Lecture 2:
 Linear Programming and Revised Simplex

Prof. Krishna R. Pattipati
Dept. of Electrical and Computer Engineering
University of Connecticut
Contact: krishna@engr.uconn.edu; (860) 486-2890

January 28, 2016

Reading List

- Bertsimas and Tsitsiklis, secs. 2.3-2.6, 3.1
- Luenberger, chapters 2 and 3

Outline

- Simple Examples
- Historical Perspective Revisited
- Various Versions of LP
- Why do we need to solve linear programming problems ?
- L_{1} and L_{∞} curve fitting (i.e., parameter estimation using 1-norm and $\infty-$ norm of error as minimization objective)
- Application to FIR filter design
- Diet problem
- Portfolio optimization
- Optimal control
- Transportation problem
- Shortest path problems
- Revised Simplex method
- Fundamental theorem of LP
- Geometric interpretation
- Optimality conditions
- Simplex iteration

Simple Example to Illustrate the Geometry of LP

- Advertising problem
- Dorian manufacturing Co. makes cars and trucks
- Customers: High-income men and women
- Want to advertise on comedy shows and football games
- Each comedy commercial is seen by 7 million high-income women and 2 million high-income men
- Each football commercial is seen by 2 million high-income women and 12 million high-income men
- Cost:
- 1-minute comedy commercial cost : $\$ 50 \mathrm{~K}$
- 1-minute football commercial cost : $\$ 100 \mathrm{~K}$
- Want to reach at least 28 million high-income women and 24 million high-income men
- Q: How much advertising to buy to minimize cost?
$x_{1}=$ Number of minutes of commercial bought on comedy shows
$x_{2}=$ Number of minutes of commercial bought on football games
- x_{1}, x_{2} are integers \Rightarrow Linear Integer Programming (LIP) problem

Graphical Solution

$$
\begin{array}{ll}
\min & f=50 x_{1}+100 x_{2} \\
\text { s.t. } & 7 x_{1}+2 x_{2} \geq 28 \\
& 2 x_{1}+12 x_{2} \geq 24
\end{array}
$$

- Relax integrality constraints $\Rightarrow x_{1} \geq 0, x_{2} \geq 0 \Rightarrow \mathrm{LP}$

Optimal Integer solutions:

$$
\begin{array}{ll}
x_{1}=6, & x_{2}=1 \Rightarrow f=\$ 400 \mathrm{~K} \\
x_{1}=4, & x_{2}=2 \Rightarrow f=\$ 400 \mathrm{~K}
\end{array}
$$

LP Solution:

$$
x_{1}=3.6, x_{2}=1.4 \Rightarrow f=\$ 320 \mathrm{~K}
$$

Note: Relaxed LP solution is a lower bound on the optimal LIP solution

Can LP problem have multiple solutions?

1. An LP can have multiple solutions

- Automobile manufacturing process that makes cars and trucks
- Must go through paint and body shops
- Paint shop capacity
- 40 trucks per day (or)
- 60 cars per day
- Body shop capacity
- 50 trucks per day (or)
- 50 cars per day
- Profits
- \$300/truck
- \$200/car
- Variables:
- $x_{1}=\#$ of trucks produced/day
- $x_{2}=\#$ of cars produced/day

Is LP problem always feasible? No!!!

- Problem:

$$
\begin{array}{c|cr|}
\begin{array}{c|c}
\max f & =3 x_{1}+2 x_{2} \\
\text { s.t. } & \frac{x_{1}}{40}+\frac{x_{2}}{60} \leq 1 \\
\text { (paint shop) } & \max f=3 x_{1}+2 x_{2} \\
& \frac{x_{1}}{50}+\frac{x_{2}}{50} \leq 1 \\
& \text { (body shop) }
\end{array} & \begin{array}{c}
\text { s.t. } 3 x_{1}+2 x_{2} \leq 120 \\
x_{1}+x_{2} \leq 50
\end{array} & \text { (paint shop) } \\
& \text { (body shop) }
\end{array}
$$

- Multiple solutions:

$$
\begin{aligned}
& f=120 \\
& x_{1}=40, x_{2}=0 \\
& x_{1}=30, x_{2}=15 \\
& x_{1}=20, x_{2}=30, \text { etc. }
\end{aligned}
$$

2. An LP may be infeasible

$\max f=3 x_{1}+2 x_{2}$	
s.t. $3 x_{1}+2 x_{2} \leq 120$	(paint shop)
$x_{1}+x_{2} \leq 50$	(body shop)
x_{1}	≥ 30
$x_{2} \geq 20$	(\# of trucks)
(\# of cars)	

Note: at $x_{1}=30$ and $x_{2}=20,3 x_{1}+2 x_{2}=130$ \Rightarrow paint shop can't handle it

- Feasible space is empty

Is the optimal solution always finite? No!!!

3. An LP can have an unbounded solution

$$
\begin{aligned}
& \max f=2 x_{1}-x_{2} \\
& \text { s.t. } x_{1}-x_{2} \leq 1 \\
& 2 x_{1}+x_{2} \geq 6 \\
& x_{1} \geq 0 \\
& x_{2} \geq 0
\end{aligned}
$$

- Thus, an LP can have:
- A unique solution
- Multiple solutions (but with the same function value)
- Infeasible solution space
- Unbounded solutions \Rightarrow
$f \rightarrow \infty$ for max or
$f \rightarrow-\infty$ for min

It will be nice if the algorithm detects these conditions

Historical Perspective Revisited

- One of the most celebrated problems since 1951
- Major breakthroughs
- Dantzig: Simplex method (1947-1949)
- Khachian: Ellipsoid method (1979)
- Polynomial complexity of LP, but not competitive with the Simplex method \Rightarrow not practical
- Karmarker: Projective interior point algorithm (1984)
- Polynomial complexity of LP and a competitive algorithm (especially for large problems)
- LP Problem definition
- Given
- An $m \times n$ matrix $A, m<n$ or $A \in R^{m n}, m<n$ assume $\operatorname{rank}(A)=m$
- A column vector \underline{b} with m components: $\underline{b} \in R^{m}$
\circ A row vector c^{T} with n components: $\underline{c} \in R^{n}$
- $m<n \Rightarrow A \underline{x}=\underline{b}$ has infinitely many solutions $\Rightarrow \underline{b}=\sum_{i=1}^{n} \underline{a}_{i} x_{i}$

What is Linear Programming (LP)

- Recall

- $r=m \Rightarrow N\left(A^{T}\right)=\varphi$ (origin)
- Consider $\underline{x}_{r} \in R\left(A^{T}\right) \ni A \underline{x}_{r}=\underline{b} \Rightarrow A\left(\underline{x}_{r}+\underline{x}_{n}\right)=\underline{b}$ where

$$
\underline{x}_{n} \in N(A) \Rightarrow\left(\underline{x}_{n}: A \underline{x}_{n}=0\right)
$$

- We impose two restrictions on \underline{x} :
- Want nonnegative solutions of $A \underline{x}=\underline{b} \Rightarrow x_{i} \geq 0$ (or) $\underline{x} \geq \underline{0}$

$$
\underline{x} \ni A \underline{x}=\underline{b} \& \underline{x} \geq \underline{0} \text { are said to be feasible }
$$

\bigcirc Among all those feasible $\underline{x} s$, want $\underline{x}^{*} \ni c^{T} \underline{x}=c_{1} x_{1}+c_{2} x_{2}+\ldots+c_{n} x_{n}$ is a minimum

Any LP problem can be converted to SLP

- This leads to the so-called "standard form of LP"

- Claim: Any LP problem can be converted into standard form
- Inequality constraints
a) $\underline{a}_{i}^{T} \underline{x} \leq b_{i} \Rightarrow\left[\begin{array}{ll}\underline{a}_{i}^{T} & 1\end{array}\right]\left[\begin{array}{c}\underline{x} \\ x_{n+1}\end{array}\right]=b_{i} ; x_{n+1} \geq 0$
$x_{n+1} \sim$ slack variable
In general, $A \underline{x} \leq \underline{b} \Rightarrow A \underline{x}+\underline{y}=\underline{b} \Rightarrow\left[\begin{array}{ll}A & I\end{array}\right][\underline{x}][\underline{y}]=\underline{b}, \underline{y} \geq \underline{0}$
Increase number of variables by m and A_{a} is an $m \times(n+m)$ matrix
b) $\underline{a}_{i}^{T} \underline{x} \geq b_{i} \Rightarrow \underline{a}_{i}^{T} \underline{x}-x_{n+1}=b_{i} ; x_{n+1} \geq 0$
$x_{n+1} \sim$ surplus variable
In general, $A \underline{x} \geq \underline{b} \Rightarrow\left[\begin{array}{ll}A & -I\end{array}\right]\left[\begin{array}{l}\frac{x}{y} \\]\end{array}\right]=\underline{b}, \underline{y} \geq 0$
c) $d_{i} \leq x_{i} \Rightarrow$ define $\hat{x}_{i}=x_{i}-d_{i}, \hat{x}_{i} \geq 0$
d) $d_{i} \geq x_{i} \Rightarrow$ define $\hat{x}_{i}=d_{i}-x_{i}, \hat{x}_{i} \geq 0$

Converting to standard LP

e) $d_{i 1} \leq x_{i} \leq d_{i 2} \Rightarrow 0 \leq x_{i}-d_{i 1} \leq d_{i 2}-d_{i 1}$

Define $\hat{x}_{i}=x_{i}-d_{i 1}$
$\& \hat{x}_{i}+y_{i}=d_{i 2}-d_{i 1}$; slack $y_{i} \geq 0$
f) $\quad b_{1 i} \leq \underline{a}_{i}{ }^{T} \underline{x} \leq b_{2 i} \Rightarrow$ use a slack and a surplus
$\left.\begin{array}{l}\underline{a}_{i}^{T} \underline{x}-y_{i 1}=b_{1 i} \\ \underline{a}_{i}^{T} \underline{x}+y_{i 2}=b_{2 i}\end{array}\right\} y_{i 1}, y_{i 2} \geq 0$
g) $\left|\underline{a}_{i}^{T} \underline{x}\right| \leq b_{i} \Rightarrow-b_{i} \leq \underline{a}_{i}^{T} \underline{x} \leq b_{i}$
$\Rightarrow \underline{a}_{i}^{T} \underline{x}-y_{i 1}=-b_{i}$ $\underline{a}_{i}^{T} \underline{x}+y_{i 2}=b_{i}$

