
Lecture 12:
Knapsack Problems

Prof. Krishna R. Pattipati
Dept. of Electrical and Computer Engineering

University of Connecticut
Contact: krishna@engr.uconn.edu; (860) 486-2890

© K. R. Pattipati, 2001-2016

Outline

VUGRAPH 2

• Why solve this problem?

• Various versions of Knapsack problem

• Approximation algorithms

• Optimal algorithms

 Dynamic programming

 Branch-and-bound

• A hitch-hiker has to fill up his knapsack of size V by selecting from among
various possible objects those which will give him maximum comfort

• Suppose want to invest (all or in part) a capital of V dollars among n possible
investments with different expected profits and with different investment
requirements to maximize total expected profit

• Other applications: cargo loading, cutting stock

• Mathematical formulation of 0–1 Knapsack problem

• A knapsack is to be filled with different objects of profit pi and of weights wi

without exceeding the total weight V

• pi & wi are integers (if not, scale them)

• wi≤ 𝑉, ∀𝑖

• σ𝑖=1
𝑛 𝑤𝑖 > 𝑉

0–1 Knapsack problem

VUGRAPH 3

1

1

max

s.t.

 {0,1}

n

i i

i

n

i i

i

i

p x

w x V

x













• Bounded Knapsack problem

 Suppose there are bi items of type i

⇒ Change 𝑥𝑖 ∈ {0, 1} to 0 ≤ 𝑥𝑖 ≤ 𝑏𝑖 and xi integer

 Unbounded Knapsack problem

⇒ 𝑏𝑖 = ∞, 0 ≤ 𝑥𝑖 ≤ ∞, xi integer

 Subset-sum problem

o Find a subset of weights whose sum is closest to, without exceeding capacity

o Knapsack problem with wi = pi

o Subset-sum is NP-hard ⇒ knapsack is NP-hard

 Change-making problem

o bi finite ⇒ bounded change-making problem

o bi = ∞ ⇒ unbounded change-making problem

1

1

max

s.t.

 0 , an integer, 1, ,

n

i

i

n

i i

i

i i i

x

w x V

x b x i n







  





Other related formulations

VUGRAPH 4

1

1

max

s.t.

 {0,1}

n

i i

i

n

i i

i

i

w x

w x V

x













• 1-dimensional knapsack with a cost constraint

• Multi-dimensional knapsack in which profit and weight of each item depends on the knapsack
selected for the item

Other related formulation

VUGRAPH 5

1

1

1

max

s.t.

 {0,1}

n

i i

i

n

i i

i

n

i i

i

i

p x

w x V

c x C

x



















1 1

1

1

max

s.t. ; 1, ,

 1; 1, ,

 {0,1}; 1, , ; 1, ,

n m

i ij

i j

n

i ij

i

m

ij

j

ij

p x

w x V j m

x i n

x i n j m

 





 

 

  







1 1

1

1

max

s.t. ; 1, ,

 1; 1, ,

 {0,1}; 1, , ; 1, ,

n m

ij ij

i j

n

ij ij j

i

m

ij

j

ij

p x

w x V j m

x i n

x i n j m

 





 

 

  







• Multi-dimensional knapsack (m knapsacks)

Other related formulation

VUGRAPH 6

• Loading problem or variable-sized bin-packing problem

 Given n objects with known volumes wi & m boxes with limited capacity cj, j=1,…,m,
minimize the number of boxes used

 yi = 1 if box j is used

 xij = 1 if object i is put in box j

 cj = c ⇒ bin-packing problem

• See S. Martello and P. Toth, Knapsack Problems: Algorithms and Computer
Implementation, John Wiley, 1990 for an in-depth survey of these problems

• Here we consider only 0–1 Knapsack problem

1

1

1

min

s.t. 1; 1, ,

 ; 1, ,

 , {0,1}

n

j

j

m

ij

i

n

i ij j j

i

j ij

y

x i n

w x c y j m

y x







 

 









• Let us consider relaxed LP version of Knapsack problem

 Gives us an upper and lower bound on the Knapsack problem

 Assume that objects are ordered as

 LP relaxation to find an upper bound

 Dual of relaxed LP

Relaxed LP version of Knapsack problem

VUGRAPH 7

1 2

1 2

n

n

p p p

w w w
  

*

max relax 0 1 max

s.t. s.t.

