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Reading List
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• Bertsimas and Tsitsiklis, secs. 2.3-2.6, 3.1

• Luenberger, chapters 2 and 3



Outline
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• Simple Examples

• Historical Perspective Revisited

• Various Versions of LP

• Why do we need to solve linear programming problems ?

 L1 and L∞ curve fitting (i.e., parameter estimation using 1−norm  and 
∞−norm of error as minimization objective)

o Application to FIR filter design

 Diet problem

 Portfolio optimization

 Optimal control

 Transportation problem

 Shortest path problems

• Revised Simplex method

 Fundamental theorem of LP

 Geometric interpretation

 Optimality conditions

 Simplex iteration



Simple Example to Illustrate the 
Geometry of LP
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• Advertising problem
 Dorian manufacturing Co. makes cars and trucks

 Customers: High-income men and women

 Want to advertise on comedy shows and football games

 Each comedy commercial is seen by 7 million high-income women and 2 million 
high-income men

 Each football commercial is seen by 2 million high-income women and 12 million 
high-income men

 Cost:

o 1-minute comedy commercial cost : $50K

o 1-minute football commercial cost : $100K

 Want to reach at least 28 million high-income women and 24 million high-income 
men

 Q: How much advertising to buy to minimize cost?

x1 = Number of minutes of commercial bought on comedy shows

x2  = Number of minutes of commercial bought on football games

 x1, x2 are integers ⇒ Linear Integer Programming (LIP) problem



Graphical Solution
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 Relax integrality constraints ⇒ x1 ≥ 0, x2  ≥ 0⇒LP
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LP solution

Integer solutions

Optimal Integer solutions:

x1 = 6, x2  = 1 ⇒ f = $400K

x1 = 4,     x2  = 2 ⇒ f = $400K

LP Solution:
x1  = 3.6, x2 = 1.4 ⇒ f = $320K

Note: Relaxed LP solution is a lower 
bound on the optimal LIP solution 

[x,fval,exitflag,output,lambda]=linprog(f,A,b)
MATLAB uses A x  b !!!
[x,fval,exitflag,output]=intlinprog(f, 
intcon,A,b)
You can also use solver in Excel



Can LP problem have multiple solutions?
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1. An LP can have multiple solutions
 Automobile manufacturing process that makes cars and trucks

 Must go through paint and body shops

 Paint shop capacity

o 40 trucks per day (or)

o 60 cars per day

 Body shop capacity

o 50 trucks per day (or)

o 50 cars per day

 Profits

o $300/truck

o $200/car

 Variables:

o x1 = # of trucks produced/day

o x2 = # of cars produced/day



Is LP problem always feasible? No!!!
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 Problem:

 Multiple solutions:

2. An LP may be infeasible
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Note: at x1= 30 and x2= 20, 3 x1 +2 x2 =130 
⇒ paint shop can’t handle it

 Feasible space is empty



Is the optimal solution always finite? No!!!
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3. An LP can have an unbounded solution

 Thus, an LP can have:

o A unique solution

o Multiple solutions (but with the same function value)

o Infeasible solution space

o Unbounded solutions ⇒

f → ∞ for max or

f → −∞ for min
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Historical Perspective Revisited 
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• One of the most celebrated problems since 1951

• Major breakthroughs
 Dantzig: Simplex method (1947-1949)

 Khachian: Ellipsoid method (1979)

o Polynomial complexity of LP, but not competitive with the Simplex 
method ⇒ not practical

 Karmarker: Projective interior point algorithm (1984)

o Polynomial complexity of LP and a competitive algorithm (especially 
for large problems)

• LP Problem definition
 Given

o An m × n matrix A, m < n or A ∈ Rmn, m < n

assume rank(A) = m

o A column vector b with m components: b ∈ Rm

o A row vector cT with n components: c ∈ Rn

 m < n ⇒ Ax = b has infinitely many solutions ⇒ b= σ𝑖=1
𝑛 𝑎𝑖𝑥𝑖



What is Linear Programming (LP)
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 Recall

 r = m ⇒ N (AT ) = φ(origin)