- x_{i} is a free variable
- Define $x_{i}=\bar{x}_{i}-\hat{x}_{i}$, with $\bar{x}_{i}, \hat{x}_{i} \geq 0$
- Maximization: change $\underline{c}^{T} \underline{x}$ to $-\underline{c}^{T} \underline{x}$
- L_{l}-minimization: $\min \sum_{i=1}^{n}\left|x_{i}\right|$ s.t. $A \underline{x} \leq \underline{b}$
$\Rightarrow A \underline{x}+\underline{y}=\underline{b}$
$\left.\begin{array}{l}\text { Write } x_{i}=\bar{x}_{i}-\hat{x}_{i} \\ \Rightarrow \min \sum_{i=1}^{n}\left(\bar{x}_{i}+\hat{x}_{i}\right) \text { s.t. }\left[\begin{array}{lll}A & -A & I\end{array}\right]\left[\begin{array}{l}\underline{x} \\ \underline{x} \\ \underline{y}\end{array}\right]=\underline{b}\end{array}\right] \begin{aligned} & \text { Optimal solution of this problem solves } \\ & \text { the original problem. Also, } \\ & \text { if } \bar{x}_{i}>0, \hat{x}_{i}=0 \text { and vice versa. }\end{aligned}$

L_{1} - curve fitting

1. $\quad L_{1}$ - curve fitting

- Recall that given a set of scalars $\left(b_{1}, b_{2}, \ldots, b_{m}\right)$, the estimate that minimizes $\sum_{i=1}^{m}\left|x-b_{i}\right|$ is the median and that this estimate is insensitive to outliers in the data $\left\{b_{i}\right\}$.
- In vector case, want

$$
\underline{x} \ni \min _{\underline{x}} \sum_{i=1}^{m}\left|\underline{a}_{i}^{T} \underline{x}-b_{i}\right|=\min _{\underline{x}}\|A \underline{x}-\underline{b}\|_{1}
$$

- L_{1} - curve fitting \Rightarrow an LP
- Write $x_{i}=\widetilde{x}_{i}-\hat{x}_{i}, i=1,2, . ., n ;\left|\underline{a}_{i}^{T} \underline{x}-b_{i}\right|=u_{i}+v_{i}$
- Then, the LP problem is:

$$
\begin{array}{r}
\min _{\underline{x}, \underline{\underline{v}}, \underline{D}} \sum_{i=1}^{n}\left(u_{i}+v_{i}\right)=\min _{\underline{\underline{x}}, \underline{\underline{1}}} \underline{e}^{T}(\underline{u}+\underline{v}) \\
\text { s.t. } A(\underline{\tilde{x}}-\underline{\hat{x}})-\underline{u}+\underline{v}=\underline{b} \\
\underline{\tilde{x}}, \underline{\hat{x}}, \underline{u}, \underline{v} \underline{0}
\end{array}
$$

$L_{\infty}-$ curve fitting

2. L_{∞} - curve fitting

- Want \underline{x} such that

$$
\min _{\underline{x}} \max _{1 \leq i \leq m}\left|\underline{a}_{i}^{T} \underline{x}-b_{i}\right|=\min _{\underline{x}}\|A \underline{x}-\underline{b}\|_{\infty}
$$

- L_{∞} - curve fitting \Rightarrow an LP
- Let $\max _{1 \leq i \leq m}\left|\underline{a}_{i}^{T} \underline{x}-b_{i}\right|=w$
- Then, the problem is equivalent to:
$\min _{x, w} w$
s.t. $-w \leq \underline{a}_{i}^{T} \underline{x}-b_{i} \leq w$, for $i=1,2, \ldots, m$
$\Rightarrow \min w$

$$
\text { s.t. }\left[\begin{array}{cc}
A & \underline{e} \\
-A & \underline{e}
\end{array}\right]\left[\begin{array}{l}
\underline{x} \\
w
\end{array}\right] \geq\left[\begin{array}{c}
\underline{b} \\
-\underline{b}
\end{array}\right]
$$

$$
\max \underline{b}^{T}(\underline{\lambda}-\underline{\mu})
$$

$$
\text { s.t. } A^{T}(\underline{\lambda}-\underline{\mu})=\underline{0}
$$

$$
e^{T}(\underline{\lambda}+\underline{\mu})=1
$$

$$
\underline{\lambda}, \underline{\mu} \geq 0
$$

- Since the number of constraints is large $(=2 m)$ and the number of variables $(=n)$ is small, typically the dual problem with $(n+1)$ constraints and $2 m$ variables is solved instead!!
- Dual is an LP
- We will discuss duality in Lecture 4

$L_{\infty}-$ curve fitting in filter design

- Linear-phase Finite Impulse Response (FIR) filters
- Impulse response coefficients: $\left\{h_{n}: n=0,1,2, . ., N\right\} \Rightarrow H(z)=\sum_{n=0}^{N} h_{n} z^{-n}$
- Linear phase $\Rightarrow h_{n}=h_{N-n}$ symmetric
- Frequency response ($\mathrm{o} \leq \omega \leq \pi / T$); $T=$ sampling interval

L_{∞} - Type I FIR filter design problem

- L_{∞} - FIR filter design

Define $\underline{x}=\left[x_{0} x_{1} \ldots . . . x_{M}\right] ; M=N / 2$
$x_{0}=h_{N / 2}=h_{M} ; x_{j}=2 h_{M-n}=2 h_{M+n} ; n=1,2, \ldots, M$
$H\left(e^{j \omega T}\right)=e^{-j \omega M T} \sum_{n=0}^{M} x_{n} \cos n \omega T=e^{-j \omega M T} x(\omega)$
Desired response : $d(\omega)$ and weighted error $e(\omega)=f(\omega)[x(\omega)-d(\omega)]$
$f(\omega)$ strictly positive weighting function of ω
Pr oblem: $\min _{\underline{x}} \max _{0 \leq \sigma \leq \frac{\pi}{T}}|e(\omega)| \quad$ Minimize weighted Chebyshev error
$\Rightarrow \min _{\underline{x}, \delta} \delta$ s.t. $-\delta \leq f(\omega)\left[\sum_{n=0}^{M} x_{n} \cos n \omega T-d(\omega)\right] \leq \delta \forall \omega \in\left[0, \frac{\pi}{T}\right]$ and
Discretize frequenecy: $\left\{\omega_{k}: 1 \leq k \leq L\right\}$. Let $f_{k}=f\left(\omega_{k}\right)$ and $d_{k}=d\left(\omega_{k}\right)$
$\min _{\underline{x}, \delta} \delta$ s.t. $-\delta \leq f_{k}\left(\sum_{n=0}^{M} x_{n} \cos n \omega_{k} T-d_{k}\right) \leq \delta \forall k=1,2, . ., L$
$\Rightarrow \min _{x, \delta} \delta$
s.t. $-\frac{\delta}{f_{k}} \leq \underline{a}_{k}^{T} \underline{x}-d_{k} \leq \frac{\delta}{f_{k}} \forall k=1,2, \ldots, L ; \underline{a}_{k}^{T}=\left[1 \cos \omega_{k} \ldots . . \cos n \omega_{k} \ldots . \cos M \omega_{k}\right]$

Matrix Formulation of FIR design problem

- Matrix Formulation

$$
\begin{aligned}
& \Rightarrow \min _{\underline{x}, \delta} \delta \\
& \text { s.t. }\left[\begin{array}{cc}
A & {\left[\operatorname{Diag}\left(f_{k}\right)\right]^{-1} \underline{e}} \\
-A & {\left[\operatorname{Diag}\left(f_{k}\right)\right]^{-1} \underline{e}}
\end{array}\right]\left[\begin{array}{c}
\underline{x} \\
\delta
\end{array}\right] \geq\left[\begin{array}{c}
\underline{d} \\
-\underline{d}
\end{array}\right]
\end{aligned}
$$

- Easy to include arbitrary linear constraints - including time domain constraints
- Sparse FIR coefficients
- Design a $30^{\text {th }}$ order low-pass FIR filter

$$
2 . d(\omega)=\left\{\begin{array}{c}
1 \text { for } \omega \in[0,0.26 \pi] \\
0 \text { for } \omega \in[0.34 \pi, \pi]
\end{array}\right.
$$

Specs:

$$
1 . T=1
$$

$$
\text { 3. } f(\omega)=\left\{\begin{array}{c}
1 \text { for } \omega \in[0,0.26 \pi] \\
0 \text { for } \omega \in[0.26 \pi, 0.34 \pi] \\
2 \text { for } \omega \in[0.34 \pi, \pi]
\end{array}\right.
$$

Diet Problem

3.Diet problem

- A budget conscious Irish consumer wants to buy, at minimum cost, the following three basic foods: poultry, leafy spinach, and potatoes
- He wants
- 65 gms of protein
- 90 gms of carbohydrate
- 200 mgms of calcium
- 10 mgms of iron

	poultry	spinach	potatoes
cost/100 $g m s$	40	15	10
protein $g m s$	2	3	2
carbohydrate $g m s$	0	3	18
calcium $m g m s$	8	83	7
iron $m g m s$	1.4	2	0.6
vitamins $(I U)$	80	7300	0

- 5000 international units (IU) of vitamin A
- $x_{1} \sim$ amount of poultry (gms)
- $x_{2} \sim$ amount of spinach (gms)
- $x_{3} \sim$ amount of potatoes (gms)

LP formulation of Diet Problem

- Optimal solutions:

$$
\begin{aligned}
& x_{1}=0 ; x_{2}=20.626 ; x_{3}=1: 5625, \text { and } f=325 \text { (solver) } \\
& x_{1}=0 ; x_{2}=0.7047 ; x_{3}=31.443, \text { and } f=325 \text { (MATLAB) }
\end{aligned}
$$

- Show via solver in Excel or MATLAB
- More general diet problem can be formulated in a similar way

$$
\begin{aligned}
\min 40 x_{1}+15 x_{2} & +10 x_{3} \\
\text { s.t. } 2 x_{1}+3 x_{2}+2 x_{3} & \geq 65 \\
3 x_{2}+18 x_{3} & \geq 90 \\
8 x_{1}+83 x_{2}+7 x_{3} & \geq 200 \\
1.4 x_{1}+2 x_{2}+0.6 x_{3} & \geq 10 \\
80 x_{1}+7300 x_{2} & \geq 5000 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

More general diet problem can be formulated

- Have n different food items
$c_{j}=$ cost of food item j
$x_{j}=$ units of food item j (in grams) included in our diet
- Have m nutritional requirements
$b_{i}=$ minimum daily requirement of $i^{\text {th }}$ nutrient
$a_{i j}=$ amount of nutrient i provided by a unit of food item j
- The problem is an LP