 {0,1} constraints 0 1

i i i i

i i

i i i i

i i

i i

p x p x

w x V w x V

x x

f



  

  



 

 

 LPf

1

min

s.t.

 , 0

n

i

i

i i i

i

V

w p

 

 

 



 
 

 

 




1

min

s.t.

 0

n

i

i

i i i

i

V

p w

 

 





 
 

 

 





0
1

1
* 1

1 11

* 1

1

min max(0,)

; :

max(0,)

n

i i

i

r r
r

i i

i ir

r
i i i

r

V p w

p
r w V w

w

p
p w

w


 











 





 
  

 

  

 



 

• Complementary slackness condition

 𝑥𝑖 = 1 ⇒𝜇𝑖 > 0 and 𝑤𝑖𝜆 + 𝜇𝑖 = 𝑝𝑖
 𝑥𝑖 < 1 ⇒ 𝜇𝑖 = 0

• Optimal solution is as follows

• Clearly, 𝑓𝐿𝑃
∗ = optimal dual objective function value

Relaxed LP version of Knapsack problem

VUGRAPH 8

1

1 1

1
1 1

1

* * 1

1 1 1

if then

 1, 1, , = ()

 0, 2, , = 0

 ; = 0

 one upper bound is:

optimal

r r

i i

i i

i i i i

i i

r

i

i
r r

r

r r
r

LP i i

i i r

w V w

x i r p w

x i r n

V w

x
w

p
f f p V w

w

 







 


 





  

 

   

   







  
      

  

 



 

1

1

1

1

 ; 1, ,

r

r

i
i i r

r

p

w

w
p p i r

w















 
    

 

• LP relaxation solution provides the upper bound 𝑈1 = int 𝑓𝐿𝑃
∗ ≤ 2𝑓∗

 Both [p1, p2,…, pr] and pr+1 are feasible Knapsack solutions

 Feasible solution ≤ 𝑓∗

 𝑈1 ≤ sum of two feasible solution ≤ 2𝑓∗

• We can obtain an even tighter bound than LP relaxation (Martello and Toth)

 Consider the possibility that xr+1 = 1 or xr+1 = 0

LP relaxation upper bound

VUGRAPH 11

 

1 2

1

2

1 2

1

1

11
1

1

1

0 could be a fraction

ˆ

1 could be a fraction

r r

r

ir
i

i r

i r

r r

r

i rr
i

i r r

i r

x x

V w

U p p
w

x x

V w w

U p p p
w

 





 












 

  
  

    
 
 
 

 

  
   

     
 
 
 







1

1

1

1

r

r rr
i

i r r

i r

w V w

p p p
w









   
    
     

  
  

  




• Clearly,

• Why is this a better upper bound than LP relaxation?
 Clearly, ෡𝑈 ≤ 𝑈1

 Can show that

LP relaxation upper bound

VUGRAPH 12

  *

2
ˆmax ,U U U f 

1
1

1

11

0
r

r r
i

ir r

p p
U U w V

w w






   
       

  


Knapsack Example

VUGRAPH 13

 n = 8

 p = [15, 100, 90, 60, 40, 15, 10, 1]

 w = [2, 20, 20, 30, 40, 30, 60, 10]

 V = 102

 Optimal solution: x = [1, 1, 1, 1, 0, 1, 0, 0]

 Optimal value: f* = 280

 LP relaxation: (r + 1) = 5 ⇒ U1= 265 +
(30)(40)

40
= 295

 Bound ෡𝑈 = 265 +
(30)(15)

30
= 280

 Bound ෩𝑈 = 245+
(20)(60)

30
= 285

 Maximum of latter two bounds = 285

• These bounds can be further improved by solving two continuous relaxed
LPs with the constraints that xr+1 = 1 or xr+1 = 0, respectively

• Algorithm for solving Knapsack problem
 Approximation algorithms
 Dynamic programming
 Branch-and-bound

