two hurdles

- We resolve the first problem by forming a heap
- $O(m)$ computational steps
- Finding next minimum takes $O(\log m)$ steps, assuming a binary heap
- If we do this k times, need $O(k \log m)$ steps
\Rightarrow total $=O(m+k \log m)$ computation for sorting
- We resolve the second problem by maintaining fragments in the form of subsets of nodes
- Add a new edge by forming union of two relevant subsets
- Check for cycle formation by invoking FIND twice to check if two vertices of the edge belong to the same tree (subset, fragment)
- Example

- $\{1\}\{2\}\{3\}\{4\}\{5\}\{6\} \rightarrow\{1,2\}\{3\}\{4\}\{5\}\{6\}\{7\}$
$\rightarrow\{1,2,4\}\{3\}\{5\}\{6\}\{7\} \rightarrow\{1,2,4\}\{3,5\}\{6\}\{7\}$
$\rightarrow\{1,2,4\}\{3,5,7\}\{6\} \rightarrow$ discard edge $(3,7)$
$\rightarrow\{1,2,4\}\{3,5,7,6\} \rightarrow\{1,2,4,3,5,7,6\}$ done!!

Efficient storage and sorting procedures

- Need efficient methods for sorting fragments (subsets or subtrees)
- Need efficient UNION \& FIND procedures
- We can accomplish both of these objectives by storing fragments as rooted trees
- Nodes of the tree are elements of the fragment
- Each node i of the tree has a parent pointer p_{i}
- Root node $\left\{\begin{array}{l}\text { no pointer } \\ \text { pointer to (-\#of elements in the tree) } * * \\ \text { pointer to (height of the tree or rank) }\end{array}\right.$
- To carry out $\operatorname{FIND}(i)$, we follow parent pointers from i to the root of the tree containing i and return the root
- So to find cycle:
- If $\operatorname{FIND}(i)=\operatorname{FIND}(j)$, we have a cycle!!

Efficient storage and union of fragments

- To carry out $\mathrm{UNION}(x, y)$, where x and y are roots of subsets
- UNION rank
- Keep track of rank (height) of trees
- Do exactly the same as with size except that p_{x} and p_{y} denote ranks

$$
\begin{gathered}
\text { if }\left|p_{x}\right|>\left|p_{y}\right| \text { then } \\
p_{x}=p_{x}+p_{y} \\
p_{y}=x
\end{gathered}
$$

else
$p_{y}=p_{x}+p_{y}$
$p_{x}=y$
end if

- Don't change ranks unless $p_{x}=p_{y}$
\Rightarrow make x point to $y ; p_{x}=p_{y}+1$
- We can make FIND operation more efficient by a heuristic called path compression
- When $\operatorname{FIND}(i)$ is invoked, after locating root x of the tree, make every node on the path point to the root

- Computational complexity: $O(m \alpha(m, n))$ (See Tarjan or Horwitz \& Sahni for details) where $\alpha(m, n)=$ inverse of Ackerman's function

Ackerman's function $i, j \geq 1$

$$
\begin{aligned}
& A(1, j)=2^{j}, \quad \forall j \geq 1 \\
& A(i, 1)=A(i-1,2), \quad \forall i \geq 2 \\
& A(i, j)=A(i-1, A(i, j-1)), \quad \forall i, j \geq 2 \\
& \alpha(m, n)=\min \left\{i \geq 1: A\left(i,\left\lfloor\frac{m}{n}\right\rfloor\right)>\log n\right\}
\end{aligned}
$$

- Note that $A(2,1)=A(1,2)=4$
- $A(3,1)=A(2,2)=A(1, A(2,1))=A(1,4)=2^{4}=16$
- $\alpha(m, n)=\min \{\cdot\} \leq 3, \forall n<2^{16}=65,536$
- $A(4,1)=A(2,16)=2$ "big number" which is very large
- For all practical purposes, $\alpha(m, n) \leq 4$
\Rightarrow Computational complexity $O(3 m)$ or $O(4 m)$

Overall Kruskal

set father (parent) array to -1 or rank $=0$
form initial heap of m edges
edge_count $=$ tree_count $=0 ; T \leftarrow \emptyset$
while (tree_count $<n-1$ \& edge_count $<m$) do
$e=\operatorname{edge}(i, j)$ from top of heap
$e d g e_{-} c o u n t=e d g e _c o u n t+1$
remove e from heap \& restore heap ... delete min operation
$r_{1}=\operatorname{FIND}(i) ; r_{2}=\operatorname{FIND}(j)$
if $\left(r_{1} \neq r_{2}\right)$ then
$T=T \cup\{e\}$
tree_count = tree_count +1
$\mathrm{UNION}\left(r_{1}, r_{2}\right)$
end if
end do

- Function $\operatorname{FIND}(i)$ \{does path compression also\}

$$
\begin{aligned}
& \text { if } p_{i}>0 \\
& p_{i}=\operatorname{FIND}\left(p_{i}\right) \\
& \text { end if } \\
& \text { return } p_{i}
\end{aligned}
$$