$\begin{aligned} & \min \sum_{j=1}^{n} c_{j} x_{j} \\ & \text { s.t. } \sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i} ; i=1,2, \ldots, m \\ & \quad x_{j} \geq 0 ; j=1,2, \ldots, n \end{aligned}$	\Rightarrow	$\begin{aligned} & \min \underline{c}^{T} \underline{x} \\ & \text { s.t. } A \underline{x} \geq b \\ & \underline{x} \geq \underline{0} \end{aligned}$	$\begin{aligned} & \text { [x,fval,exitflag,output,lambda] } \\ & \text { =linprog(f,A,b) } \\ & \text { MATLAB uses } A \underline{x} \leq \underline{b} \end{aligned}$

Portfolio optimization problem

- 4. Portfolio Optimization
- J investment options (Stocks, T-bills, Corporate Bonds, S\&P, Gold,..)
- Have historical data on returns
- $r_{j}(t)=$ Return on investment j in time period $t, t=1,2, . ., T$
- $x_{j}=$ Fraction of portfolio to be invested in $j ; \sum_{j=1}^{J} x_{j}=1 ; x_{j} \geq 0, j=1,2, . ., J$
- Portfolio's historical returns with this alloction in time period t :

$$
r(t)=\sum_{j=1}^{J} x_{j} r_{j}(t)
$$

- Portfolio's average return over $\mathrm{t}=1,2, \ldots, \mathrm{~T}$

$$
\bar{r}=\frac{1}{T} \sum_{t=1}^{T} r(t)=\frac{1}{T} \sum_{t=1}^{T} \sum_{j=1}^{J} x_{j} r_{j}(t)
$$

- Portfolio's risk (some measure of variability around mean)

$$
\begin{aligned}
q=\operatorname{risk}(\underline{x}) & =\frac{1}{T} \sum_{t=1}^{T}|r(t)-\bar{r}|=\frac{1}{T} \sum_{t=1}^{T}\left|\left[\sum_{j=1}^{J} x_{j} r_{j}(t)-\frac{1}{T} \sum_{s=1}^{T} \sum_{j=1}^{J} x_{j} r_{j}(s)\right]\right| \\
& =\frac{1}{T} \sum_{t=1}^{T} \left\lvert\,\left[\left.\sum_{j=1}^{J} x_{j}\left[r_{j}(t)-\frac{1}{T} \sum_{s=1}^{T} r_{j}(s)\right]\left|=\frac{1}{T} \sum_{t=1}^{T}\right|\left[\sum_{j=1}^{J} x_{j}\left[r_{j}(t)-\bar{r}_{j}\right]\right] \right\rvert\,\right.\right.
\end{aligned}
$$

where $\bar{r}_{j}=\frac{1}{T} \sum_{t=1}^{T} r_{j}(t)$ which is precomputable

L_{1}-version of Markowitz problem

- Maximize average return subject to a constraint on risk
- Problem

$$
\begin{aligned}
\underset{\underline{x} \geq 0}{\operatorname{Max}} \bar{r}= & \frac{1}{T} \sum_{t=1}^{T} \sum_{j=1}^{J} x_{j} r_{j}(t) \\
\text { s.t. } \quad q= & \frac{1}{T} \sum_{t=1}^{T}\left|\left[\sum_{j=1}^{J} x_{j}\left[r_{j}(t)-\bar{r}_{j}\right]\right]\right| \leq \mu ; \mu=\text { risk aversion parameter } \\
& \sum_{j=1}^{J} x_{j}=1
\end{aligned}
$$

- LP formulation

$$
\begin{aligned}
& \underset{\underline{x \geq 0}, \underline{y} \geq 0}{\operatorname{Max}} \bar{r}=\frac{1}{T} \sum_{t=1}^{T} \sum_{j=1}^{J} x_{j} r_{j}(t) \\
& \text { s.t. } \quad-y_{t} \leq\left[\sum_{j=1}^{J} x_{j}\left[r_{j}(t)-\bar{r}_{j}\right]\right] \leq y_{t} ; t=1,2, \ldots, T \\
& \frac{1}{T} \sum_{t=1}^{T} y_{t} \leq \mu \\
& \quad \sum_{j=1}^{J} x_{j}=1
\end{aligned}
$$

Optimal Control

- 5. Optimal L_{1} and L_{∞} control
- Consider a linear time-invariant discrete-time system

$$
\begin{aligned}
& \underline{x}_{k+1}=A \underline{x}_{k}+\underline{b} u_{k} u_{k} \sim \text { scalar for simplicity, } k=0,1, \ldots \\
& \underline{x}_{k}=A^{k} \underline{x}_{0}+\sum_{l=0}^{k-1} A^{k-l-1} \underline{b} u_{l}
\end{aligned}
$$

- Define terminal error: $e_{N}=\underline{x}_{d}-\underline{x}_{N}=\underline{x}_{d}-A^{N} \underline{x}_{0}-\sum_{l=0}^{N-1} A^{N-1} \underline{b} u_{l}$
- Given x_{0}, \underline{x}_{d} and given the fact that u_{k} is constrained by

$$
u_{\min } \leq u_{k} \leq u_{m m r} \text {, we can formulate various versions of LP }
$$

a)

$$
\begin{gathered}
\min \sum_{i=1}^{n}\left|e_{N_{i}}\right|=\sum_{i=1}^{n}\left|\left(\underline{x}_{d}-A^{N} \underline{x}_{0}\right)_{i}-\left(\sum_{l=0}^{N-1} A^{N-l-1} \underline{-1} u_{t}\right)\right|_{i} \Rightarrow 1 \text {-norm of error } \\
=\sum_{i=1}^{n}\left|c_{i}+\underline{d}_{i}^{T}\right| \underline{z}, \underline{d}_{i} \sim N \text { vector components } \\
-\left(A^{N-l-1} b\right)_{i}=d_{i l}
\end{gathered}
$$

$$
\begin{aligned}
& \min \sum_{i=1}^{n}\left|c_{i}+\underline{d}_{i}^{T} \underline{z}\right|, \underline{z}=\left[u_{0} u_{1} \cdots u_{N-1}\right]^{T} \quad \circ \quad \text { Convert to standard form via: } \\
& \text { s.t. } u_{\min } \underline{1} \leq \underline{z} \leq u_{\max } \underline{1} \quad v_{i}-u_{i}=c_{i}+\underline{d}_{i}^{T} \underline{z}, 1 \leq i \leq n
\end{aligned}
$$

optimal solution:

$$
\left.\begin{array}{ll}
& \min \sum_{i=1}^{n}\left(v_{i}+u_{i}\right) \\
\text { s.t. } & u_{\min } \leq \underline{z} \leq u_{\max } \underline{1} \underline{y_{i}} \\
& v_{i}-u_{i}=c_{i}+\underline{d}_{i}^{T} \underline{z}
\end{array}\right\} u_{i}^{*}=\left(\begin{array}{cc}
-\underline{d}_{i}^{T} \underline{z}+c_{i} & \text { if } \underline{d}_{i}^{T} \underline{z}+c_{i}>0 \\
0 & \text { otherwise } \\
\left.-\underline{d}_{i}^{T} \underline{z}+c_{i}\right) & \text { if } \underline{d}_{i}^{T} \underline{z}+c_{i}<0 \\
0 & \text { otherwise }
\end{array}\right) .
$$

- Can also include constraints on state variables

Properties of optimal control

b)

$$
\min \max _{1 \leq i \leq n}\left|e_{N_{i}}\right|=\min \max _{1 \leq i \leq n}\left|c_{i}+\underline{d}_{i}^{T} \underline{z}\right| \Rightarrow \infty \text {-norm of error }
$$

$$
\text { define } v=\max _{1 \leq i \leq n}\left|c_{i}+\underline{d}_{i}^{T} \underline{z}\right|
$$

$\min v$

$$
\begin{array}{r}
\text { s.t. } u_{\min } \underline{1} \leq \underline{z} \leq u_{\max } \underline{1} \\
v+c_{i}+\underline{d}_{i}^{T} \underline{z} \geq 0 \\
v-c_{i}-\underline{d}_{i}^{T} \underline{z} \geq 0
\end{array}
$$

- Proof of equivalence for (a)
- Suppose $v_{i}^{*}, u_{i}{ }^{*}$, and z^{*} are optimal solutions
- $v_{i}^{*} \& u_{i}^{*}$ cannot simultaneously be non-zero
- If they are, define $\hat{v}_{i}=v_{i}{ }^{*}-u_{i}{ }^{*}$ and $\hat{u}_{i}=0 \Rightarrow$ feasible

But, cost $\hat{v}_{i}+\hat{u}_{i}<v_{i}{ }^{*}+u_{i}{ }^{*} \ldots$...a contradiction
\Rightarrow only either of the two is nonzero

- Proof of equivalence for (b)
- Let z^{*}, v^{*} be optimal for the revised problem, but z^{*} is not optimal for the original problem
- Suppose \hat{z} is the optimal solution of the original problem
- Define $v=\max \left|c_{i}+\underline{d}_{i}^{T} \hat{z}\right| \Rightarrow$ feasible for the revised problem $\Rightarrow v<v_{i}{ }^{*}$
\Rightarrow contradiction

Transportation or Hitchcock Problem

- m sources of a commodity or product and n destinations
- Commodity amount to be shipped from source $i=a_{i} ; 1 \leq i \leq m$
- Commodity amount to be received at destination (sink, terminal node) $j=b_{j} ; l \leq j \leq n$
- Shipping cost from source i to destination j per unit commodity $=c_{i j}$ dollars/unit
- Problem: How much commodity should be shipped from source i to destination j to minimize transportation cost

$$
\begin{array}{ll}
\min & \sum_{i=1}^{m} \sum_{j=1}^{n} c_{i j} x_{i j} \\
\text { s.t. } \quad \sum_{j=1}^{n} x_{i j}=a_{i} ; \forall i=1,2, \ldots, m \\
& \sum_{i=1}^{m} x_{i j}=b_{j} ; \forall j=1,2, \ldots, n \\
\text { also : } \sum_{i=1}^{m} a_{i}=\sum_{j=1}^{n} b_{j}
\end{array}
$$

Conservation constraint

- Directed network or graph, $m n$ variables and $(m+n)$ constraints
- Note: arcs emanate from sources and terminate on sinks
- BIPARTITE GRAPHS \Rightarrow special LP problem $\Rightarrow a_{i}=b_{i}=1$ \Rightarrow Assignment problem or weighted bipartite matching problem

Shortest Path Problem

- (For conceptual reasons only, but solved differently)

- s, u, v, t are computers, edge lengths are costs of sending a message between them
- Q: what is the cheapest way to send a message from s to t
- Shortest path $s \rightarrow u \rightarrow v \rightarrow t \Rightarrow x_{s u}=x_{u v}=x_{v t}=1$
- Shortest path length $=2+1+3=6$
- Intuitively, $x_{s v}=x_{u t}=0$ (i.e., no messages are sent from s to v and from u to t)
- Let $x_{s v}$ be the fraction of messages sent from s to v. Similarly, for $\operatorname{arcs}(s, u),(u, v),(u, t)$, and (v, t)