• Although the problem is NP-hard, can solve problems of size n = 100,000 in
a reasonable time

• Approximate algorithms…lower bounds on the optimal solution
 Can obtain from a greedy heuristic

෩𝑈 =
𝑉 − σ𝑖=1

𝑟−1𝑤𝑖 − 𝑤𝑟+1

𝑤𝑟
𝑝𝑟

෡𝑈 =
𝑉 − σ𝑖=1

𝑟 𝑤𝑖

𝑤𝑟+2
𝑝𝑟+2

Greedy heuristic

VUGRAPH 14

• 0th order greedy heuristic

 Load objects on the basis of
𝑝𝑖

𝑤𝑖

• Kth order greedy heuristic
 We can obtain a series of lower bounds by assuming that a certain

set of objects J are in the knapsack where

 And assigning the rest on the basis of greedy method

 This is basically rollout concept of dynamic programming

*

1
:

1

&

(0)
i i

i i

i

i
p p

i
w w

w V

L p f







 





i

i J

w V




kth order Greedy heuristic

VUGRAPH 15

 The bound can be computed as follows:

o 𝑧 = 𝑉 − σ𝑖∈𝐽𝑤𝑖

o y=σ𝑖∈𝐽 𝑝𝑖

o For 𝑖 = 1,… , 𝑛 do
 If (𝑖 ∉ 𝐽 & 𝑤𝑖 ≤ 𝑧) then

 𝐽 = 𝐽 ∪ 𝑖

 𝑧 = 𝑧 − 𝑤𝑖

 𝑦 = 𝑦 + 𝑝𝑖
 End if

o End do

o 𝐿(𝐽) = 𝑦 ≤ 𝑓∗

• Idea: what if I consider all possible combination of objects of size |J| = k & find
the best lower bound & use it as a solution of the Knapsack problem

 If |J| = n, optimal

o We can control the complexity of the algorithm by varying k

k-approximation algorithm…Knapsack(k)

o f (k) ← 0

 Enumerate all subset 𝐽 ⊂ {1,… , 𝑛} such that

 Note: in practice, k = 2 would suffice to produce a solution within 2-5% of optimal

• Example

k-approximation algorithm

VUGRAPH 16

 

| | and do

() max (), ()

i J

J V

f k f k L J









1 2 3 4 5 6

1 2 3 4 5 6

max 100 50 20 10 7 3

s.t. 100 50 20 10 7 3 165

 1,

(0) 163 0 order heuristic

 1: ({1}) 163, ({2}) 163, ({3}) 140, ({4}) 163, ({5}) 160, ({6}) 163

best 1 o

i

i

th

st

x x x x x x

x x x x x x

p
i

w

L

k L L L L L L

    

     

 



      

 rder heuristic solution = 163... in fact, this is optimal!

k-approximation algorithm

VUGRAPH 17

• Can we say anything about the performance of the
approximation algorithm? Yes!
 The recursive approximation algorithm Knapsack(k) provides a

solution 𝑓(𝑘) ∋

 Before we provide a proof, let us consider its implications

o If want a solution within 𝜖 of optimal

o Time complexity

 Number of time greedy (0) is executed

 Each greedy takes O(n) operations

*

*

() 1

1

f f k

f k






1 1
1

1
k

k
   



11

0 0

1
() ()

1

kk k
i k

i i

n n
n O n O n

i n



 

  
    

 
 

• Let R* be the set of objects included in the knapsack in an optimal
solution

• If | R*|≤ 𝑘, our approximation algorithm would have found it…so,
assume otherwise

• Suppose (Ƹ𝑝𝑖 , ෝ𝑤𝑖), 1 ≤ 𝑖 ≤ |𝑅∗| be the set of objects in R*

• Assume that we order these objects as follows:

 First 𝑘: Ƹ𝑝1 > Ƹ𝑝2 > ⋯ > Ƹ𝑝𝑘 are the largest profits

 The rest:
ො𝑝𝑖
ෝ𝑤𝑖
>

ො𝑝𝑖+1
ෝ𝑤𝑖+1

, 𝑘 < 𝑖 < |𝑅∗|

•

•

Proof of the bound: setting the stage

VUGRAPH 18

* *

* &i i

i R i R

p f w V
 

   