 Consider xr ∈ R(AT ) ∋ Axr = b ⇒ A(xr + xn) = b where 

xn ∈ N (A) ⇒ (xn : Axn = 0)

 We impose two restrictions on x:

o Want nonnegative solutions of Ax =  b ⇒ x i  ≥ 0 (or) x ≥ 0

o Among all those feasible x’s, want x∗ ∋ cTx = c1x1+c2x2+…+cnxn is a
minimum

r

R(A)

n − r

N(A)

r

R(AT)

m − r

N(AT)

x ∋ Ax = b & x ≥ 0 are said to be feasible



Any LP problem can be converted to SLP
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 This leads to the so-called “standard form of LP”

 Claim: Any LP problem can be converted into standard form

 Inequality constraints

a) ai
Tx ≤ bi ⇒ 𝑎𝑖

𝑇 1
𝑥

𝑥𝑛+1
=bi; xn+1 ≥ 0

xn+1 ∼ slack variable

In general, Ax ≤ b ⇒ Ax +y = b ⇒ 𝐴 𝐼
𝑥
𝑦 = b, x,y ≥ 0

Increase number of variables by m and Aa is an m × (n+m) matrix

b) ai
Tx ≥ bi ⇒ ai

Tx −xn+1 = bi; xn+1 ≥ 0

xn+1 ∼ surplus variable

In general, Ax ≥ b ⇒ 𝐴 −𝐼
𝑥
𝑦 = b, y ≥ 0

c) di ≤ x i  ⇒ define Ƹ𝑥𝑖 = x i  − di, Ƹ𝑥𝑖 ≥ 0

d) di ≥ x i  ⇒ define Ƹ𝑥𝑖 = di − x i, Ƹ𝑥𝑖 ≥ 0

(SLP):

min  cTx

s.t. Ax = b

x ≥ 0

convex programming problem. If a  

bounded solution exists, then x∗ is  

unique ⇒ a single minimum.

Aa



Converting to standard LP
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e) di1 ≤ x i ≤ di2 ⇒ 0 ≤ x i  − di1 ≤ di2 − di1

Define Ƹ𝑥𝑖 = x i  − di1

& ො𝑥𝑖 + y i  = di2 − di1; slack y i  ≥ 0

f) b1i ≤ ai
Tx ≤ b2i ⇒ use a slack and a surplus

g) | ai
Tx | ≤ bi ⇒ −bi ≤ ai

Tx ≤ bi

⇒ ai
Tx − y i1 = −bi

ai
Tx + y i2 = bi

 xi is a free variable

o Define 𝑥𝑖 = ҧ𝑥𝑖 − Ƹ𝑥𝑖, with ҧ𝑥𝑖, Ƹ𝑥𝑖 ≥ 0

 Maximization: change cTx to −cTx

 L1-minimization: min σ𝑖=1
𝑛 𝑥𝑖 s.t. Ax ≤ b

⇒ Ax + y = b

Write 𝑥𝑖 = ҧ𝑥𝑖 − Ƹ𝑥𝑖
⇒ min σ𝑖=1

𝑛 ҧ𝑥𝑖 + Ƹ𝑥𝑖 s.t. 
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Optimal solution of this problem solves 
the original problem. Also, 
if ҧ𝑥𝑖 > 0, Ƹ𝑥𝑖 = 0and vice versa.



L1 - curve fitting
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1. L1 - curve fitting

 Recall that given a set of scalars (b1, b2, . . . , bm), the estimate 
that minimizes σ𝑖=1

𝑚 𝑥 − 𝑏𝑖 is the median and that this 
estimate is insensitive to outliers in the data {bi}.