Jarnik-Prim-Dijkstra Single Tree Algorithm

- Start with a single node as a fragment and repeat the following step ($n-1$) times
- "If T is the current MST generated so far, select a minimum cost edge incident to T and include it in T (or color it blue)"
- Example

Jarnik-Prim-Dijkstra's procedure

- Suppose T is the MST generated so far
- Find neighbor nodes i to $T \ni$ an edge is incident to both i and T
- With each neighbor i, associate a light blue edge (k, i)
\Rightarrow That is, a minimum-cost edge incident to i and T
\Rightarrow Light blue \Rightarrow candidates for inclusion into T
- Blue and light blue edges together form a tree spanning T and its neighbor edges
- Coloring step
- From among these candidates, select one, say (k^{\prime}, i^{\prime}), of minimum cost and include it in the tree
$\Rightarrow T \rightarrow T \cup\left\{i^{\prime}\right\}$
- Consider all edges of the form $\left(i^{\prime}, j\right)$:
- If $j \notin T \& \nexists$ a light blue edge of the form (k, j), color $\left(i^{\prime}, j\right)$ light blue \Rightarrow potential candidate
- Else if $j \notin T \& \exists$ a light blue edge of the form $(k, j) \& c_{k j}>c_{i^{\prime} j} \rightarrow$ mark (k, j) red (or discard (k, j)) and mark (i^{\prime}, j) light-blue (or (i^{\prime}, j) is a potential candidate)

Example

Step 1
Step 2
Step 3
Step 4

- Complexity

Color this red
$n-1$ inserts run time: $O(n d \log n+m \log n)$
$\left.\begin{array}{l}n-1 \text { deletes and restores } \\ \max m-n+1 \text { siftup operations }\end{array}\right\} \Rightarrow d=\left[2+\frac{m}{n}\right] \Rightarrow O\left(m \log _{\left[2+\frac{m}{n}\right]} n\right)$

Heap Implementation

for each node i
adj_list = set of edges incident to i
blue $(i)= \begin{cases}\text { undefined } & \text { if } i \notin T \cup\{\text { neighbor } T\} \\ \text { light blue edge incident to } i & \text { if } i \in\{\text { neighbor } T\} \\ \text { blue edge } & \text { if } i \in T\end{cases}$
$\operatorname{cost}(i)= \begin{cases}\infty & \text { if } i \notin T \cup\{\text { neighbor } T\} \\ \operatorname{cost~of~light~blue~edge~} & \text { if } i \in\{\text { neighbor } T\} \\ -\infty & \text { if } i \in T\end{cases}$
for $i=1, \ldots, n$ do

$$
\operatorname{cost}(i)=\infty
$$

$h=\emptyset ; i=1$
while $i \neq$ null do

$$
\begin{aligned}
& \operatorname{cost}(i)=-\infty \\
& \text { for }(i, j) \in \operatorname{adj} j_{-} \text {list }(i) \text { do } \\
& \quad \text { if }\left(c_{i j}<\operatorname{cost}(j)\right) \\
& \quad \operatorname{cost}(j)=c_{i j} ; \text { blue }(j)=(i, j) \\
& \quad \text { if } j \notin h \\
& \quad \text { insert } j \text { into } h \\
& \quad \text { else } \quad \operatorname{siftup} j \\
& \quad i=\text { min of heap for which original min was added }
\end{aligned}
$$

Bor'uvka's distributed algorithm

- Bor'uvka's distributed algorithm
- First assume that all edge weights $c_{i j}$ are distinct
- Start with a set of fragments
- Each fragment determines its own minimum edge and informs the fragment that lies at the other end
- The algorithm correctly terminates!!

- How does each fragment decide on it minimum weight arc?
- See P. Humblet, "A distributed algorithm for minimum weight directed spanning trees," IEEE Trans. On Comm., vol. COM-31, pp 756-762
- What can go wrong when have non-distinct costs?
\Rightarrow Cycles

Proof and algorithm extension

- If all edge weights are different, have a unique MST
- Suppose non-unique \Rightarrow at least two MSTs, say T and T^{\prime}
- Let $(i, j)=\arg \min \left\{c_{l m}\right\}$ and assume $(i, j) \in T$
- Suppose add (i, j) to T^{\prime}
\Rightarrow Cycle
\Rightarrow Can throw away an arc (k, l) and get a new spanning tree with less cost
$\Rightarrow T^{\prime}$ not optimal
\Rightarrow contradiction
- To extend Bor'uvka's algorithm to non-distinct weight case, do the following:
- In the case of equal weight, break the tie in favor of an edge with a minimum identity end node and if these nodes are the same, break the tie in favor of an edge whose other node has a smaller identity
- In this case, we are guaranteed a unique MST