*R k 

*

*

1 2 | |

* *

1

1

*

ˆ ˆ ˆ

ˆ ˆ ˆ(1) ; 1,...,| |

ˆ
1

R

k

i k k t

i

k t

p p p f

f p p k p t k R

f
p

k

 





  

     

 




Proof of the k-approximation bound - 1

VUGRAPH 19

• Let us look at what k-approximation algorithm does … it must have looked at the set J of
largest prices in R* at least once … let

• Let us consider what happens when k-approximation algorithm executed this iteration

 Suppose that the approximation algorithm did not include an object that is in the optimal
solution

 Let l be the first such object, that is, 𝑙 ∉ 𝐽

 Suppose l corresponds to (Ƹ𝑝𝑚, ෝ𝑤𝑚) in R*

• Why was l not included in the Knapsack(k)?

 Residual capacity of knapsack 𝑧 < 𝑤𝑙 = ෝ𝑤𝑚

 Must have included (m - 1) tasks

1

ˆ
k

J i i

i J i

f p p
 

  

1 1

1 1 1

1

ˆ
ˆ ˆ ˆ()

ˆ

ˆ()

J

J

S

k m m
m

i i i

i i k im

f

k

i

i

f

p
f k p p V w z

w

f k p S



 

   



 
     

 

 

  



VUGRAPH 20

• Also, from LP relaxation bound

• By definition

*

1 1

1 1

ˆ
ˆ ˆ ˆ

ˆ

R m m
m

i i i

i m i im

p
p p V w

w

 

  

 
   

 
  

*

*

*

1

1

1

1

1

*

* *

ˆ ˆ

ˆ ˆ
ˆ

ˆ ˆ

ˆ

ˆ

ˆ ˆ()

ˆ() 1

1

R

J i

i k

Rm

J i i

i k i m

m
m m

J i

im m

m
J

m

J m m

m

f f p

f p p

p p
f S V w

w w

p
f S z

w

f S p f k p

pf f k

f f k



 



  





 

  

 
     

 

  

    


  





 



Proof of the k-approximation bound - 2

VUGRAPH 21

• Since Ƹ𝑝𝑚 is one of Ƹ𝑝𝑘+1⋯ Ƹ𝑝 𝑅∗ ⇒ Ƹ𝑝𝑚 ≤ ҧ𝑝 = 𝑘 + 1 st largest element of Ƹ𝑝1⋯ Ƹ𝑝𝑚

• Example

 p = [11, 21, 31, 33, 43, 53, 55, 65] optimal: 1 2 3 5 6

 w = [1, 11, 21, 23, 33, 43, 45, 55] f* = 159, σ𝑤𝑖 = 109 < 110

 V = 110

 k = 0 ⇒ x = [1, 1, 1, 1, 1, 0, 0, 0], f = 139 ⇒
𝑓∗−𝑓

𝑓∗
=

20

159
= 0.126, σ𝑤𝑖 = 89

 k = 1 ⇒ x = [1, 1, 1, 1, 0, 0, 1, 0], f = 151 ⇒
𝑓∗−𝑓

𝑓∗
=

8

159
= 0.05, σ𝑤𝑖 =101

 k = 2 ⇒ x = [1, 1, 1, 0, 1, 1, 0, 0], f = 159 ⇒
𝑓∗−𝑓

𝑓∗
=

0

159
= 0, σ𝑤𝑖 =109

*

* *

*

*

ˆ ˆ()

() ()

() 1
min ,

1 ()

m mf f k p p p

f f f k f k

f f k p

f k f k


   

 
   

 

Proof of the k-approximation bound - 3

Example

VUGRAPH 22

 Usually k = 1 or k = 2 works OK (within 2-5% of optimal)

1 2 3 4

1 2 3 4

max 9 5 3

s.t. 7 4 3 2 10

9 5 3 1
note: (OK)

7 4 3 2

0 : ({0}) 12, [1,0,1,0]