 In vector case, want

 L1 - curve fitting ⇒ an LP

o Write xi = 𝑥𝑖 − ො𝑥𝑖,i=1,2,..,n; |ai
Tx−bi|=ui+vi

o Then, the LP problem is:

1
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L∞ - curve fitting
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2. L∞ - curve fitting

 Want x such that

 L∞ - curve fitting ⇒ an LP

o Let max1≤i≤m|ai
Tx−bi|= w

o Then, the problem is equivalent to:

 Since the number of constraints is 
large (= 2m) and the number of 
variables (= n) is small, typically the 
dual problem with (n + 1) constraints 
and 2m variables is solved instead!!

 Dual is an LP

 We will discuss duality in Lecture 4
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L∞ - curve fitting in filter design

VUGRAPH 15

 Linear-phase Finite Impulse Response (FIR) filters

o Impulse response coefficients:

o Linear phase  hn = hN-n symmetric

o Frequency response (0/T); T= sampling interval
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L - Type I FIR filter design problem
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 L - FIR filter design
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Matrix Formulation of FIR design problem
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 Matrix Formulation

 Design a 30th order low-pass FIR filter 
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Diet Problem
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3.Diet problem

 A budget conscious Irish consumer wants to buy, at minimum cost,  the 

following three basic foods:  poultry, leafy spinach, and potatoes

 He wants

o 65 gms of protein

o 90 gms of carbohydrate

o 200 mgms of calcium

o 10 mgms of iron

o 5000 international units (IU) of vitamin A

 x1 ∼ amount of poultry (gms)

 x2  ∼ amount of spinach (gms)

 x3  ∼ amount of potatoes (gms)

poultry spinach potatoes

cost/100 gms 40 15 10

protein gms 2 3 2

carbohydrate gms 0 3 18

calcium mgms 8 83 7

iron mgms 1.4 2 0.6

vitamins (IU) 80 7300 0



LP formulation of Diet Problem
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 Optimal solutions: 

x1 = 0; x2 = 20.626; x3 = 1:5625, and f = 325 (solver)

x1 = 0; x2 = 0.7047; x3 = 31.443, and f = 325 (MATLAB)

 Show via solver in Excel or MATLAB

 More general diet problem can be formulated

in a similar way

 Have n different food items

cj = cost of food item j

xj = units of food item j (in grams) included in our diet

 Have m nutritional requirements

bi = minimum daily requirement of ith nutrient

aij = amount of nutrient i provided by a unit of food item j

 The problem is an LP
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Portfolio optimization problem

1

( ) Return on investment  in time period , 1,2,..,

Fraction of portfolio to be invested in ; 1; 0, 1,2,..,

Portfolio's historical returns with this alloction in time period :
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• 4. Portfolio Optimization
 J investment options (Stocks, T-bills, Corporate Bonds, S&P, Gold,..)

 Have historical data on returns 



L1-version of Markowitz problem

0
1 1

1 1

1

1
( )

1
. . | [ ( ) ] | ; risk aversion parameter

                 1

T J

j j
x

t j

T J

jj j

t j

J

j

j

Max r x r t
T

s t q x r t r
T

x

 


 

 





 
    

 





 



• Maximize average return subject to a constraint on risk

• Problem

• LP formulation
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Optimal Control

VUGRAPH 22

• 5. Optimal L1 and L control
 Consider a linear time-invariant discrete-time system

xk+1  = Axk + buk, uk∼ scalar for simplicity, k = 0, 1,…

xk = Akx0 + σ𝑙=0
𝑘−1 Ak-l-1bul

 Define terminal error: eN = xd−xN = xd−ANx0 −σ𝑙=0
𝑁−1 AN-l-1bul

 Given x0, xd and given the fact that uk is constrained by 

umin ≤ uk ≤ umax, we can formulate various versions of LP

a)  
1

1

01
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on state variables



Properties of optimal control
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b)