Application: communication network design

- We will illustrate the MST application via a simple example

$$
\begin{array}{cccccccc}
& c_{i j} & & j & \rightarrow & & & \\
& i & & 1 & 2 & 3 & 4 & 5 \\
& \downarrow & 1 & - & 3 & 3 & 5 & 10 \\
& 2 & 3 & - & 6 & 4 & 8 \\
& & 3 & 3 & 6 & - & 3 & 5 \\
& & 4 & 5 & 4 & 3 & - & 7 \\
& & 5 & 10 & 8 & 5 & 7 & - \\
& \\
f_{i j} \leq 5, & \forall i, j & & & & \\
& &
\end{array}
$$

- Problem w/o constraints is MST

Prim's version

- Step 0: initialize each node i with a weighting factor $w_{i} \ni$
- $w_{1}=0 ; w_{i}=-\infty, \forall i \neq 1$
- $t_{i j} \leftarrow c_{i j}-w_{i} \Rightarrow t_{i j}=\infty \ni i \neq 1$
- $t_{i j}=$ saving gained by removing the central connection and creating a link connection
- \{initially then all $t_{i j}=\infty$ except $t_{1 j}$ representing the cost of connecting each node to the center\}
- find $\min \left\{t_{i j}=t_{q m}\right\}$
- Step 1: \{in the example, connect 2 or 3 ... Say, we select $(1,2)\}$
- Step 2: if constraints are not violated
add link (q, m)
set $w_{m}=0$
readjust constraints and recalculate all $t_{i j}$
go back to Step 1
Else:
set $t_{q m}=\infty$
go back to Step 1
- \{add link (3,1), then (4,3), and finally $(5,2)\}$

Kruskal's version and Esau-Williams algorithm

- Kruskal's version:
- Select minimum cost links one at a time, check for constraints and repeat procedure
- Ordering: $(1,2)(1,3)(4,3)(5,2) \ldots$ same as Prim... cost $=17$
- Esau-Williams algorithm:
- Step 0: let $t_{i j}=c_{i j}-c_{i 1}, \forall i, j$
$\left\{t_{i j}=\right.$ a measure of difference in cost of connecting node i to node j vs. connecting node i to node 1$\}$

$$
\begin{aligned}
& t_{24}=c_{24}-c_{21}=4-3=1 \\
& t_{42}=c_{42}-c_{41}=4-5=-1
\end{aligned}
$$

$\{\Rightarrow$ node 2 is closer to the center than to node 4 and node 4 is closer to 2 than to the center\}

$$
\begin{aligned}
& t_{53}=c_{53}-c_{51}=5-10=-5 \\
& t_{35}=c_{35}-c_{31}=5-3=2 \\
& \text { In addition, } t_{21}=t_{31}=t_{41}=t_{51}=0
\end{aligned}
$$

- Step 1: select $\min \left\{t_{i j}=t_{l m}\right\}$ and consider connecting i to j

Esau-Williams algorithm - continued

- Step 2: if constraints are not violated

Add link (l, m)
Label node l with node m label showing l connected to m
Reevaluate constraints and update trade-off functions
Go to Step 1
else
set $t_{l m}=\infty$
Go back to Step 1 end if

- We get optimal solution here
- For details, see:

- Chandy, K. H and R. A. Russel, "The design of multi-point linkages in a teleprocessing tree network," IEEE T-Comp., vol. C-21, Oct. 1972, pp. 10621066
- A. Kreshnebaum and W. Chose, "A unified algorithm for designing multi-drop teleprocessing network," IEEE T-Comm., vol. COM-22, Nov. 1974, pp. 17621772

Variations

- On-line algorithms
- Maintain a set of blue trees
- To process an edge, color it blue
- If this forms a cycle of blue edges, discard a maximum-cost blue-edge on the cycle
- Complexity $O(m \log n)$
- See: F. Maffioli, "Complexity of Optimum Undirected Tree Problems: A Survey of Recent Results," Analysis and Design of Algorithms in Combinatorial Optimization, Springer-Verlag, NY, 1981
- Alternative cost structures
- Can change $c_{i j}$ to any monotonic function of $c_{i j}$
- How much can you increase/decrease the cost of an edge without affecting the minimality of the spanning tree?
- Complexity $\leq O(4 m)$... see Tarjan
- Degree constraints at nodes \Rightarrow NP-complete
- Degree ≤ 2 at each node \Rightarrow Hamiltonian path problem

A bit more detailed history

- Late 1940s: Linear programming

$$
S L P: \min _{\underline{x}} \underline{c}^{T} \underline{x} \text { s.t. } A \underline{x}=\underline{b} ; \underline{x} \geq \underline{0}
$$

- 1950s: Quadratic programming; minimize a convex quadratic function over a polyhedron

$$
Q P: \min _{\underline{x}} \frac{1}{2} \underline{x}^{T} Q \underline{x}+\underline{d}^{T} \underline{x}+c \text { s.t. } A \underline{x}=\underline{b} ; G \underline{x} \geq \underline{h}
$$

