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@ Reading List

« Bertsimas and Tsitsiklis, secs. 2.3-2.6, 3.1
» Luenberger, chapters 2 and 3
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@ Outline

« Simple Examples
 Historical Perspective Revisited
» Various Versions of LP

* Why do we need to solve linear programming problems ?

» L, and L curve fitting (i.e., parameter estimation using 1-norm and
co—norm of error as minimization objective)

o Application to FIR filter design
Diet problem
Portfolio optimization
Optimal control
Transportation problem
= Shortest path problems

« Revised Simplex method
» Fundamental theorem of LP
» Geometric interpretation
= Optimality conditions
= Simplex iteration
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Simple Example to Illustrate the
Geometry of LP

 Advertising problem
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Dorian manufacturing Co. makes cars and trucks
Customers: High-income men and women
Want to advertise on comedy shows and football games

Each comedy commercial is seen by 7 million high-income women and 2 million
high-income men

Each _football commercial is seen by 2 million high-income women and 12 million
high-income men

Cost:

o 1-minute comedy commercial cost : $50K
o 1-minute football commercial cost : $100K

Want to reach at least 28 million high-income women and 24 million high-income
men

Q: How much advertising to buy to minimize cost?
X1 = Number of minutes of commercial bought on comedy shows

X2 = Number of minutes of commercial bought on football games
X4, X, are integers = Linear Integer Programming (LIP) problem



[x,fval,exitflag,output,lambda]=linprog(f,A,b)

@ Graphical Solution
MATLAB uses Ax<h !l

min t = 50X1 +100X2 [x,fval,exitflag,output]=intlinprog(f,
st. 77X + 2X,>28|| intcon,A,b)
You can also use solver in Excel
2%, +12x, > 24

= Relax integrality constraints = x; >0, x; >0=LP

X2 A
14
X, + 2%, =28 . .
12 + // Optimal Integer solutions:
X1= 6, X =1=f=$400K
8 - ¢ LP solution i = 4’ H7 = 2 = f = $4OOK
A |nteger solutions
LP Solution:
4 - X1 = 3.6, x2=1.4 = f=$320K
o —
2 N Y 2x,+12x, =24 Note: Relaxed LP solution is a lower
N o bound on the optimal LIP solution
I <Z | —J >
4 T8 12 X,
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@ Can LP problem have multiple solutions?

1. An LP can have multiple solutions
= Automobile manufacturing process that makes cars and trucks
= Must go through paint and body shops

Paint shop capacity

o 40 trucks per day (or)
o 60 cars per day
Body shop capacity
o 50 trucks per day (or)
o 50 cars per day
Profits
o $300/truck
o $200/car

Variables:

o X, = # of trucks produced/day
o X, = # of cars produced/day
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@ Is LP problem always feasible? No!!!

= Problem:
ob max f =3x, + 2x,

st X
40 ' 60

X, X

+-2<1

50 50
X =0,%x,>0

= Multiple solutions:

f=120;
X, =40,x,=0
X; =30, X, =15

X, = 20, X, = 30, etc.

2. An LP may be infeasible

max f =3x, +2x,
s.t. 3x, +2X, <120 | (paint shop)
(body shop)
(# of trucks)

X + X, <50
X > 30
X, > 20 (# of cars)
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+-2<1

(body shop)

(paint shop) max f =3x, + 2X,
= s.t. 3x, +2X, <120 | (paint shop)
X, + X, <50 ) (bodyshop)
3
H

[
»

20 \;\Ltho\wso 60 Xy
N NN # of trucks
7 7
% 2%

Note: at x,= 30 and x,= 20, 3 x, +2 X, =130
= paint shop can’t handle it

= Feasible space is empty



@ Is the optimal solution always finite? No!!!

3. An LP can have an unbounded solution
%, 4

max f =2x, —X, KtX=6 M 0
st.x, —x,<1 |

2%, +X, 26

X, >0

X, =20

» Thus, an LP can have:
o A unique solution
o Multiple solutions (but with the same function value)

o Infeasible solution space

. It will be nice if the algorithm
o Unbounded solutions = . 'g
detects these conditions

f — oo for max or

f — —oo for min
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@ Historical Perspective Revisited

* One of the most celebrated problems since 1951

» Major breakthroughs
» Dantzig: Simplex method (1947-1949)
= Khachian: Ellipsoid method (1979)

o Polynomial complexity of LP, but not competitive with the Simplex
method = not practical

= Karmarker: Projective interior point algorithm (1984)

o Polynomial complexity of LP and a competitive algorithm (especially
for large problems)

e LP Problem definition
= Given
o Anm x nmatrix A, m<norA€R™ m<n
assume rank(A) = m
o A column vector b with m components: b € R™
o A row vector ¢! with n components: ¢c € R"
= m < n = Ax = b has infinitely many solutions = b=, a;x;
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@ What is Linear Programming (LP)

= Recall
r n—r
R(A) N(A)
R(AT) N(AT)
r m-—r

r = m= N(AT) = ¢(origin)
Consider x, € R(AT) 3 Ax, =b = A(x, + X,,) = b where
X, € N (A) = (x, : Ax, = 0)
We impose two restrictions on x:
o Want nonnegative solutions of Ax = b= x; >0 (or) x >0

X3 Ax=b & x>0 are said to be feasible

o Among all those feasible x’s, want x*3 cTX = C1X1+CaXo+...+CpXpis a
minimum
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@ Any LP problem can be converted to SLP

= This leads to the so-called “standard form of LP”
min c¢'x convex programming problem. If a

(SLP): s.t. Ax = b r bounded solution exists, then x*is
0 unique = a single minimum.
= Claim: Any LP problem can be converted into standard form