 Proof of equivalence for (a)

o Suppose vi
*, ui

*, and z* are optimal solutions

o vi
* & ui

* cannot simultaneously be non-zero

o If they are, define ො𝑣𝑖= vi
* − ui

* and ො𝑢𝑖= 0 ⇒ feasible

But, cost ො𝑣𝑖 + ො𝑢𝑖 < vi
* + ui

* ….a contradiction

⇒ only either of the two is nonzero

 Proof of equivalence for (b)

o Let z*, v* be optimal for the revised problem, but z* is not optimal for the 
original problem

o Suppose ẑ is the optimal solution of the original problem

o Define v = max |ci + di
T ẑ |⇒ feasible for the revised problem ⇒ v < vi

* 

⇒ contradiction
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Transportation or Hitchcock Problem
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 m sources of a commodity or product and n destinations

 Commodity amount to be shipped from source i = ai; 1 ≤ i ≤ m

 Commodity amount to be received at destination (sink, terminal  
node) j = bj; 1 ≤ j ≤ n

 Shipping cost from source i to destination j per unit commodity 

= cij dollars/unit

 Problem: How much commodity should be shipped from source i
to destination j to minimize transportation cost

 Directed network or graph, mn variables and (m+n) constraints

 Note: arcs emanate from sources and terminate on sinks

 BIPARTITE GRAPHS ⇒ special LP problem ⇒ ai = bi = 1
⇒ Assignment problem or weighted bipartite matching problem

i  = 1

i  = 2

i = m

c11,x11

c21,x21

c22,x22

c12,x12

j = 1

j = 2

j = ncmn,xmn

c2n,x2n

cm2,xm2

c1n,x1n

cm1,xm1

m sources (or)  
supply nodes

n terminals, sinks, 
destination nodes

Conservation constraint
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Shortest Path Problem

VUGRAPH 25

 (For conceptual reasons only, but solved differently)

 s, u, v, t are computers, edge lengths are costs of sending a message 
between them

 Q: what is the cheapest way to send a message from s to t

 Shortest path s → u → v → t ⇒ xsu = xuv = xvt = 1

 Shortest path length = 2 + 1 + 3 = 6

 Intuitively, xsv = xut = 0 (i.e., no messages are sent from s to v and  
from u to t)

 Let xsv be the fraction of messages sent from s to v. Similarly, for  
arcs (s, u), (u, v), (u, t), and (v, t)

ts

u

v

2

4 3

5

1



Shortest Path Problem
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 Problem formulation

 In matrix notation

 Note: b is a special vector s.t. Ax = b, x ≥ 0. A is a unimodular
matrix and so are all invertible submatrices ሚ𝐴 of A ⇒ det ሚ𝐴= 1 or −1.

⇒ Inverses will have integer elements ⇒ Solutions are integers if b
is integer.

)at  received (message 1

)at lost not  (message 0

)at lost not  (message 0

0,,

3542min
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vxxx
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xxxxx 
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 Add all constraints 
⇒ xsu + xsv = 1 which it must be!!
⇒ only 3 independent constraints 
(although 4 nodes)
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 n nodes ⇒ n − 1 independent 
equations

⇒ Similar to Kirchoff’s laws
⇒ A is called the incidence matrix

min  eT x

s.t. Ax = b



Standard Linear Program
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 Let us return to the solution of SLP

⇒ min  cT x s.t. Ax = b, x ≥ 0

A is an m × n matrix of rank m

 Example

 In general, the optimal solution x* is such that (n − m) of its 
components are zero. If we knew which of the n − m components 
are zero,  we can immediately compute the optimal solution (i.e., 
the remaining m nonzero components) from Ax = b. Since we don’t 
know the zeros a priori, the chief task of every algorithm is to 
discover where they belong.

 Need to look at only extreme points of the feasible set.