- 1960s: Geometric programming

$$
\begin{aligned}
& G P: \min _{\underline{x}} \sum_{k=1}^{K} c_{0 k}\left(\prod_{j=1}^{n} x_{j}^{a_{0 j k}}\right) ; c_{0 k}>0 \ldots \text { posynomial function } G P: \min _{\underline{y}} \ln \left(\sum_{k=1}^{K} e^{\left(a_{o k}^{T} \underline{y}+\ln c_{o k}\right)}\right) \\
& \text { s.t. } \sum_{k=1}^{K} c_{i k}\left(\prod_{j=1}^{n} x_{j}^{a_{i j k}}\right) \leq 1 ; i=1,2, . ., m ; c_{i k}>0 \\
& \text { s.t. } \ln \left(\sum_{k=1}^{K} e^{\left(a_{i k}^{T} \underline{y}+\ln c_{i k}\right)}\right) \leq 0 ; i=
\end{aligned}
$$

- 1990s: Conic programming (second order cone programming (SOCP), semi-definite programming (SDP), robust optimization, etc.)
- Excellent presentation: http://www.robots.ox.ac.uk/~az/lectures/b1/vandenberghe_1_2.pdf

Conic Programming

- Cone: A set C is a cone if $\underline{x} \in C$ implies $\alpha \underline{x} \in C$ for all $\alpha>0$. A cone that is also convex is a convex cone.
- Cone, but not convex: $y=|x|$, union of first and third quadrants,...
- Convex cones

1. $R_{+}^{n}=\left\{\underline{x}: x_{i} \geq 0, i=1,2, . ., n\right\}$
2. $Q_{n+1}=\left\{(t, \underline{x}) \in R^{n+1}:\|\underline{x}\| \leq t\right\}$...second order cone
3. $C=$ The set of all poitive semi-definite (SD) matrices, $P \Rightarrow S D$ cone (useful in semi-definite programming (SDP))
4. 2 is special case of 3 with $P=\left[\begin{array}{ll}t I_{n} & \underline{x} \\ \underline{x}^{T} & t\end{array}\right]$

- Conic Programming:
- Generalized linear programming problems with the addition of nonlinear convex cones

Varieties of Conic Programs \& Applications

- Varieties of Conic Programs
- Linear programming (LP)
- Convex Quadratic programming (QP)
- Quadratically constrained QP (QCQP)
- Geometric programming (GP)
- Second order cone programming (SOCP)
- Semi-definite programming (SDP)
- Applications
- Signal processing \& communications
- Finance
- Machine learning
- Robust control
- Combinatorial optimization

Second order Cone Programming (SOCP)

- What is SOCP?

$$
\begin{aligned}
& \min _{\underline{x}} \underline{c}^{T} \underline{x} \\
& \text { s.t. } A \underline{x}=\underline{b} \\
& \qquad\left\|C_{i} \underline{x}+\underline{d}_{i}\right\|_{2} \leq \underline{e}_{i}^{T} \underline{x}+f_{i} ; i=1,2, \ldots, p
\end{aligned}
$$

where $\underline{x}, \underline{c}, \underline{e}_{i} \in R^{n} ; C_{i} \in R^{k_{i}-1 \times n} ; \underline{d}_{i} \in R^{k_{i}-1} ; f_{i} \in R, A \in R^{m \times n}, \underline{b} \in R^{m}$

- Special cases

$$
1 . k_{i}=1 \Rightarrow \underline{e}_{i}^{T} \underline{x}+f_{i} \geq 0 \Rightarrow L P
$$

2. Convex QP is a special case of SOCP

$$
\mathrm{CQP}: \min _{\underline{x}} \underline{x}^{T} Q \underline{x}+\underline{c}^{T} \underline{x} \text { s.t. } A \underline{x}=\underline{b} ; C \underline{x} \leq \underline{d} ; Q \geq 0
$$

SOCP: $\min _{\underline{x}, t} t+\underline{c}^{T} \underline{x}$ s.t. $A \underline{x}=\underline{b} ; C \underline{x} \leq \underline{d} ; t \geq \underline{x}^{T} Q \underline{x}$

$$
\text { (Note: } C_{n+1}=\left\{\left(t, Q^{1 / 2} \underline{x}\right) \in R^{n+1}:\left\|Q^{1 / 2} \underline{x}\right\| \leq t\right\} \ldots \text { second order cone) }
$$

- Recall support vector machines is a convex QP ~ SOCP

SOCP and variants

- Special cases and variants

3. Quadratically constrained LP: $\underline{e}_{i}=\underline{0}$

$$
\min _{\underline{x}} \underline{c}^{T} \underline{x}
$$

s.t. $\quad A \underline{x}=\underline{b}$

$$
\left\|C_{i} \underline{x}+\underline{d}_{i}\right\|_{2} \leq f_{i} \Rightarrow \underline{x}^{T} C_{i}^{T} C_{i} \underline{x}+2 \underline{x}^{T} C_{i}^{T} \underline{d}_{i}+\underline{d}_{i}^{T} \underline{d}_{i}-f_{i} \leq 0
$$