Shortest Path Problem

- Problem formulation

$$
\begin{aligned}
& \min \quad 2 x_{s u}+4 x_{s v}+x_{u v}+5 x_{u t}+3 x_{v t} \\
& \text { s.t. } \quad x_{s u}, x_{s v}, x_{u v}, x_{u t}, x_{v t} \geq 0 \\
& \left.x_{s u}-x_{u v}-x_{u t}=0 \text { (message not lost at } u\right) \\
& \left.x_{s v}+x_{u v}-x_{v t}=0 \text { (message not lost at } v\right) \\
& \left.\quad x_{u t}+x_{v t}=1 \text { (message received at } t\right)
\end{aligned}
$$

- Add all constraints
$\Rightarrow x_{s u}+x_{s v}=1$ which it must be!!
\Rightarrow only 3 independent constraints (although 4 nodes)
- In matrix notation
$A \underline{x}=\left[\begin{array}{ccccc}1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1\end{array}\right]\left[\begin{array}{l}x_{s u} \\ x_{s v} \\ x_{u v} \\ x_{u t} \\ x_{v t}\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]=\underline{b}$
- n nodes $\Rightarrow n-1$ independent equations
\Rightarrow Similar to Kirchoff's laws
$\Rightarrow A$ is called the incidence matrix $\min \underline{e}^{T} \underline{x}$
s.t. $A \underline{x}=\underline{b}$
- Note: \underline{b} is a special vector s.t. $A \underline{x}=\underline{b}, \underline{x} \geq 0$. A is a unimodular matrix and so are all invertible submatrices \tilde{A} of $A \Rightarrow \operatorname{det} \tilde{A}=1$ or -1 . \Rightarrow Inverses will have integer elements \Rightarrow Solutions are integers if \underline{b} is integer.

Standard Linear Program

- Let us return to the solution of SLP
$\Rightarrow \min \underline{c}^{T} \underline{x}$ s.t. $A \underline{x}=\underline{b}, \underline{x} \geq 0$
A is an $m \times n$ matrix of rank m
- Example

$$
\begin{array}{ll}
\min x_{1}+x_{2} \\
\text { s.t. } x_{1}+2 x_{2}=4
\end{array} \quad \begin{aligned}
& \text { • First contact of } x_{1}+x_{2}=a \text { occurs at } a=2, x_{1}=0, x_{2}=2 \\
&
\end{aligned}
$$

- In general, the optimal solution \underline{x}^{*} is such that $(n-m)$ of its components are zero. If we knew which of the $n-m$ components are zero, we can immediately compute the optimal solution (i.e., the remaining m nonzero components) from $A \underline{x}=\underline{b}$. Since we don't know the zeros a priori, the chief task of every algorithm is to discover where they belong.
- Need to look at only extreme points of the feasible set.

2-Phase Simplex Algorithm

- How does Simplex algorithm work?
- Phase 1: Find a vector \underline{x} that has $(n-m)$ zero components, with $A \underline{x}=\underline{b}$ and $\underline{x} \geq \underline{0}$. This is a feasible \underline{x}, not necessarily optimal
- Phase 2: Allow one of the zero components to become positive and force one of the positive components to become zero
- Q: How to pick "entering" and "leaving" variables

○ A: Cost $\underline{c}^{T} \underline{x} \downarrow$ and $A \underline{x}=\underline{b}, \underline{x} \geq 0$ must be satisfied

- Inequality constraints:
- x_{1} : invest in stock
- x_{2} : invest in real estate
- $0 \leq x_{1} \leq b_{1} ; 0 \leq x_{2} \leq b_{2} ; 0 \leq x_{1}+x_{2} \leq b_{3}$

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
1 & 1
\end{array}\right] \underline{x} \leq\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

\Rightarrow can also look at it as a 5 dimensional problem with slacks
Assume $b_{3}>b_{1}$ and $b_{3}>b_{2}$

$\min -4 x_{1}-2 x_{2}$
s.t. $A \underline{x} \leq \underline{b}$
$\Rightarrow x_{1}^{*}=b_{1} ; x_{2}^{*}=b_{3}-b_{1}$
max. profit: $2 b_{1}+2 b_{3}$

- In n dimensions
- $\underline{a}_{i}^{T} \underline{x}=b_{i}$ define hyperplanes
- $\underline{a}_{i}{ }^{T} \underline{x} \leq b_{i}$ define half spaces
- $\underline{x} \geq 0$ positive cone

Infeasibility

- Feasible set is a convex polytope. If bounded, a convex polyhedron. Need to consider only extreme points of this set.
- Some other nuances
- An LP may not have a solution
o e.g., $\min x_{1}+x_{2}$
s.t. $x_{1}+x_{2}=-4 \quad \Rightarrow$ Feasible set is empty \Rightarrow inconsistent constraints $x_{1}, x_{2} \geq 0$

Unboundedness

- An LP may have an unbounded solution
o e.g., min $-\left(x_{1}+x_{2}\right)$

$$
\begin{aligned}
& \text { s.t. } x_{1}-2 x_{2} \geq 4 \\
& \Rightarrow \text { opt. } x_{1}, x_{2}=(\infty, \infty)
\end{aligned}
$$

- So, an algorithm must decide
- Whether there exists an optimal solution
- If it does, find the corner where optimum occurs

Basic Feasible Solution (BFS)

- Assume $\operatorname{rank}(A)=m$, then we can partition $A=[B N]$, where B has m linearly independent columns
- Assume first m columns for convenience

$$
\begin{gathered}
{\left[\begin{array}{ll}
B & N
\end{array}\right]\left[\begin{array}{c}
\underline{x}_{B} \\
\vdots \\
\underline{x}_{N}
\end{array}\right]=\underline{b}, \underline{x}_{B} \in R^{m} ; \underline{x}_{N} \in R^{n-m}} \\
\sum_{i=1}^{m} a_{i} x_{i}+\sum_{i=m+1}^{n} \underline{a}_{i} x_{i}=\underline{b} \\
\text { or, } B \underline{x}_{B}+N \underline{x}_{N}=\underline{b} \Rightarrow B \underline{x}_{B}=\underline{b}-N \underline{x}_{N}
\end{gathered}
$$

- Since $\operatorname{rank}(B)=m \Rightarrow B^{-1}$ exists
- $\underline{x}_{B}=B^{-1} \underline{b}-B^{-1} N \underline{x}_{N}$
- $\underline{x}_{B}=$ vector of basic variables
- $\underline{x}_{N}=$ vector of non-basic variables
- Basic solution: set non-basics to their lower bound (i.e., $\underline{x}_{N}=\underline{0}$)
$\Rightarrow \underline{x}_{B}=B^{-l} \underline{b} ; B$ is called the basis matrix
- Basic feasible solution (bfs): $\underline{x}_{B} \geq \underline{0} \Rightarrow \underline{x}$ is feasible

$$
\underline{x}=\left[\underline{x}_{B} \geq \underline{0} \underline{x}_{N}=\underline{0}\right]^{T}
$$

Fundamental Theorem of LP

- Theorem
a) Existence of a feasible $\underline{x} \Rightarrow$ existence of $\underline{x}_{B} \geq \underline{0}$, a basic feasible solution
b) Existence of a optimal $\underline{x}^{*} \Rightarrow$ existence of $\underline{x}_{B}{ }^{*} \geq \underline{0}$, an optimal basic feasible solution
- Proof of a :
- Feasible $\underline{x} \Rightarrow \sum_{i=1}^{n} \underline{a}_{i} x_{i}=\underline{b}$
- Suppose $x_{1}, x_{2}, \ldots, x_{p}>0$ and the rest are zero

$$
\Rightarrow \sum_{i=1}^{p} a_{i} x_{i}=\underline{b}
$$

\circ Case 1: linearly independent $\left(a_{1}, a_{2}, \ldots, a_{p}\right) \Rightarrow p \leq m$
If $p=m, \underline{x}_{p}=\underline{x}_{B}$, where $\underline{x}_{B}=B^{-1} \underline{b}$
If $p<m$, can find $(m-p)$ dependent vectors
Set $x_{i}=0, i=p+1, \ldots, m$
$\Rightarrow \underline{x}_{B}$ is (degenerate) basic feasible

Feasible \Rightarrow Basic Feasible Solution (BFS)

- Case 2: $\left(a_{1}, a_{2}, \ldots, a_{p}\right)$ are linearly dependent
\Rightarrow Can find $y_{1}, y_{2}, \ldots, y_{p}$, such that

$$
\sum_{i=1}^{p} \underline{a}_{i} y_{i}=\underline{0}
$$

Assume, without loss of generality, at least one $y_{i}>0$

$$
\sum_{i=1}^{p} \underline{a}_{i}\left(x_{i}-\varepsilon y_{i}\right)=\underline{b}, \forall \varepsilon
$$

Assume $\varepsilon \geq 0$ without loss of generality
Note that as $\varepsilon \uparrow$:

$$
x_{i}-\varepsilon y_{i} \uparrow \text { if } y_{i}<0
$$

We have

$$
\begin{aligned}
& x_{i} \text { if } y_{i}=0 \\
& x_{i}-\varepsilon y_{i} \downarrow \text { if } y_{i}>0
\end{aligned}
$$

Set $\varepsilon=\min \left\{x_{i} / y_{i}: y_{i}>0\right\}$

* For this ε, we have an \underline{x} with $(p-1)$ positive values
* The equation for ε is simply that for the simplex step
* Continue this process until all vectors are independent, then case 1 applies

Optimal Solution \Rightarrow Optimal BFS

- Proof of $b:$
\circ Case 1: linearly independent $\left(a_{1}, a_{2}, \ldots, a_{p}\right) \Rightarrow p \leq m$
If $p=m, \underline{x}_{p}=\underline{x}_{B}{ }^{*}$, where $\underline{x}_{B}{ }^{*}=B^{-1} \underline{b}$
If $p<m$, can find $(m-p)$ dependent vectors
Set $x_{i}=0, i=p+1, \ldots, m$
$\Rightarrow \underline{x}_{B}{ }^{*}$ is (degenerate) optimal basic feasible
- Case 2: $\left(a_{1}, a_{2}, \ldots, a_{p}\right)$ are linearly dependent
\Rightarrow Can find $y_{1}, y_{2}, \ldots, y_{p}$, such that

$$
\sum_{i=1}^{p} \underline{a}_{i} y_{i}=\underline{0}
$$

Assume, without loss of generality, at least one $y_{i}>0$

$$
\sum_{i=1}^{p} \underline{a}_{i}\left(x_{i}^{*}-\varepsilon y_{i}\right)=\underline{b}, \forall \varepsilon
$$