42
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21
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x x  First contact of x1 + x2 = a occurs at a = 2, x1 = 0, x2 = 2

⇒ optimal solution: x2 = 2, x1 = 0
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2-Phase Simplex Algorithm
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• How does Simplex algorithm work?
 Phase 1: Find a vector x that has (n − m) zero components, with  

Ax = b and x ≥ 0. This is a feasible x, not necessarily optimal 

 Phase 2: Allow one of the zero components to become positive   
and force one of the positive components to become zero

o Q: How to pick “entering” and “leaving” variables

o A: Cost cT x ↓ and Ax = b, x ≥ 0 must be satisfied

 Inequality constraints:

o x1 : invest in stock

o x2 : invest in real estate

o 0 ≤ x1 ≤ b1; 0 ≤ x2 ≤ b2; 0 ≤ x1+ x2 ≤ b3

⇒ can also look at it as a 5 dimensional problem with slacks

Assume b3 > b1 and b3 > b2
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  In n dimensions
o ai

Tx = bi define hyperplanes
o ai

Tx ≤ bi define half spaces
o x ≥ 0 positive cone



Infeasibility
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 Feasible set is a convex polytope. If bounded, a convex 
polyhedron. Need to consider only extreme points of this set.

 Some other nuances

o An LP may not have a solution

o e.g.,

0,

4

min

21

21

21







xx

xs.t. x

x x

⇒Feasible set is empty ⇒ inconsistent constraints

x1

x2

x1+ x2= -4



Unboundedness
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 An LP may have an unbounded solution 

o e.g.,

 So, an algorithm must decide

o Whether there exists an optimal solution

o If it does, find the corner where optimum occurs
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x1 − 2x2= 4



Basic Feasible Solution (BFS)
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 Assume rank(A) = m, then we can partition A=[B N], where B has m
linearly independent columns

 Assume first m columns for convenience

 Since rank(B) = m ⇒ B-1 exists

 xB= B-1b − B-1NxN

o xB = vector of basic variables

o xN = vector of non-basic variables

 Basic solution: set non-basics to their lower bound (i.e., xN = 0)

⇒ xB= B-1b; B is called the basis matrix

 Basic feasible solution (bfs): xB ≥ 0 ⇒ x is feasible

x = [xB ≥ 0 xN = 0 ]T
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N
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Fundamental Theorem of LP 
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• Theorem
a) Existence of a feasible x ⇒ existence of xB ≥ 0 , a basic feasible 

solution

b) Existence of a optimal x* ⇒ existence of xB
* ≥ 0 , an optimal basic 

feasible solution

 Proof of a:

o Feasible x ⇒ σ𝑖=1
𝑛 𝑎𝑖𝑥𝑖 = 𝑏

o Suppose x1, x2,…, xp > 0 and the rest are zero

o Case 1: linearly independent (a1, a2, . . . , ap) ⇒ p ≤ m

If p = m,  xp = xB, where xB = B−1b

If p < m, can find (m – p) dependent vectors

Set xi = 0, i = p + 1,…, m

⇒ xB is (degenerate) basic feasible

bxa
p

i

ii 
1



Feasible  Basic Feasible Solution (BFS)
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o Case 2: (a1, a2, . . . , ap) are linearly dependent 

⇒ Can find y1, y2, . . . , yp, such that

Assume, without loss of generality, at least one yi > 0

Assume ε ≥ 0 without loss of generality

Note that as ε ↑:

xi − εyi ↑ if yi < 0

We have

xi if yi = 0

xi − εyi ↓ if yi > 0

Set ε = min {xi/yi : yi > 0}

 For this ε, we have an x with (p − 1) positive values

 The equation for ε is simply that for the simplex step

 Continue this process until all vectors are independent, then case 1
applies

1

0
p

i i

i

a y
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,
p

i i i

i

a x y b 


  



Optimal Solution  Optimal BFS
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 Proof of b:

o Case 1: linearly independent (a1, a2, . . . , ap) ⇒ p ≤ m

If p = m,  xp = xB
*, where xB

* = B−1b

If p < m, can find (m – p) dependent vectors

Set xi = 0, i = p + 1,…, m

⇒ xB
* is (degenerate) optimal basic feasible

o Case 2: (a1, a2, . . . , ap) are linearly dependent 

⇒ Can find y1, y2, . . . , yp, such that

Assume, without loss of generality, at least one yi > 0

Assume ε ≥ 0 without loss of generality

Note that as ε ↑:

xi − εyi ↑ if yi < 0 ⇒ feasibility is maintained

We have xi if yi = 0 ⇒ feasibility is maintained

1

0
p

i i

i

a y




 *

1

,
p

i i i

i

a x y b 


  



Finite search space of LP
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xi − εyi ↓ if yi > 0 ⇒ feasibility for some ε

Set ε = min {xi/yi : yi > 0}

 For this ε, we have an x* with (p − 1) positive values

 But, what is the cost at (x* − εy)?