4. SOCP is a special case of SDP... used to approximate integer programs $\min _{\underline{x}} \underline{c}^{T} \underline{x}$
s.t. $A \underline{x}=\underline{b}$

$$
\left[\begin{array}{cc}
\left(\underline{e}_{i}^{T} \underline{x}+f_{i}\right) I_{k_{i}-1} & C_{i} \underline{x}+\underline{d}_{i} \\
\left(C_{i} \underline{x}+\underline{d}_{i}\right)^{T} & \underline{e}_{i}^{T} \underline{x}+f_{i}
\end{array}\right] \geq 0, i=1,2, \ldots, m
$$

Example 1: Robust LP

- Inequality constraint with uncertain coefficients
$\underline{a}_{i}^{T} \underline{x} \leq b_{i}$ where $\underline{a}_{i} \in$ ellipsoid E centerd at $\underline{\hat{a}}_{i}, \mathrm{E}=\left\{\underline{\hat{a}}_{i}+R_{i} \underline{\underline{u}}:\|\underline{u}\|_{2} \leq 1\right\}$
$\Rightarrow b_{i} \geq \max _{\underline{x} \in E} \underline{a}_{i}^{T} \underline{x}=\underline{\hat{a}}_{i}^{T} \underline{x}+\max _{\|\underline{u}\|_{2} \leq 1} \underline{u}^{T} R_{i}^{T} \underline{x}=\hat{\underline{a}}_{i}^{T} \underline{x}+\left\|R_{i}^{T} \underline{x}\right\|_{2}$
$\Rightarrow\left\|R_{i}^{T} \underline{x}\right\|_{2} \leq-\underline{\hat{a}}_{i}^{T} \underline{x}+b_{i} \Rightarrow$ second order cone constraint
- What if \underline{a}_{i} is Gaussian

$$
\begin{aligned}
& \underline{a}_{i} \sim N\left(\underline{\hat{a}}_{i}, \Sigma_{i}\right), \Sigma_{i}=R_{i} R_{i}^{T} \text { and want } P\left\{\underline{a}_{i}^{T} \underline{x} \leq b_{i}\right\} \geq \eta \\
& \text { Note }: z=\underline{a}_{i}^{T} \underline{x}-b_{i} \sim N\left(\underline{\hat{a}}_{i}^{T} \underline{x}-b_{i}, \underline{x}^{T} R_{i} R_{i}^{T} \underline{x}\right), \sigma_{z}=\left\|R_{i}^{T} \underline{x}\right\|_{2}
\end{aligned}
$$

$$
\begin{aligned}
& \quad P(z \leq 0)=\Phi\left(\frac{b_{i}-\hat{\underline{a}}_{i}^{T} \underline{x}}{\left\|R_{i}^{T} \underline{x}\right\|_{2}}\right) \geq \eta ; \Phi(y)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{y} e^{-u^{2} / 2} d u=\text { Normal } C D F \\
& \Rightarrow \Phi^{-1}(\eta)\left\|R_{i}^{T} \underline{x}\right\|_{2} \leq b_{i}-\underline{\hat{a}}_{i}^{T} \underline{x} \\
& \text { Robust LP is a SOCP for } \eta>0.5
\end{aligned}
$$

$$
\min _{\underline{x}} \underline{c}^{T} \underline{x} \text { s.t. } \Phi^{-1}(\eta)\left\|R_{i}^{T} \underline{x}\right\|_{2} \leq b_{i}-\hat{\hat{a}}_{i}^{T} \underline{x}, i=1,2, . ., p
$$

Example 2: LP with random cost

- Arises in shortest path problems or network flow problems

$$
\begin{aligned}
& \underline{c} \sim N\left(\hat{c}, \Sigma_{c}\right) \\
& \Rightarrow \underline{c}^{T} \underline{\sim} \sim N\left(\underline{\hat{c}}^{T} \underline{x}, \underline{x}^{T} \Sigma_{c} \underline{x}\right)
\end{aligned}
$$

- Expected cost-variance trade-off (the so-called Markovitz model of risk in portfolio theory when it is formulated as a maximization problem)

$$
\begin{aligned}
& \min _{\underline{x}} \underline{\underline{c}}^{T} \underline{x}+\gamma \underline{x}^{T} \Sigma_{c} \underline{x} \\
& \text { s.t. } \Phi^{-1}(\eta)\left\|R^{T} \underline{x}\right\|_{2} \leq b_{i}-\hat{\hat{a}}_{i}^{T} \underline{x}, i=1,2, \ldots, p
\end{aligned}
$$