1: ({1}) 12, ({2}) 9, ({3}) 12, ({4}) 10

2 : ({1,3}) 12, ({1,4}) 10, ({2,3}) 9, ({2,4}) 10, ({3,4}) 10,etc.

x x x x

x x x x

k L x

k L L L L

k L L L L L

f

  

   

  

  

    

     

*(2) 12 f 

Dynamic programming approach

VUGRAPH 23

• Views the problem as a sequence of decisions related to variables x1, x2,…, xn

• That is, we decide whether x1 = 0 or 1, then consider x2, and so on

• Consider the “generalized” Knapsack problem:

• Actually want to solve: Knap (1, n, V)

• To solve Knap (1, n, V), the DP algorithm employs the principle of optimality

 “The optimal sequence of decisions has the property that, whatever the
initial state and past decisions are, the remaining decisions must
constitute an optimal decision sequence with regard to the state
resulting from the current decision”

max

s.t. Knap(, ,)

 {0,1}, , ,

l

i i

i k

l

i i

i k

i

p x

w x U k l U

x i k l










 

 







• Suppose 𝑓0
∗(𝑉) = optimal value for Knap (1, n, V)

• 𝑓𝑗
∗(𝑈) = optimal value for Knap (j + 1, n, V), 1 ≤ 𝑗 ≤ 𝑛 − 1

• Clearly, 𝑓𝑛
∗ 𝑈 = 0, ∀𝑈

• Let us look at 𝑓0
∗(𝑉) … suppose we make the decision for xi

• If 𝑥1 = 0, 𝑥2⋯𝑥𝑛 must be the optimal solution for Knap (2, n, V) = 𝑓1
∗(𝑉)

• If 𝑥1 = 1, 𝑥2⋯𝑥𝑛 must be the optimal solution for Knap (2, n, V – w1) = 𝑓1
∗(𝑉 − 𝑤1)

• Similarly, 𝑓𝑗
∗(𝑈) = optimal solution of Knap (j + 1, n, U)

Backward DP approach

VUGRAPH 24

 * * *

0 1 1 1 1

1 1

() max (), ()

 0 1

f V f V f V w p

x x

  

 

 

 * * *

1 1 1 1

1 1

() max (), () , 1, ,0

 0 1

 () 0,

j j j j j

j j

n

f U f U f U w p j n

x x

f U U

   

 

    

 

 

 

Forward DP

VUGRAPH 25

• Start with 𝑓𝑛
∗ 𝑈 = 0, ∀𝑈 = 0, 1, 2, … , 𝑉…successively evaluate

𝑓𝑛−1
∗ 𝑈 , ∀𝑈, then 𝑓𝑛−2

∗ 𝑈 ,∀𝑈, etc.

• Note: decision xj+1 depends on xj+2,…, xn ⇒ backward recursion

• Alternately, suppose we know the optimal solution to Knap (1, j, U) …
we could have solved it in one of two ways:

 xj = 0 and knew the solution to Knap (1, j–1, U) = 𝑆𝑗−1
∗ 𝑈

 xj = 1 and knew the solution to Knap (1, j–1, U–wj) = 𝑆𝑗−1
∗ 𝑈 − 𝑤𝑗 + 𝑝𝑗

 So we can get a forward recursion

where

 Note: decision xj depends on x1,…, xj-1 ⇒ forward recursion

 * * *

1 1() max (), ()j j j j jS U S U S U w p   

0 0() 0, 0 and () , 0S U U S U U      

Example

VUGRAPH 26

• p = [1, 2, 5]; w = [2, 3, 4]; V = 6

• Computational load and storage O(nV)

• It is considered a pseudo-polynomial algorithm, since V is not bounded by a
log2V function

• By encoding x as a bit string, can reduce storage to 𝑂 1 +
𝑛

𝑑
𝑉 , where d is

the word length on the computer (see Martello and Toth’s book)

U 0

(S0, x0)

1

(S1, x1)

2

(S2, x2)

3

(S3, x3)

0 (0, –) (0 ,0) (0 ,0) (0, 0)

1 (0, –) (0 ,0) (0, 0) (0, 0)