 The cost is cT(x* − εy)

 Since x* is optimal, cTy = 0. Otherwise, we can find a small ε such that 
cT(x* − εy) < cTx*

 A solution with (p − 1) positive values is also optimal!

 Continue this process until all vectors are independent, then case 1 
applies

 What this theorem says is that we need to find (n – m) zero 
variables among n nonnegative variables

⇒LP is a finite search problem (fortunately, we never have to solve it 
that way!)

 
!

! !

n n n

n m m n m m

   
    

    



Two views of convex polyhedron
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• Basic feasible solutions of LP ≡ extreme (corner) points of 
a convex polytope

• Recall from lecture 1:
 Ax = b is the intersection of m hyperplanes in Rm

 x ≥ 0 ⇒ convex cone in Rn

 Feasible set is a convex polytope; if bounded, it is called a convex 
polyhedron

⇒ Any point x = Σiαixi; Σiαi = 1; αi ≥ 0

{xi} are extreme (corner) points of the feasible set

Convex 
polyhedron

Convex hull of a finite number of extreme points

Intersection of a finite number of half spaces



BFS  corner points of convex polyhedron
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 Theorem: extreme points of convex polytope (polyhedron)

K = {x : Ax = b, x ≥ 0} ⇔ basic feasible solutions of LP

o Proof of ⇐ part:

 Suppose we have a bfs x = [xB 0 ]T ⇒ Ax = b

 Suppose x is not an extreme point ⇒ x = αy+(1 − α)z,

0 < α < 1, ⇒ Ax = b

Az = b and y, z are bfs

 Suppose y, z ≥ 0, and xN = 0 ⇒ yN = zN = 0, Ay = Az = b

 Since m columns of A are independent ⇒ x = y = z

⇒ a contradiction ⇒ x is an extreme point of K

o Proof of  part:

 Suppose we have an extreme point of x of K with components:

x1, x2, . . . , xp > 0

 To show that x is a bfs, we must show that a1, a2, . . . , ap are linearly 
independent

Suppose a1, a2, . . . , ap are linearly dependent

1

0 0
p

ii

i

y a Ay


   



Development of Simplex Algorithm
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 Since x ≥ 0, we can pick ε such that

(x + εy) ≥ 0 and (x − εy) ≥ 0

then x = ½(x + εy) + ½(x − εy) … contradiction

⇒ x is a bfs (degenerate if p < m)

 Simplex: partition c as follows

o Let β = B−1b; λT = cB
TB-1

o Bβ = b; BTλ = cB

B

N

c
c

c

 
  
 

then
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Basic and non-basic aspects of simplex

VUGRAPH 39

o Transformed problem is:

⇒ f = cB
Tβ + p1xN1

+ … + pn−mxNn-m

where pj = cN
j
− λTaj; aj = column j of N

⇒ also xB = β − α1xN1
− α2xN2

− … − αn−m xNn-m

where αj = B−1aj; aj = column j of N

Note: when xN = 0, xB = β and f = cB
Tβ = f0
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min

. .