$\gamma>$ o risk aversion parameter

Example 3: Sparse signal reconstruction

- \underline{x} is a long signal (say, 1000 samples) with very few nonzero components (say, 10)
- Want to reconstruct the signal from noisy m (say, 100) noisy measurements

$$
\underline{b}=A \underline{x}+\underline{n} ; \underline{n} \sim N\left(0, \sigma^{2} I_{m}\right)
$$

- L_{2} regularization (Robust least squares)

$$
f=\min _{\underline{x}}\|A \underline{x}-\underline{b}\|_{2}^{2}+\gamma\|\underline{x}\|_{2}^{2} \quad \gamma>\text { o regularization parameter }
$$

- L_{1} regularization (LASSO: least absolute shrinkage and selection operator)

$$
f=\min _{\underline{x}}\|A \underline{x}-\underline{b}\|_{2}^{2}+\gamma\|\underline{x}\|_{1}
$$

 $L_{2} r e c o r$
error

Recall Primal-dual path following algorithm for LP

- Initialize $\underline{x}_{0}>0, \underline{p}_{0}>0, \underline{\lambda}_{0},(\alpha \approx 0.9-1)$

```
for \(k=0,1,2, \ldots k_{\text {max }}\)
    \(t=\underline{p}_{k}^{T} \underline{x}_{k}\)
    If \(t<\varepsilon\), stop
    else ..... \% calculate affine direction
        \(\mu_{k}=t / n\)
        solve \(\left[\begin{array}{ccc}A & 0 & 0 \\ 0 & A^{T} & I \\ P_{k} & 0 & D_{k}\end{array}\right]\left[\begin{array}{l}\underline{d}_{x a} \\ \underline{d}_{\lambda a} \\ \underline{d}_{p a}\end{array}\right]=-\left[\begin{array}{c}A \underline{x}_{k}-\underline{b} \\ A^{T} \underline{\lambda}_{k}+\underline{p}_{k}-\underline{c} \\ D_{k} P_{k} \underline{e}\end{array}\right] ; D_{k}=\operatorname{Diag}\left(\underline{x}_{k}\right) ; P_{k}=\operatorname{Diag}\left(\underline{p}_{k}\right)\)
```

 Affine direction
 calculate
 $$
\begin{aligned}
& \beta_{p a}=\min \left\{1, \alpha \min _{(: i d x i<0)}\left(\frac{-x_{d i}}{d_{x i}}\right)\right\} ; \beta_{d a}=\min \left\{1, \alpha \min _{\left(: i p_{p u}<0\right)}\left(\frac{-p_{k i}}{d_{p a}}\right)\right\} \\
& \mu_{a k}=\left(\underline{x}_{k}+\beta_{p a} \underline{d}_{x a}\right)^{T}\left(\underline{p}_{k}+\beta_{d a} \underline{d}_{p a}\right) / n ; \text { Centering parameter } \sigma_{k}=\left(\mu_{a k} / \mu_{k}\right)^{3}
\end{aligned}
$$

$$
\text { solve }\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & A^{T} & I \\
P_{k} & 0 & D_{k}
\end{array}\right]\left[\begin{array}{l}
\underline{d}_{x} \\
\underline{d}_{\lambda} \\
\underline{d}_{p}
\end{array}\right]=-\left[\begin{array}{c}
A \underline{x}_{k}-\underline{b} \\
A^{T} \underline{\lambda}_{k}+\underline{p}_{k}-\underline{c} \\
D_{k} P_{k} \underline{e}^{+}+\underline{d}_{x a} \circ \underline{d}_{p a}-\sigma_{k} \mu_{k} \underline{e}
\end{array}\right]
$$

$$
\beta_{p}=\min \left\{1, \alpha \min _{\left(:\left(d_{d i}<0\right)\right.}\left(\frac{-x_{d i}}{d_{d_{i j}}}\right)\right\} ; \beta_{d}=\min \left\{1, \alpha \min _{\left(:\left(d_{p i}<0\right)\right.}\left(\frac{-p_{k i}}{d_{p i}}\right)\right\}
$$

$$
\underline{x}_{k+1}=\underline{x}_{k}+\beta_{p} \underline{d}_{k} ; \underline{\lambda}_{k+1}=\underline{\lambda}_{k}+\beta_{d} \underline{d}_{\lambda} ; \underline{p}_{k+1}=\underline{p}_{k}+\beta_{d} \underline{d}_{p}
$$

end
end

Primal-dual path following algorithm for QP

- QP:

$$
\begin{aligned}
& \min _{\underline{\underline{x}}} \frac{1}{2} \underline{x}^{T} Q \underline{x}+\underline{d}^{T} \underline{x}+c \text { s.t. } A \underline{x} \geq \underline{b} ; A m \mathrm{x} n \\
& K K T: Q \underline{x}-A^{T} \underline{\lambda}+\underline{d}=\underline{0} ; A \underline{x}-\underline{p}-\underline{b}=\underline{0} ; p_{i} \lambda_{i}=0 ; p_{i} \geq 0 ; \lambda_{i} \geq 0
\end{aligned}
$$