Assume $\varepsilon \geq 0$ without loss of generality Note that as $\varepsilon \uparrow$:
$x_{i}-\varepsilon y_{i} \uparrow$ if $y_{i}<0 \Rightarrow$ feasibility is maintained We have x_{i} if $y_{i}=0 \Rightarrow$ feasibility is maintained

Finite search space of LP

$$
\begin{gathered}
x_{i}-\varepsilon y_{i} \downarrow \text { if } y_{i}>0 \Rightarrow \text { feasibility for some } \varepsilon \\
\text { Set } \varepsilon=\min \left\{x_{i} / y_{i}: y_{i}>0\right\}
\end{gathered}
$$

* For this ε, we have an \underline{x}^{*} with $(p-1)$ positive values
$\%$ But, what is the cost at $\left(\underline{x}^{*}-\varepsilon y\right)$?
$\dot{*}$ The cost is $\underline{c}^{T}\left(\underline{x}^{*}-\varepsilon \underline{y}\right)$
$*$ Since \underline{x}^{*} is optimal, $\underline{c}^{T} y=0$. Otherwise, we can find a small ε such that $\underline{c}^{T}\left(\underline{x}^{*}-\varepsilon \underline{y}\right)<\underline{c}^{T} \underline{x}^{*}$
* A solution with $(p-1)$ positive values is also optimal!
* Continue this process until all vectors are independent, then case 1 applies
- What this theorem says is that we need to find $(n-m)$ zero variables among n nonnegative variables

$$
\binom{n}{n-m}=\binom{n}{m}=\frac{n!}{(n-m)!m!}
$$

$\Rightarrow L P$ is a finite search problem (fortunately, we never have to solve it that way!)

Two views of convex polyhedron

- Basic feasible solutions of LP \equiv extreme (corner) points of a convex polytope
- Recall from lecture 1:
- $A \underline{x}=\underline{b}$ is the intersection of m hyperplanes in R^{m}
- $\underline{x} \geq 0 \Rightarrow$ convex cone in R^{n}
- Feasible set is a convex polytope; if bounded, it is called a convex polyhedron

Convex polyhedron

$$
\begin{aligned}
& \Rightarrow \text { Any point } \underline{x}=\Sigma_{i} \alpha_{i} \underline{x}_{i} ; \Sigma_{i} \alpha_{i}=1 ; \alpha_{i} \geq 0 \\
& \left\{\underline{x}_{i}\right\} \text { are extreme (corner) points of the feasible set }
\end{aligned}
$$

BFS \equiv corner points of convex polyhedron

- Theorem: extreme points of convex polytope (polyhedron)

$$
K=\{\underline{x}: A \underline{x}=\underline{b}, \underline{x} \geq \underline{0}\} \Leftrightarrow \text { basic feasible solutions of } \mathbf{L P}
$$

- Proof of \Leftarrow part:
* Suppose we have a bfs $\underline{x}=\left[\underline{x}_{B} \underline{0}\right]^{T} \Rightarrow A \underline{x}=\underline{b}$
* Suppose \underline{x} is not an extreme point $\Rightarrow \underline{x}=\alpha \underline{y}+(1-\alpha) \underline{z}$,
$0<\alpha<1, \Rightarrow A \underline{x}=\underline{b}$
$A \underline{z}=\underline{b}$ and $\underline{\nu}, \underline{z}$ are bfs
* Suppose $\underline{y}, \underline{z} \geq \underline{0}$, and $\underline{x}_{N}=\underline{0} \Rightarrow \underline{y}_{N}=\underline{z}_{N}=\underline{0}, A \underline{y}=A \underline{z}=\underline{b}$
* Since m columns of A are independent $\Rightarrow \underline{x}=\underline{y}=\underline{z}$
\Rightarrow a contradiction $\Rightarrow \underline{x}$ is an extreme point of K
- Proof of \Rightarrow part:
* Suppose we have an extreme point of \underline{x} of K with components:

$$
x_{1}, x_{2}, \ldots, x_{p}>0
$$

* To show that \underline{x} is a bfs, we must show that $\underline{a}_{1}, \underline{a}_{2}, \ldots, \underline{a}_{p}$ are linearly independent

Suppose $\underline{a}_{1}, \underline{a}_{2}, \ldots, \underline{a}_{p}$ are linearly dependent

$$
\Rightarrow \sum_{i=1}^{p} y_{i} \underline{a}_{i}=\underline{0} \Rightarrow A \underline{y}=\underline{0}
$$

Development of Simplex Algorithm

* Since $\underline{x} \geq \underline{0}$, we can pick ε such that

$$
(\underline{x}+\varepsilon \underline{y}) \geq \underline{0} \text { and }(\underline{x}-\varepsilon y) \geq \underline{0}
$$

$$
\text { then } \underline{x}=1 / 2(\underline{x}+\varepsilon \underline{y})+1 / 2(\underline{x}-\varepsilon \underline{y}) \ldots \text { contradiction }
$$

$$
\Rightarrow \underline{x} \text { is a bfs (degenerate if } p<m \text {) }
$$

- Simplex: partition \underline{c} as follows

$$
\underline{c}=\left[\begin{array}{l}
\underline{c}_{B} \\
\underline{c}_{N}
\end{array}\right] \text { then } \begin{aligned}
& f=\underline{c}^{T} \underline{x}=\underline{c}_{B}^{T} \underline{x}_{B}+\underline{c}_{N}^{T} \underline{x}_{N} ; \underline{x}_{B}=B^{-1} \underline{b}-B^{-1} N \underline{x}_{N}^{T} \\
& f=\underline{c}_{B}^{T}\left(B^{-1} \underline{b}-B^{-1} N \underline{x}_{N}\right)+\underline{c}_{N}^{T} \underline{x}_{N}=\underline{c}_{B}^{T} B^{-1} \underline{b}+\left(\underline{c}_{N}^{T}-\underline{c}_{B}^{T} B^{-1} N\right) \underline{x}_{N}
\end{aligned}
$$

original transformed problem

$$
\begin{array}{lll}
\min f=\underline{c}^{T} \underline{x} \\
\text { s.t. } A \underline{x}=\underline{b} \\
\underline{x} \geq \underline{0}
\end{array} \quad \Rightarrow \quad \underline{c}_{B}^{T} B^{-1} \underline{b}+\left(\underline{c}_{N}^{T}-\underline{c}_{B}^{T} B^{-1} N\right) \underline{x}_{N} .
$$

- Let $\underline{\beta}=B^{-1} \underline{b} ; \underline{\lambda}^{T}=\underline{c}_{B}{ }^{T} B^{-1}$
- $B \underline{\beta}=\underline{b} ; B^{T} \underline{\lambda}=\underline{c}_{B}$

Basic and non-basic aspects of simplex

- Transformed problem is:

$$
\begin{aligned}
& \min f=\underline{c}_{B}^{T} \underline{\beta}+\left(\underline{c}_{N}^{T}-\underline{\lambda}^{T} N\right) \underline{x}_{N} \\
& \text { s.t. } \underline{x}_{B}=\underline{\beta}-B^{-1} N \underline{x}_{N}
\end{aligned}
$$

$\Rightarrow f=\underline{c}_{B}^{T} \underline{\underline{\beta}}+p_{1} x_{N_{1}}+\ldots+p_{n-m} x_{N_{n m}}$
where $p_{j}=c_{N_{j}}-\underline{\lambda}^{T} \underline{a}_{j} ; \underline{a}_{j}=$ column j of N
$p_{j}=$ reduced cost of j
\Rightarrow also $\underline{x}_{B}=\underline{\beta}-\underline{\alpha}_{1} x_{N_{1}}-\underline{\alpha}_{2} x_{N_{2}}-\ldots-\underline{\alpha}_{n-m} x_{N_{n+m}}$
where $\underline{\alpha}_{j}=B^{-1} \underline{a}_{j} ; \underline{a}_{j}=$ column j of N
$\underline{\text { Note: }}$ when $\underline{x}_{N}=\underline{0}, \underline{x}_{B}=\underline{\beta}$ and $f=\underline{c}_{B}^{T} \underline{\beta}=f_{0}$

Optimality Conditions

- $\underline{p}^{T}=\underline{c}_{N}^{T}-\underline{\lambda}^{T} \underline{N}$ is called the vector of reduced costs
- This vector indicates how f changes as \underline{c}_{N} changes
- What is p_{j}, the $j^{\text {th }}$ component of the p vector?

$$
p_{j}=c_{j}-\left(\underline{\lambda}^{T} \underline{N}\right)_{j}=c_{j}-\underline{\lambda}^{T} \underline{a}_{j}
$$

- Note: need only column \underline{a}_{j} to compute p_{j}
- If $\underline{x}_{B}=\underline{\beta} \geq 0$ and $\underline{x}_{N}=\underline{0}$, we need $p_{j} \geq 0$ for optimality $\forall j \Rightarrow$ it doesn't pay to increase \underline{x}_{N}
- So,
- Feasibility: $\beta_{i} \geq 0, i=1,2, \ldots, m$
- Optimality: $p_{j} \geq 0, j=1,2, \ldots, n-m$

Illustration of Optimality Conditions

- Example:

$$
\begin{aligned}
& \min f=30+4 x_{4}+5 x_{5}+3 x_{6}+4 x_{7} \\
& \text { s.t. } x_{1}=5+3 x_{4}-3 x_{5}+x_{6}-x_{7} \\
& x_{2}=6-7 x_{4}+2 x_{5}-2 x_{6}-2 x_{7} \\
& x_{3}=7-x_{4}-3 x_{5}+3 x_{6}+3 x_{7} \\
& \underline{\beta}=\left[\begin{array}{l}
5 \\
6 \\
7
\end{array}\right] ; \underline{c}_{B}^{T} \underline{\beta}=30 ; \underline{x}_{N}=\left[\begin{array}{l}
x_{4} \\
x_{5} \\
x_{6} \\
x_{7}
\end{array}\right] ; \underline{x}_{B}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \\
& -B^{-1} N=\left[\begin{array}{rrrr}
3 & -1 & 1 & -1 \\
-7 & 2 & -2 & -2 \\
1 & -3 & 3 & -3
\end{array}\right] ; \\
& \underline{p}^{T}=\underline{c}_{N}^{T}-\underline{\lambda}^{T} N=\underline{c}_{N}^{T}-\underline{c}_{B}^{T} B^{-1} N=\left[\begin{array}{llll}
4 & 5 & 3 & 4
\end{array}\right]>\underline{0} \\
& \Rightarrow\left[\begin{array}{lllllll}
5 & 6 & 7 & 0 & 0 & 0 & 0
\end{array}\right] \text { is optimal }
\end{aligned}
$$