T T T

B N N

B N

f c c N x

s t x B N x

 

 

  

 

pj = reduced cost of j



Optimality Conditions
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 pT = cN
T − λTN is called the vector of reduced costs

 This vector indicates how f changes as cN changes

 What is pj, the jth component of the p vector?

o Note: need only column aj to compute pj

 If xB = β ≥ 0 and xN = 0, we need pj ≥ 0 for optimality ∀ j ⇒ it 
doesn’t pay to increase xN

 So,

o Feasibility: βi ≥ 0, i = 1, 2,…, m

o Optimality: pj ≥ 0, j = 1, 2,…, n − m

 T T

jj j j
j

p c N c a    



Illustration of Optimality Conditions
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 Example:

4 5 6 7

1 4 5 6 7

2 4 5 6 7

3 4 5 6 7

min 30 4 5 3 4

. . 5 3 3

6 7 2 2 2

7 3 3 3

f x x x x

s t x x x x x

x x x x x

x x x x x
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3

7

1

1

5

6 ; 30; ;

7

3 1 1 1

7 2 2 2 ;

1 3 3 3

4 5 3 4 0

5 6 7 0 0 0 0 is optimal

T

B N B
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x
x

x
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Proof of Optimality Conditions
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 Proof of sufficiency:

o Since pj ≥ 0, an increase in xNj results in an increase in cost. Thus, if 
we have a basic feasible solution such that pj ≥ 0, then it is optimal

 Proof of necessity:

o Suppose pj < 0, for some j = 1, 2,…, n − m

o Two cases can occur

1. αj = B−1aj ≤ 0 ⇒ xNj
≥ 0 can be increased to any positive value and xB

remains feasible

⇒ set of solutions to Ax = b, x ≥ 0 is unbounded and f can be 
made an arbitrarily large negative number (−∞)

 This is the way to detect unboundedness

⇒ in practice, what it means is that some constraints were over-looked!!

2. pj < 0 and αj > 0 for at least one k = 1, 2,…, n − m

⇒ xNk
can increase from zero to reduce cost

⇒ xB is not optimal… contradiction

 This is the way to go from corner to another corner



Picking the Entering Variable and Step Size
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 When pj < 0, we can increase xNj
from zero to reduce cost

 Two questions:

o If several pj < 0, which one should we pick to enter the basis? 

o How far to go? ⇒ Which one should leave the basis?

 Which one to pick?

o Most widely used: pick k = arg min pj

⇒ “steepest coordinate descent” or “nonbasic gradient method”

o All variable gradient method

o k = min {j: pj < 0 } (i.e., choose the lowest numbered column that gives
pj < 0 ⇒ 1st j with negative pj)  … Bland’s method avoids cycling

 How far to go?

o Suppose k is the entering variable

o Recall xB = β − αkxNk

 As xNk
increases, xB changes

 If αik > 0, then xBi
decreases and goes through zero

2

1

arg min

1

j

mj

ijk

p
k










Updating the Basis
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 Must not go below zero, since this would ruin feasibility

o So, increase xNk
from zero until one of the basic variables goes to zero

xNk
= θ = min {β/αik : αik > 0}

⇒ if i = l is the minimizing index, then xNk
= βl/αik and xBl

= 0 ⇒ the basic 
variable l will leave the basis

o If more than one hits zero at the same time, pick one 
arbitrarily ⇒ degenerate basic feasible solution

 What happens to B?

o xNk
goes from zero to βl/αik and xBl

goes from βl to zero

⇒ replace lth column of original B with kth column of N

o We will have more to say about this in lecture 3
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One Iteration of Revised Simplex Algorithm
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• Step 1: Given the basis B such that xB = B−1b ≥ 0

• Step 2: Solve BTλ = cB for the vector of simplex multipliers λ

• Step 3: Select a column ak of N such that pk = cNk
− λTak < 0

Note: we may select the ak which gives the largest 
negative value of pk or the first k with negative pk

if pT = cN − λTN ≥ 0, stop ⇒ current solution is optimal

• Step 4: Solve α : Bα = ak

• Step 5: Find θ = xBl
/αl = min xBi

/αi, 1 ≤ i ≤ m, αi > 0

 If none of the {αi} is positive, then the set of solutions to Ax = b, x
≥ 0 is unbounded and the cost f can be made an arbitrarily large 
negative number

⇒ Terminate computation, since an unbounded solution

• Step 6: Update the basic solution, ҧ𝑥𝑖 = 𝑥𝑖 − 𝜃α𝑖 , 𝑖 ≠ 𝑘; ҧ𝑥𝑘 = 𝜃

• Step 7: Update the basis and return to Step 1



Remarks
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 Typically, the # of simplex iterations, k ∈ {2m, 4m}