- Initializ $\underline{p}_{0}>0, \underline{\lambda}_{0}>0,(\alpha \approx 0.9-0.99)$

```
for k=0,1,2,\ldots.kmax
t=\mp@subsup{\underline{p}}{k}{T}\mp@subsup{\underline{\lambda}}{k}{}
If }t<\varepsilon\mathrm{ , stop
else
    \mu
    solve}[\begin{array}{ccc}{Q}&{-\mp@subsup{A}{}{T}}&{0}\\{A}&{0}&{-I}\\{0}&{\mp@subsup{P}{k}{}}&{\mp@subsup{\Lambda}{k}{}}\end{array}][\begin{array}{l}{\underline{\mp@subsup{d}{xa}{}}}\\{\mp@subsup{\underline{d}}{a~}{\prime}}\\{\mp@subsup{\underline{d}}{pa}{}}\end{array}]=-[\begin{array}{c}{\mp@subsup{Q}{k}{}-\mp@subsup{A}{}{T}\mp@subsup{\underline{\boldsymbol{\lambda}}}{k}{}+\underline{d}}\\{A\mp@subsup{\underline{x}}{k}{}-\mp@subsup{\underline{p}}{k}{}-\underline{b}}\\{\mp@subsup{D}{k}{}\mp@subsup{P}{k}{}\underline{\underline{e}}-\mp@subsup{\sigma}{k}{}\mp@subsup{\mu}{k}{}\underline{e}}\end{array}];\mp@subsup{\Lambda}{k}{}=\operatorname{Diag}(\mp@subsup{\underline{\boldsymbol{\lambda}}}{k}{});\mp@subsup{P}{k}{}=\operatorname{Diag}(\mp@subsup{\underline{p}}{k}{}
    calculate
        \beta
        \muak}=(\mp@subsup{\underline{\lambda}}{k}{}+\mp@subsup{\beta}{a}{2}\mp@subsup{\underline{d}}{{a}{}\mp@subsup{)}{}{T}(\mp@subsup{\underline{p}}{k}{}+\mp@subsup{\beta}{a}{\prime}\mp@subsup{\underline{d}}{pa}{})/m;\mathrm{ Centering parameter }\mp@subsup{\sigma}{k}{}=(\mp@subsup{\mu}{ak}{}/\mp@subsup{\mu}{k}{}\mp@subsup{)}{}{3
    solve}[\begin{array}{ccc}{Q}&{-\mp@subsup{A}{}{T}}&{0}\\{A}&{0}&{-I}\\{0}&{\mp@subsup{P}{k}{}}&{\mp@subsup{\Lambda}{k}{}}\end{array}][\begin{array}{l}{\mp@subsup{\underline{d}}{x}{}}\\{\mp@subsup{\underline{d}}{\lambda}{}}\\{\mp@subsup{\underline{d}}{\lambda}{}}\\{\mp@subsup{\underline{p}}{p}{}}\end{array}]=-[\begin{array}{c}{Q\mp@subsup{\underline{x}}{k}{}-\mp@subsup{A}{}{T}\mp@subsup{\underline{\boldsymbol{\lambda}}}{k}{}+\underline{d}}\\{A\mp@subsup{\underline{x}}{k}{}-\mp@subsup{\underline{p}}{k}{}-\underline{b}}\\{\mp@subsup{D}{k}{}\mp@subsup{\underline{P}}{k}{}\underline{e}+\mp@subsup{\underline{d}}{\lambda}{}\circ\mp@subsup{\underline{d}}{p}{}-\mp@subsup{\sigma}{k}{}\mp@subsup{\mu}{k}{}\underline{e}}\end{array}
        \beta={\beta:\mp@subsup{\underline{p}}{k}{}+\beta\mp@subsup{\underline{d}}{p}{}\geq\underline{0}&\mp@subsup{\underline{\lambda}}{k}{}+\beta\mp@subsup{\underline{d}}{\lambda}{}\geq\underline{0}}
            \underline { x } _ { k + 1 } = \underline { x } _ { k } + \alpha \beta \underline { d } _ { k } ; \lambda _ { k + 1 } = \underline { \lambda } _ { k } + \alpha \beta \underline { d } _ { k } ; \underline { p } _ { k + 1 } = \underline { p } _ { k } + \alpha \beta \underline { d } _ { p }
```

end
end

Primal and dual for SOCP

- Recall Cone LP

$$
\begin{aligned}
& \min _{\underline{x}} \underline{c}^{T} \underline{x} \\
& \text { s.t. } A \underline{x}=\underline{b} \\
& \quad\left\|C_{i} \underline{x}+\underline{d}_{i}\right\|_{2} \leq \underline{e}_{i}^{T} \underline{x}+f_{i} ; i=1,2, \ldots, p
\end{aligned}
$$

$$
\text { where } \underline{x}, \underline{c}, \underline{e}_{i} \in R^{n} ; C_{i} \in R^{k_{i}-1 \times n} ; \underline{d}_{i} \in R^{k_{i}-1} ; f_{i} \in R, A \in R^{m \times n}, \underline{b} \in R^{m}
$$