Proof of Optimality Conditions

- Proof of sufficiency:
- Since $p_{j} \geq 0$, an increase in $x_{N j}$ results in an increase in cost. Thus, if we have a basic feasible solution such that $p_{j} \geq 0$, then it is optimal
- Proof of necessity:
- Suppose $p_{j}<0$, for some $j=1,2, \ldots, n-m$
- Two cases can occur

1. $\underline{\alpha}_{j}=B^{-1} \underline{a}_{j} \leq \underline{0} \Rightarrow x_{N_{j}} \geq 0$ can be increased to any positive value and \underline{x}_{B} remains feasible
\Rightarrow set of solutions to $A \underline{x}=\underline{b}, \underline{x} \geq \underline{0}$ is unbounded and f can be made an arbitrarily large negative number ($-\infty$)
\Rightarrow This is the way to detect unboundedness
\Rightarrow in practice, what it means is that some constraints were over-looked!!
2. $p_{j}<0$ and $\alpha_{j}>0$ for at least one $k=1,2, \ldots, n-m$
$\Rightarrow x_{N_{k}}$ can increase from zero to reduce cost
$\Rightarrow \underline{x}_{B}$ is not optimal... contradiction
\Rightarrow This is the way to go from corner to another corner

Picking the Entering Variable and Step Size

- When $p_{j}<0$, we can increase $x_{N_{j}}$ from zero to reduce cost
- Two questions:
- If several $p_{j}<0$, which one should we pick to enter the basis?
\circ How far to go? \Rightarrow Which one should leave the basis?
- Which one to pick?
- Most widely used: pick $k=\arg \min p_{j}$
\Rightarrow "steepest coordinate descent" or "nonbasic gradient method"
- All variable gradient method

$$
k=\arg \min _{j} \frac{p_{j}}{\sqrt{1+\sum_{k=1}^{m} \alpha_{i j}^{2}}}
$$

$\circ k=\min \left\{j: p_{j}<0\right\}$ (i.e., choose the lowest numbered column that gives $p_{j}<0 \Rightarrow 1$ st j with negative p_{j}) ... Bland's method avoids cycling

- How far to go?
- Suppose k is the entering variable
- Recall $\underline{x}_{B}=\underline{\beta}-\underline{\alpha}_{k} x_{N_{k}}$
* As $x_{N_{k}}$ increases, \underline{x}_{B} changes
$*$ If $\alpha_{i k}>0$, then $x_{B_{i}}$ decreases and goes through zero

Updating the Basis

- Must not go below zero, since this would ruin feasibility
- So, increase $x_{N_{k}}$ from zero until one of the basic variables goes to zero

$$
x_{N_{k}}=\theta=\min \left\{\beta / \alpha_{i k}: \alpha_{i k}>0\right\}
$$

\Rightarrow if $i=l$ is the minimizing index, then $x_{N_{k}}=\beta_{l} / \alpha_{i k}$ and $x_{B_{l}}=0 \Rightarrow$ the basic variable l will leave the basis

- If more than one hits zero at the same time, pick one arbitrarily \Rightarrow degenerate basic feasible solution
- What happens to B ?

○ $x_{N_{k}}$ goes from zero to $\beta_{l} / \alpha_{i k}$ and $x_{B_{l}}$ goes from β_{l} to zero
\Rightarrow replace $l^{\text {th }}$ column of original B with $k^{\text {th }}$ column of N

$$
\left.\left.\begin{array}{rl}
\bar{B} & =B-B \underline{e}_{l} e_{l}^{T}+\underline{a}_{k} \underline{e}_{l}^{T}=B\left(I-\underline{e}_{l} e_{l}^{T}+B^{-1} \underline{a}_{k} e_{l}^{T}\right) \\
& =\left[\begin{array}{lllllll}
\underline{a}_{1} & \underline{a}_{2} & \cdots & \underline{a}_{l-1} & \underline{a}_{k} & \underline{a}_{l+1} & \cdots
\end{array} \underline{a}_{m}\right.
\end{array}\right]\right)
$$

- We will have more to say about this in lecture 3

One Iteration of Revised Simplex Algorithm

- Step 1: Given the basis B such that $\underline{x}_{B}=B^{-1} \underline{b} \geq 0$
- Step 2: Solve $B^{T} \underline{\lambda}=\underline{c}_{B}$ for the vector of simplex multipliers $\underline{\lambda}$
- Step 3: Select a column \underline{a}_{k} of N such that $p_{k}=c_{N_{k}}-\underline{\lambda}^{T} \underline{a}_{k}<0$

Note: we may select the \underline{a}_{k} which gives the largest negative value of p_{k} or the first k with negative p_{k}
if $\underline{p}^{T}=\underline{c}_{N}-\underline{\lambda}^{T} N \geq 0$, stop \Rightarrow current solution is optimal

- Step 4: Solve $\underline{\alpha}: B \underline{\alpha}=\underline{a}_{k}$
- Step 5: Find $\theta=x_{B_{l}} / \alpha_{l}=\min x_{B_{i}} / \alpha_{i}, 1 \leq i \leq m, \alpha_{i}>0$
- If none of the $\left\{\alpha_{i}\right\}$ is positive, then the set of solutions to $A \underline{x}=\underline{b}, \underline{x}$ $\geq \underline{0}$ is unbounded and the cost f can be made an arbitrarily large negative number
\Rightarrow Terminate computation, since an unbounded solution
- Step 6: Update the basic solution, $\bar{x}_{i}=x_{i}-\theta \alpha_{i}, i \neq k ; \bar{x}_{k}=\theta$
- Step 7: Update the basis and return to Step 1

Remarks

- Typically, the \# of simplex iterations, $k \in\{2 m, 4 m\}$
- Computation time is $\propto k$
- Round-off errors
- Inability to store numbers and perform computations exactly gives rise to round-off errors
- Rounding error accumulates with floating point operations (flops)
- To reduce round-off errors:
* Balance matrix $A \Rightarrow$ try to make $\|A\|_{1}=\|A\|_{\infty}$
* Monitor residuals: $\|A \underline{x}-\underline{b}\|_{\infty}$ and $\left\|\underline{c}_{B}-B^{T} \underline{\lambda}\right\|_{\infty}$
* Use error tolerances,
$>p_{j}>-10^{-5} \Rightarrow$ optimal
$>a_{i j}<10^{-10} \Rightarrow a_{i j}=0$
$>$ If $x_{N_{k}}>10^{-8} \Rightarrow$ reinvert basis
$>$ If $\|A \underline{x}-\underline{b}\|_{\infty}$ or $\left\|\underline{c}_{B}-B^{T} \underline{\lambda}\right\|_{\infty}>10^{-6} \Rightarrow$ reinvert basis

How to get initial feasible solution Phase I of LP

- Method 1
- An initial basic feasible solution can be obtained by solving the following LP problem

$$
\begin{aligned}
& \min \sum_{i=1}^{m} \hat{y}_{i} \\
& \text { s.t. } A \underline{x}+I \underline{\hat{\hat{y}}=\underline{b}}, \underline{\hat{y}} \sim \text { artificial variable } \\
& \underline{x}, \underline{\hat{y}} \geq \underline{0}
\end{aligned}
$$

- If we can find an optimal solution $\ni \sum_{i=1}^{m} \hat{y}_{i}=0$, then we have \underline{x}_{B}
\circ If $\sum_{i=1}^{m} \widehat{y}_{i}>0$, then there is no feasible solution to $\boldsymbol{A} \underline{x}=\underline{b}, \underline{x} \geq \underline{0}$ \Rightarrow an infeasible problem
- Solve via the revised simplex starting with $\underline{x}=\underline{0}, \hat{y}_{i}=\underline{b}$ and $B=I_{m}$
- Note: we have assumed $\underline{b} \geq \underline{0}$. Is it OK? Yes!!
* If $b_{i}<0$, scale the corresponding equation by -1
- Method 2
- Another approach is to combine both phases I and II by solving:

$$
\begin{gathered}
\min _{\underline{x}, \underline{x}} \underline{c}^{T} \underline{x}+M \underline{e}^{T} \underline{y} ; \\
\begin{array}{c}
\text { s.t } A \underline{x}+\underline{y}=\underline{b} \\
\underline{x}, \underline{y} \geq \underline{0}
\end{array}
\end{gathered}
$$

- This is called the "big-M" method

Example: Detecting unboundedness (Phase II)

- Consider

$$
\begin{gathered}
\max x_{1}+4 x_{2}+x_{3} \\
\text { s.t. } 2 x_{1}-2 x_{2}+x_{3}=4 \\
x_{1}-x_{3}=1 \\
x_{2} \geq 0 ; x_{3} \geq 0 \\
\end{gathered}
$$

$\max 4 x_{2}+2 x_{3}$

$$
\text { s.t. }-2 x_{2}+3 x_{3}=2
$$

$$
x_{2} \geq 0 ; x_{3} \geq 0
$$

$\max 8 x_{3} \quad$ or $\max \frac{16}{3} x_{2}$
s.t. $x_{3} \geq 0 \quad$ s.t. $x_{2} \geq 0$

Unbounded

Phase I : $\min y_{1}+y_{2}=\left[\underline{c}_{1} \underline{c}_{2}\right]\left[\begin{array}{l}\underline{x} \\ \underline{y}\end{array}\right] ; \underline{c}_{1}^{T}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right] ; \underline{c}_{2}^{T}=[11]$
$A=\left[\begin{array}{rrrrr}2 & -2 & 1 & 1 & 0 \\ 1 & 0 & -1 & 0 & 1\end{array}\right]$