 Computation time is ∝ k

 Round-off errors

o Inability to store numbers and perform computations exactly gives 
rise to round-off errors

o Rounding error accumulates with floating point operations (flops)

o To reduce round-off errors:

 Balance matrix A ⇒ try to make ||A||1 = ||A||∞

 Monitor residuals: ||Ax − b||∞ and ||cB − BTλ||∞

 Use error tolerances,

 pj > −10−5 ⇒ optimal

 aij < 10−10 ⇒ aij = 0

 If xNk
> 10−8 ⇒ reinvert basis

 If ||Ax − b||∞ or ||cB − BTλ||∞ > 10−6 ⇒ reinvert basis



How to get initial feasible solution –
Phase I of LP
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 Method 1

o An initial basic feasible solution can be obtained by solving the 
following LP problem

o If we can find an optimal solution ∋σ𝑖=1
𝑚 ො𝑦𝑖 = 0, then we have xB

o If σ𝒊=𝟏
𝒎 ෝ𝒚𝒊 > 𝟎, then there is no feasible solution to Ax = b, x ≥ 0

⇒ an infeasible problem

o Solve via the revised simplex starting with x = 0, ො𝑦𝑖= b and B = Im

o Note: we have assumed b ≥ 0 . Is it OK? Yes!!

 If bi < 0, scale the corresponding equation by −1

 Method 2

o Another approach is to combine both phases I and II by solving:

o This is called the “big-M” method

1
ˆmin

ˆ ˆ. . , ~ artificial variable

ˆ        , 0

m

ii
y

s t Ax I y b y

x y
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M is a large number > 100 ||c||



Example: Detecting unboundedness (Phase II)
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 Consider 1 2 1 21 2
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Example: vector has all negative (non-positive) elements 
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 Consider
1 2 3
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All you need to do, for example, is to put an upper bound on x2



Example: Regular termination 

VUGRAPH 50

 Iteration 1

o Initially B = I,

o p1 is the most negative. Bring x1 into the basis

1 2 3

1 2 3 1
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Example: Iteration 2
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o Solve for ⇒  = B−1a1

 Iteration 2

1 2 3

1 2 3 1

1 2 3 2

1 2 3 3

min 60 30 20

. .8 6 48

4 2 1.5 20

2 1.5 0.5 8

x x x
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Example: Iteration 2 (cont’d)
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o ⇒ bring x3 into the basis
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Example: Iteration 3
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 Iteration 3

o Reduced costs for non-basic variables

1 2 3

1 2 3 1
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⇒ all pi > 0 ⇒ optimal

*
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1

24
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Optimal solution:
x1

* = 2, x2
* = 0, x3

* = 8

Optimal cost:
(−60)*2 − 30*0 − 20*8

= −280

For  constraints with non-negative b (as in this problem), feasible solution is easy; set 
slacks = b. For b with negative elements, need both a slack and a y to initiate Phase I or  
big M method with  constraints.  Complementary comments apply to   constraints. 



Illustration of  Big M method for  constraints
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Lot easier to
do this 
problem
geometrically 
as in HW, but 
Illustrates the 
big M method 
nicely



Example: Big M Iterations 2-4
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Example: Detecting infeasibility (Phase I)
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Summary
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• LP problem: min cTx s.t. Ax = b, x ≥ 0

• At least (n − m) components of x are zero 

• Such solutions are called basic feasible solutions (bfs)

• They are also extreme points of K = {x : Ax = b, x ≥ 0}

• An LP may have no solution: detected in Phase 1 of Simplex

• Unbounded solution: αj ≤ 0 detected in Phase 2

• Unique solution: p ≥ 0 and detected in Phase 2 of Simplex

• Monitor residuals and be aware of finite precision 
arithmetic

• Must use factorization schemes for efficiency of updating 
the basis matrix… Lecture 3