Explicit form:
$\min _{\underline{x}} \underline{c}^{T} \underline{x}$
s.t. $A \underline{x}=\underline{b}$

$$
\begin{aligned}
& \left\|\underline{u}_{i}\right\|_{2} \leq t_{i} ; i=1,2, \ldots, p \\
& C_{i} \underline{x}-\underline{u}_{i}=-\underline{d}_{i} ; i=1,2, \ldots, p \\
& \underline{e}_{i}^{T} \underline{x}-t_{i}=-f_{i} ; i=1,2, \ldots, p
\end{aligned}
$$

- Dual (easy to see from Lagrangian)

$$
\begin{array}{ll}
\max _{\underline{\lambda_{1}}\left(\underline{\left.\delta_{i}, \gamma_{i}\right\}}\right.} & \underline{b}^{T} \underline{\lambda}-\sum_{i=1}^{p}\left(\underline{d}_{i}^{T} \underline{\delta}_{i}+f_{i} \gamma_{i}\right) \\
\text { s.t. } & \left(\sum_{i=1}^{p} C_{i}^{T} \underline{\delta}_{i}+\underline{e}_{i} \gamma_{i}\right)+A^{T} \underline{\lambda}=\underline{c} \\
& \left\|\underline{\delta}_{i}\right\|_{2} \leq \gamma_{i} ; i=1,2, \ldots, p
\end{array}
$$

Useful in robust SVM and a number of other applications. Interior point methods extend here. See Anderson et al.

- KKT or CS conditions: $\left\|\underline{u}_{i}\right\|_{2}<t_{i} \Rightarrow \gamma_{i}=\left\|\delta_{i}\right\|_{2}=0$

$$
\begin{aligned}
& \left\|\underline{\delta}_{i}\right\|_{2}<\gamma_{i} \Rightarrow t_{i}=\left\|\underline{u}_{i}\right\|_{2}=0 \\
& \gamma_{i}=\left\|\underline{\delta}_{i}\right\|_{2},\left\|\underline{u}_{i}\right\|_{2}=t_{i} \Rightarrow \gamma_{i} \boldsymbol{u}_{i}=-t_{i} \underline{\delta}_{i}
\end{aligned}
$$

See: Anderson et al. "Interior-point methods for large-scale cone programming," http://www.seas.ucla.edu/~vandenbe/publications/mlbook.pdf
Lobo et al. "Applications of second order cone programming," Linear Algebra and its Applications, 284, pp. 193-228, 1998.

Barrier method for SOCP

- Lagrangian of Barrier version of Cone LP

$$
\min _{\underline{\underline{x}}} L(\underline{x}, \underline{\lambda})=\underline{c}^{T} \underline{x}-\frac{1}{t} \sum_{i=1}^{p} \underbrace{\ln \left[\left(\underline{e}_{i}^{T} \underline{x}+f_{i}\right)^{2}-\left\|C_{i} \underline{x}+\underline{d}_{i}\right\|_{2}^{2}\right]}_{f_{i}(\underline{x})}+\underline{\lambda}^{T}(\underline{b}-A \underline{x})
$$

- KKT conditions

$$
\begin{aligned}
& \nabla_{\underline{x}} L=\underline{c}-A^{T} \underline{\lambda}-\frac{2}{t} \sum_{i=1}^{p} \frac{1}{f_{i}(\underline{x})}\left[\left(\underline{e}_{i}^{T} \underline{x}+f_{i}\right) \underline{e}_{i}-C_{i}^{T}\left(C_{i} \underline{x}+\underline{d}_{i}\right)\right]=\underline{0} \\
& \nabla_{\underline{\lambda}} L=-(A \underline{x}-\underline{b})=\underline{0}
\end{aligned}
$$

50 variables and 50 cone constraints in R^{6}

http://www.robots.ox.ac.uk/~az/lectures /b1/vandenberghe 1 2.pdf

- Algorithm: Given a strictly feasible \underline{x} (e.g., phase I LP), $t=t_{o} \approx 1, \mu \approx 10-$ 20, tolerance ε
- Centering step: compute $\underline{x}^{*}(t)$ and $\underline{\lambda}^{*}(t)$ set $\underline{x}=\underline{x}^{*}(t)$ and $\underline{\lambda}=\underline{\lambda}^{*}(t)$
- Stopping criterion: Terminate if $p / t<\varepsilon$. Else go to next step.
- Increase $t: t=\mu t$ and go to Centering step.
- Convergence typically in 20-50 iterations. Primal-dual path following algorithms exist. See Anderson et al.

Summary

- Spanning tree algorithms
- Kruskal
- Prim
- Distributed
- Applications to communication network design problem
- Introduction to Cone Programming