Reduced $\cos t s: p_{1}=0-\underline{\lambda}^{T} \underline{a}_{1}=-3 ; p_{2}=0-\underline{\lambda}^{T} \underline{a}_{2}=2 ;$
$p_{3}=0-\underline{\lambda}^{T} \underline{a}_{3}=0 ; p_{4}=1-\underline{\lambda}^{T} \underline{a}_{4}=0 ; p_{5}=1-\underline{\lambda}^{T} \underline{a}_{5}=0$
x_{1} comes into basis $\Rightarrow \underline{\alpha}=B^{-1} \underline{a}_{1}=\left[\begin{array}{l}2 \\ 1\end{array}\right] \Rightarrow \theta=\min \{4 / 21 / 1\}=1 \Rightarrow y_{2}$ should go out Iteration 2:
$B=\left[\begin{array}{cc}1 & 2 \\ 0 & 1\end{array}\right] \Rightarrow B^{-1}=\left[\begin{array}{cc}1 & -2 \\ 0 & 1\end{array}\right] \Rightarrow \underline{\lambda}^{T}=[10] B^{-1}=[1-2] ; \underline{x}_{B}=\left[\begin{array}{l}y_{1} \\ x_{1}\end{array}\right]=\left[\begin{array}{l}2 \\ 1\end{array}\right] ; \cos t=2$
Re duced $\cos t s: p_{1}=0-\underline{\lambda}^{T} \underline{a}_{1}=0 ; p_{2}=0-\underline{\lambda}^{T} \underline{a}_{2}=2$;
$p_{3}=0-\underline{\lambda}^{T} \underline{a}_{3}=-3 ; p_{4}=1-\underline{\lambda}^{T} \underline{a}_{4}=0 ; p_{5}=1-\underline{\lambda}^{T} \underline{a}_{5}=3$
x_{3} comes into basis $\Rightarrow \underline{\alpha}=B^{-1} \underline{a}_{3}=\left[\begin{array}{c}3 \\ -1\end{array}\right] \Rightarrow \theta=2 / 3 \Rightarrow y_{1}$ should go out
Iteration 3:
$B=\left[\begin{array}{cc}1 & 2 \\ -1 & 1\end{array}\right] \Rightarrow B^{-1}=\left[\begin{array}{cc}1 / 3 & -2 / 3 \\ 1 / 3 & 1 / 3\end{array}\right] \Rightarrow \underline{\lambda}^{T}=[00] B^{-1}=[00] ; \underline{x}_{B}=\left[\begin{array}{l}x_{3} \\ x_{1}\end{array}\right]=\left[\begin{array}{l}2 / 3 \\ 5 / 3\end{array}\right] ; \cos t=0$
Re duced $\cos t s: p_{1}=0-\underline{\lambda}^{T} \underline{a}_{1}=0 ; p_{2}=0-\underline{\lambda}^{T} \underline{a}_{2}=0 ;$
$p_{3}=0-\underline{\lambda}^{T} \underline{a}_{3}=0 ; p_{4}=1-\underline{\lambda}^{T} \underline{a}_{4}=1 ; p_{5}=1-\underline{\lambda}^{T} \underline{a}_{5}=1$
\Rightarrow optimal and $\cos t=0 \Rightarrow \underline{x}_{B}=\left[\begin{array}{l}x_{3} \\ x_{1}\end{array}\right]=\left[\begin{array}{l}2 / 3 \\ 5 / 3\end{array}\right]$ is feasible; You can get this by setting $x_{2}=0$.

Example: $\underline{\alpha}$ vector has all negative (non-positive) elements

- Consider

$$
\begin{gathered}
\max x_{1}+4 x_{2}+x_{3} \\
\text { s.t. } 2 x_{1}-2 x_{2}+x_{3}=4 \\
x_{1}-x_{3}=1 \\
x_{2} \geq 0 ; x_{3} \geq 0 \\
\end{gathered}
$$

$\max 4 x_{2}+2 x_{3}$
s.t. $-2 x_{2}+3 x_{3}=2$

$$
x_{2} \geq 0 ; x_{3} \geq 0
$$

$\max 8 x_{3} \quad$ or $\max \frac{16}{3} x_{2}$
s.t. $x_{3} \geq 0 \quad$ s.t. $x_{2} \geq 0$

Unbounded

Let us continue with Phase II

$$
\begin{aligned}
& \min -x_{1}-4 x_{2}-x_{3} \\
& \underline{x}_{B}=\left[\begin{array}{l}
x_{3} \\
x_{1}
\end{array}\right]=\left[\begin{array}{l}
2 / 3 \\
5 / 3
\end{array}\right] \\
& B=\left[\begin{array}{cc}
1 & 2 \\
-1 & 1
\end{array}\right] ; B^{-1}=\left[\begin{array}{cc}
1 / 3 & -2 / 3 \\
1 / 3 & 1 / 3
\end{array}\right] \\
& \underline{\lambda}^{T}=\underline{c}_{B}^{T} B^{-1}=[-1-1]\left[\begin{array}{cc}
1 / 3 & -2 / 3 \\
1 / 3 & 1 / 3
\end{array}\right]=[-2 / 31 / 3]
\end{aligned}
$$

Re duced $\cos t s$:

$$
\begin{aligned}
& p_{1}=c_{1}-\underline{\lambda}^{T} \underline{a}_{1}=-1-[-2 / 31 / 3]\left[\begin{array}{l}
2 \\
1
\end{array}\right]=0 \\
& p_{2}=c_{2}-\underline{\lambda}^{T} \underline{a}_{2}=-4-[-2 / 31 / 3]\left[\begin{array}{c}
-2 \\
0
\end{array}\right]=-8 / 3 \\
& p_{3}=c_{3}-\underline{\lambda}^{T} \underline{a}_{3}=-1-[-2 / 31 / 3]\left[\begin{array}{c}
1 \\
-1
\end{array}\right]=0
\end{aligned}
$$

Bring \underline{a}_{2} int o the basis
$\underline{\alpha}=B^{-1} \underline{a}_{2}=\left[\begin{array}{cc}1 / 3 & -2 / 3 \\ 1 / 3 & 1 / 3\end{array}\right]\left[\begin{array}{c}-2 \\ 0\end{array}\right]=\left[\begin{array}{c}-2 / 3 \\ -2 / 3\end{array}\right]<\left[\begin{array}{l}0 \\ 0\end{array}\right]$
\Rightarrow unbounded because x_{1} and x_{3} can be increased to ∞.

All you need to do, for example, is to put an upper bound on x_{2}

Example: Regular termination

$$
\begin{array}{ccc}
\min -60 x_{1}-30 x_{2}-20 x_{3} & \\
\text { s.t. } 8 x_{1}+6 x_{2}+x_{3}+s_{1} & =48 \\
4 x_{1}+2 x_{2}+1.5 x_{3}+ & s_{2} & =20 \\
2 x_{1}+1.5 x_{2}+0.5 x_{3}+ & & s_{3}=8
\end{array}
$$

- Iteration 1
- Initially $B=I$,

$$
\begin{aligned}
& \Rightarrow x_{B}=\left(\begin{array}{lll}
s_{1} & s_{2} & s_{3}
\end{array}\right)^{T}=(48,20,8)^{T} \\
& \Rightarrow x_{N}=\left(\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right)^{T} \\
& \lambda^{T}=\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right] \\
& p_{1}=c_{1}-\underline{\lambda}^{T} \underline{a}_{1}=-60-\lambda^{T}\left[\begin{array}{l}
8 \\
4 \\
2
\end{array}\right]=-60 \\
& p_{2}=c_{2}-\underline{\lambda}^{T} \underline{a}_{2}=-30-\lambda^{T}\left[\begin{array}{c}
6 \\
2 \\
1.5
\end{array}\right]=-30 \\
& p_{3}=c_{3}-\underline{\lambda}^{T} \underline{a}_{3}=-20-\lambda^{T}\left[\begin{array}{c}
1 \\
1.5 \\
0.5
\end{array}\right]=-20
\end{aligned}
$$

- p_{1} is the most negative. Bring x_{1} into the basis

$$
\begin{array}{ccc}
\min -60 x_{1}-30 x_{2}-20 x_{3} & & \\
\text { s.t. } 8 x_{1}+6 x_{2}+x_{3}+s_{1} & & =48 \\
4 x_{1}+2 x_{2}+1.5 x_{3}+ & s_{2} & =20 \\
2 x_{1}+1.5 x_{2}+0.5 x_{3}+ & s_{3} & =8
\end{array}
$$

- Solve for $\underline{\alpha} \Rightarrow \underline{\alpha}=B^{-1} a_{1}$

$$
\begin{aligned}
& \underline{\alpha}=\left[\begin{array}{l}
8 \\
4 \\
2
\end{array}\right] \\
& \theta=\min \left\{\begin{array}{lll}
\frac{48}{8} & \frac{20}{4} & \frac{8}{2}
\end{array}\right\}=\min \left\{\begin{array}{lll}
6 & 5 & 4
\end{array}\right\}=4 \\
& \Rightarrow s_{3} \text { goes out of the basis } \\
& \text { New basic solution: } \\
& \qquad\left(\begin{array}{l}
s_{1} \\
s_{2} \\
x_{1}
\end{array}\right)=\left(\begin{array}{c}
48-32=16 \\
20-16=4 \\
4
\end{array}\right)=\left(\begin{array}{c}
16 \\
4 \\
4
\end{array}\right)
\end{aligned}
$$

- Iteration 2

New $B=\left[\begin{array}{lll}1 & 0 & 8 \\ 0 & 1 & 4 \\ 0 & 0 & 2\end{array}\right]$

$$
\begin{aligned}
& B^{-1}=\left[\begin{array}{lll}
1 & 0 & -4 \\
0 & 1 & -2 \\
0 & 0 & 0.5
\end{array}\right] \\
& \lambda^{T}=c_{B}^{T} B^{-1}=\left(\begin{array}{lll}
0 & 0 & -60
\end{array}\right)\left[\begin{array}{ccc}
1 & 0 & -4 \\
0 & 1 & -2 \\
0 & 0 & 0.5
\end{array}\right]=\left(\begin{array}{lll}
0 & 0 & -30
\end{array}\right)
\end{aligned}
$$

Example: Iteration 2 (cont'd)

$$
\min -60 x_{1}-30 x_{2}-20 x_{3}
$$

$$
\text { s.t. } 8 x_{1}+6 x_{2}+x_{3}+s_{1} \quad=48
$$

$$
4 x_{1}+2 x_{2}+1.5 x_{3}+s_{2}=20
$$

$$
2 x_{1}+1.5 x_{2}+0.5 x_{3}+\quad s_{3}=8
$$

$$
\begin{aligned}
& p_{1}=-\left(\begin{array}{lll}
0 & 0 & -30
\end{array}\right)\left[\begin{array}{l}
8 \\
4 \\
2
\end{array}\right]+-60=0 \\
& p_{2}=-30-\left(\begin{array}{lll}
0 & 0 & -30
\end{array}\right)\left[\begin{array}{l}
6 \\
2 \\
1.5
\end{array}\right]=15 \\
& p_{3}=-20-\left(\begin{array}{lll}
0 & 0 & -30
\end{array}\right)\left[\begin{array}{c}
1 \\
1.5 \\
0.5
\end{array}\right]=-5 \\
& p_{s_{3}}=0-\left(\begin{array}{lll}
0 & 0 & -30
\end{array}\right)\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=30
\end{aligned}
$$