2 (0 ,–) (1 ,1) (1, 0) (1, 0)

3 (0, –) (1, 1) (2 ,1) (2, 0)

4 (0 ,–) (1, 1) (2, 1) (5, 1)

5 (0, –) (1, 1) (3, 1) (5, 1)

6 (0, –) (1, 1) (3, 1) (6 ,1)

 * * *

1 1() max (), ()j j j j jS U S U S U w p   

0 0() 0, 0 and () , 0S U U S U U      

1 2 3

*

1; 0; 1

6

x x x

f

  



• Finds the solution via a systematic search of the solution space

• For Knapsack problem, the solution space consists of 2n vectors of 0s and 1s

• The solution space can be represented as a tree

 Leaves correspond to “potential solutions,” not necessarily feasible

 Key:

o Don’t want to search the entire tree

o Don’t want to generate infeasible solutions

o Don’t want to generate tree nodes that do not lead to a better solution than the one on
hand (⇒ a bounding function)

Branch-and-bound method: Basic Idea

VUGRAPH 27

x1

x2

x3

x4

1

1

1

1

1 1

1

1

1

1

1

1 1 0

0

0

0

0

00 1

0

0

00

0

0 0 1 0

• Bounding function can be derived from the LP
relaxation
 Given the current contents of the knapsack J with profit

P and weight W, we can construct the bounding
function as follows:
o Suppose k is the last object considered, i.e., p & W correspond

to 𝑦1⋯𝑦𝑘 (𝑦𝑖 = temp 𝑥𝑖), then

o If the UB ≤ current best solution, then further search from a
tree node is worthless

So, backtrack ⇒ move to the right, if it was in the left one or go
back to the first variable with value

B&B for knapsack problem

VUGRAPH 28

1

1

max

s.t.

 0 1

n

i i

i k

n

i i

i k

i

p p y

w y V W

y

 

 



 

 





• We will explain the algorithm by means of an example
(Syslo, Deo, and Kowalik)

• Initially p = W = 0, k = 0 & f = –1

 Partial solution: y1 = 1, y2 = 1 with profit = 5 and

 Weight = 3 ⇒ p = 5, W = 3, k + 1 = 3

 Bound: b = 5 + int
(2)(6)

5
= 7

 Bound > f … perform a forward move

Example

VUGRAPH 29

1 2 3 4

1 2 3 4

max 2 3 6 3

s.t. 2 5 4 5

 {0,1}i

x x x x

x x x x

x

  

   



• y3 = 0 (since can not fit in it) and y4 = 1 is infeasible

• Set y4 = 0 and k + 1 = 5 > n = 4 and f = –1, the current solution is the best found so far … so, set f = 5 and k = 4

• Backtrack to the last object assigned to knapsack … remove the object … y2 = 0 ⇒ p = 2, W = 1, y3 = 1 fails ⇒ y3

= 0 … but, y4 = 1 O.K. ⇒ y = [1, 0, 0, 1] and p = 5 … this does not improve the current best solution of f = 5

• Backtrack to y1 … set y1 = 0 after assigning y2 = 1, it returns bound b = 6 … b > f, we do another forward move
… the next call to bound results in a bound 𝑏 ≤ 𝑓 ⇒ backward move

• Backtrack to y2 … set y2 = 0 after assigning y3 = 1, it returns bound b = 6 and a solution p = 6, W = 5, which is
better than the best solution f…. Actually you could you have stopped here because upper bound = feasible solution

• Finally, y3 = 0, and bound assigns y4 = 1 and returns 3 … since there are no other objects in the knapsack to be
removed, the algorithm terminates

• There exist variations that provide better computational performance … see the book by Martello and Toth

Example

VUGRAPH 30

y1

y2

y3

y4

1

1

7

6

6

1

1

1

0

0

0

0

0

0

00

0

6

1

5 5

6

5 6 3

0

f = 5 5 ≤ 𝑓 5 ≤ 𝑓 f = 6 3 < f

Summary

VUGRAPH 31

• Various versions of Knapsack problem

• Approximation algorithms

• Optimal algorithms

 Dynamic programming

 Branch-and-bound