$0 \Rightarrow$ bring x_{3} into the basis

$$
\underline{\alpha}=B^{-1} a_{3}=\left[\begin{array}{ccc}
1 & 0 & -4 \\
0 & 1 & -2 \\
0 & 0 & \frac{1}{2}
\end{array}\right]\left[\begin{array}{c}
1 \\
1.5 \\
0.5
\end{array}\right]=\left[\begin{array}{c}
-1 \\
\frac{1}{2} \\
s_{1}
\end{array} s_{2} x_{1} . \quad \begin{array}{l}
\Rightarrow s_{2} \text { goes out } \quad \text { New basic solution: } \\
\frac{1}{4}
\end{array}\right] \quad\left(\begin{array}{l}
s_{1} \\
x_{3} \\
x_{1}
\end{array}\right)=\left(\begin{array}{c}
16-8(-1) \\
8 \\
4-8(0.25)
\end{array}\right)=\left(\begin{array}{c}
24 \\
8 \\
2
\end{array}\right)
$$

$$
\min -60 x_{1}-30 x_{2}-20 x_{3}
$$

Example: Iteration 3

$$
\text { s.t. } 8 x_{1}+6 x_{2}+x_{3}+s_{1}=48
$$

$$
4 x_{1}+2 x_{2}+1.5 x_{3}+s_{2}=20
$$

- Iteration 3

$$
2 x_{1}+1.5 x_{2}+0.5 x_{3}+\quad s_{3}=8
$$

New $B=\left[\begin{array}{ccc}1 & 1 & 8 \\ 0 & \frac{3}{2} & 4 \\ 0 & \frac{1}{2} & 2\end{array}\right]$

$$
\begin{gathered}
B^{-1}=\left[\begin{array}{ccc}
1 & 2 & -8 \\
0 & 2 & -4 \\
0 & \frac{-1}{2} & \frac{3}{2}
\end{array}\right] \\
\lambda^{T}=c_{B}^{T} B^{-1} \\
=\left(\begin{array}{lll}
0 & -20 & -60
\end{array}\right)\left[\begin{array}{ccc}
1 & 2 & -8 \\
0 & 2 & -4 \\
0 & -0.5 & 1.5
\end{array}\right]=\left(\begin{array}{lll}
0 & -10 & -10
\end{array}\right)
\end{gathered}
$$

- Reduced costs for non-basic variables

For \leq constraints with non-negative \underline{b} (as in this problem), feasible solution is easy; set slacks $=\underline{b}$. For \underline{b} with negative elements, need both a slack and a y to initiate Phase I or big M method with \leq constraints. Complementary comments apply to \geq constraints.

$$
\begin{aligned}
& p_{s_{2}}=0-\lambda^{T}\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)=0-\left(\begin{array}{lll}
0 & -10 & -10
\end{array}\right)\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]=10 \\
& p_{x_{2}}=-30-\lambda^{T}\left(\begin{array}{c}
6 \\
2 \\
1.5
\end{array}\right)=-30-\left(\begin{array}{lll}
0 & -10 & -10
\end{array}\right)\left[\begin{array}{c}
6 \\
2 \\
1.5
\end{array}\right]=5 \\
& p_{s_{3}}=0-\left(\begin{array}{lll}
0 & -10 & -10
\end{array}\right)\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=10 \\
& \Rightarrow \text { all } p_{i}>0 \Rightarrow \text { optimal } \\
& \left(\begin{array}{l}
s_{1}^{*} \\
x_{3}^{*} \\
x_{1}^{*}
\end{array}\right)=\left(\begin{array}{c}
24 \\
8 \\
2
\end{array}\right) \\
& \text { Optimal solution: } \\
& x_{1}{ }^{*}=2, x_{2}{ }^{*}=0, x_{3}{ }^{*}=8 \\
& \text { Optimal cost: } \\
& (-60) * 2-30 * 0-20 * 8 \\
& =-280
\end{aligned}
$$

Illustration of Big M method for \geq constraints

Crude oil problem:
$x_{1}=$ number of barrels of light crude
$x_{2}=$ number of barrels of heavy crude
$\min 56 x_{1}+50 x_{2}$
s.t. $0.3 x_{1}+0.3 x_{2} \geq 900,000$
$0.2 x_{1}+0.4 x_{2} \geq 800,000$
$0.3 x_{1}+0.2 x_{2} \geq 500,000$
$x_{1} \geq 0 ; x_{2} \geq 0$

$$
\begin{aligned}
& \text { Big-M SLP:min } 56 x_{1}+50 x_{2}+10000 y_{1}+10000 y_{2}+10000 y_{3} \\
& \text { s.t. } 0.3 x_{1}+0.3 x_{2}-s_{1}+y_{1}=900,000 \\
& \quad 0.2 x_{1}+0.4 x_{2}-s_{2}+y_{2}=800,000 \\
& \quad 0.3 x_{1}+0.2 x_{2}-s_{3}+y_{3}=500,000 \\
& \quad x_{1} \geq 0 ; x_{2} \geq 0 ; s_{i} \geq 0 ; y_{i} \geq 0, i=1,2,3
\end{aligned}
$$

Lot easier to do this problem geometrically as in HW, but Illustrates the big M method nicely

Example: Big M Iterations 2-4

Iteration 2:
$\underline{x}_{B}=\left[\begin{array}{l}y_{1} \\ x_{2} \\ y_{3}\end{array}\right]=\left[\begin{array}{c}300,000 \\ 2.10^{6} \\ 100,000\end{array}\right] ; B=\left[\begin{array}{ccc}1 & 0.3 & 0 \\ 0 & 0.4 & 0 \\ 0 & 0.2 & 1\end{array}\right] ; B^{-1}=\left[\begin{array}{ccc}1 & -3 / 4 & 0 \\ 0 & 5 / 2 & 0 \\ 0 & -1 / 2 & 1\end{array}\right] ; \underline{\lambda}^{T}=\underline{c}_{B}^{T} B^{-1}=\left[\begin{array}{lll}10000 & -12375 & 10000\end{array}\right]$
$\underline{p}^{T}=\left[\begin{array}{llllllll}-3469 & 0 & 10000 & -12375 & 10000 & 0 & 22375 & 0\end{array}\right]$
\Rightarrow bring s_{2} into the basis; $\underline{\alpha}=\left[\begin{array}{c}0.75 \\ -2.5 \\ 0.5\end{array}\right] \Rightarrow \theta=\min \{300,000 / 0.75,100,000 / 0.5\}=200,000 \Rightarrow y_{3}$ should go out
Iteration 3:
$\underline{x}_{B}=\left[\begin{array}{l}y_{1} \\ x_{2} \\ s_{2}\end{array}\right]=\left[\begin{array}{c}150,000 \\ 2.5 .10^{6} \\ 200,000\end{array}\right] ; B=\left[\begin{array}{ccc}1 & 0.3 & 0 \\ 0 & 0.4 & -1 \\ 0 & 0.2 & 0\end{array}\right] ; B^{-1}=\left[\begin{array}{ccc}1 & 0 & -3 / 2 \\ 0 & 0 & 5 \\ 0 & -1 & 2\end{array}\right] ; \underline{\lambda}^{T}=\underline{c}_{B}^{T} B^{-1}=\left[\begin{array}{lll}10000 & 0 & -14750\end{array}\right]$
$\underline{p}^{T}=\left[\begin{array}{llllllll}1,481 & 0 & 10,000 & 0 & -14,750 & 0 & 10,000 & 24,750\end{array}\right]$
\Rightarrow bring s_{3} into the basis; $\underline{\alpha}=\left[\begin{array}{c}3 / 2 \\ -5 \\ -2\end{array}\right] \Rightarrow \theta=100,000 \Rightarrow y_{1}$ should go out

Iteration 4 :

$\underline{x}_{B}=\left[\begin{array}{l}s_{3} \\ x_{2} \\ s_{2}\end{array}\right]=\left[\begin{array}{c}100,000 \\ 3.10^{6} \\ 400,000\end{array}\right] ; B=\left[\begin{array}{ccc}0 & 0.3 & 0 \\ 0 & 0.4 & -1 \\ -1 & 0.2 & 0\end{array}\right] ; B^{-1}=\left[\begin{array}{ccc}2 / 3 & 0 & -1 \\ 10 / 3 & 0 & 0 \\ 4 / 3 & -1 & 0\end{array}\right] ; \underline{\lambda}^{T}=\underline{c}_{B}^{T} B^{-1}=\left[\begin{array}{lll}500 / 3 & 0 & 0\end{array}\right]$
$\underline{p}^{T}=\left[\begin{array}{llllllll}6 & 0 & 167 & 0 & 0 & 9833 & 10,000 & 10000\end{array}\right]$
optimal $\Rightarrow x_{1}=0 ; x_{2}=3.10^{6}$ barrels $; \cos t=\$ 150 \mathrm{M}$

Example: Detecting infeasibility (Phase I)

- Consider

$$
\begin{aligned}
& \min x_{1}+x_{2} \\
& \text { s.t. } x_{1}+x_{2}=-4 \\
& x_{1} \geq 0 ; x_{2} \geq 0 \\
& \min x_{1}+x_{2} \\
& \text { s.t. }-x_{1}-x_{2}=4 \\
& x_{1} \geq 0 ; x_{2} \geq 0 \\
& \quad
\end{aligned}
$$

For phase I:
$\min y$
s.t. $-x_{1}-x_{2}+y=4$
$x_{1} \geq 0 ; x_{2} \geq 0 ; y \geq 0$

Phase I : min $y=\left[\begin{array}{lll}0 & 0 & 1\end{array}\right]\left[\begin{array}{c}x_{1} \\ x_{2} \\ y\end{array}\right]$
$A=\left[\begin{array}{lll}-1 & -1 & 1\end{array}\right]$
Iteration $1: B=1=B^{-1} ; x_{B}=y=4 ; \lambda=1 ; \cos t=1$
Re duced $\cos t s: p_{1}=0-1 .(-1)=1 ; p_{2}=0-1 .(-1)=1 ; p_{3}=1-1.1=0$
Optimal $\Rightarrow y=1$ and $\cos t=1>0 \Rightarrow$ inf easible

Summary

- LP problem: $\min c^{T} \underline{x}$ s.t. $A \underline{x}=\underline{b}, \underline{x} \geq \underline{0}$
- At least $(n-m)$ components of \underline{x} are zero
- Such solutions are called basic feasible solutions (bfs)
- They are also extreme points of $K=\{\underline{x}: A \underline{x}=\underline{b}, \underline{x} \geq \underline{0}\}$
- An LP may have no solution: detected in Phase 1 of Simplex
- Unbounded solution: $\underline{\alpha}_{j} \leq \underline{0}$ detected in Phase 2
- Unique solution: $\underline{p} \geq \underline{0}$ and detected in Phase 2 of Simplex
- Monitor residuals and be aware of finite precision arithmetic
- Must use factorization schemes for efficiency of updating the basis matrix... Lecture 3