» Inequality constraints

a) a'x<b;= [a 1][ =0

xn+1] D55 Xy =
X.+; ~ slack variable

In general, Ax<b = Ax +y = b=>A I[y] b, x,y>0

Increase number of variables by m and A, is an m x (n+m) matrix
b) a'x=Dbj= ;"X —X.q = by X1, =0
X.+; ~ surplus variable

In general, Ax>b =[4 [y] b,y>0

c) di<xj= define x;=x; —dj, ;>0
d) di>x; = define x; = di — x;, X; >0
UCONN



@ Converting to standard LP

e) din<Xj<dip=0<x; —di1 <diz —di1
Define X; = x; — diz
& X; +Yi =di2 —dj1; slacky; >0
f) by <a'™x<b, = use a slack and a surplus
T
QiT X—Yu= bli Y.,y =0
a; X+Vi, =b,
9) la'x|<b=-b<a'x<b
= QiTx —VYi1 = _bi
QiTX +VYi2 = bi
= ¥ is a free variable
o Define x; = x; — &;, with x;, X; =0
= Maximization: change c'x to —cx
= L,-minimization: min };**,|x;| s.t. Ax<b
= AX+y=b
Write x; = X; — &;
= min Y}, (X + %) s.t. [A -A ]

Optimal solution of this problem solves
=b: the original problem. Also,
if x; > 0, x; = 0and vice versa.

< Ix x|
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@ L, - curve fitting

1. L, - curve fitting

= Recall that given a set of scalars (b,, b,, . . ., b,), the estimate
that minimizes ),;",|x — b;| is the median and that this
estimate is insensitive to outliers in the data {b;}.

= In vector case, want
X > min Z‘g? >_<—bi‘ = min|Ax-b],
x A= X
= |, - curve fitting = an LP
o Write X; = 52:; - fi,i=1,2,..,n; |§iTX—bi|:Ui+Vi
o Then, the LP problem is:

rxnulo 2 (Ui +v;)=mine’ (u+v)

X,u,v
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@ L. - curve fitting

2. L_ - curve fitting
= Want x such that

min max

X 1<i<m

al >_<—bi‘ = min||Ax—b||_

= |- curve fitting = an LP

O Let maX]_SigmlgiTx_bil: w

o Then, the problem is equivalent to:
min w = Since the number of constraints is
N large (= 2m) and the number of
variables (= n) is small, typically the
dual problem with (n + 1) constraints
sit. { A QMZ} z{ : } and 2m variables is solved instead!!

)

st.—w<a x—b <w,fori=12,...,m
= minw

“A e ,
- = Dual is an LP

= We will discuss duality in Lecture 4
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@ L, - curve fitting in filter design

» Linear-phase Finite Impulse Response (FIR) filters
o Impulse response coefficients:{h,:n=012,.,N}=>H(z)=> hz"
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o Linear phase = h, = hy_, symmetric

o Frequency response (0<w<7/T); T= sampling interval

. N .
H (Z) |z:ej‘“T =H (erT) _ Z hne—anT _

n=0

N/2-1

n=0
_iNoT N/2-1
e 2 |hy,+ Z 2h, cos[(N/2—-n)wT] |; N even;Type | filter
n=0

real

linear phase term n=0

_NeT | (N-y)/2 _ _ _
e 2 [ > 2h, cos[(N /2n)a)T]], N odd; Type Il filter
purelylinear, linear in{h, },real

(N=1)/2

|H(E'") = hy,+ D 2h,cos[(N/2—n)wT]| for Type 1 or| > 2h cos[(N/2—-n)wT]]| for Type Il

hn)
T Type 1: N=8

LY purelylinear, linear in{h,}, real

Type 2: N=7

.

h|n|

L1111

0 45l7

Oo—2

"

Center of
symmetry

S PR
nl 34ll?

™

Center of
symmetry



@ L_ - Type I FIR filter design problem

= [._- FIR filter design
Define x =[X, X, ....X,, ;M =N /2
Xo =hy,, =hyi X, =2h,_, =2h,,.;n=12,..,M

o = M -
H (e )=e M > x cosnaT =e " x(w)

Desired response : d (@) and weighted error e(w) = f (o)[X(®) —d(w)]
f (w) strictly positive weighting function of @
Problem: min max | e(w) | Minimize weighted Chebyshev error

X o<w<Z
=

M
= min & st.—5< f(@)[Yx,cosnaT —d(@)] <5 Voelo, %] and
X n=0
Discretize frequenecy :{ow, :1<k <L}.Let f = f(w,)and d, =d(w,)

mlnést —o<f (Zx cosnm, T —d,)<6Vk=12,.,L

n=0
= min o
X,0
o _ 71 o
s.t —f—ggkg—dk f— vk =12,..,L;a, =[Lcosa,.....cCOSN®,....c0SM @,
k k



@ Matrix Formulation of FIR design problem

= Matrix Formulation

HHS

= min o
X,0

af

A

[Diag(f,)
A [Diag(f)]™

« Easy to include arbitrary linear
constraints — including time
domain constraints

d } « Sparse FIR coefficients

—d

= Design a 30™ order low-pass FIR filter
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-50
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0

0.3

0.2

< 041

step response
(=]
(4]

Specs:

| l 1.T =1
1 for w €[0,0.267]
t J L M 2.d(w) =
0 for w €[0.347, 7]

1 for o €[0,0.267]

10 20 30
i 3. f(w) =40 for w<[0.267,0.34r]
2for we[0.34r, 7]
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Diet Problem

3.Diet problem
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A budget conscious Irish consumer wants to buy, at minimum cost, the

following three basic foods: poultry, leafy spinach, and potatoes

He wants

o 65 gms of protein
o 90 gms of carbohydrate
o 200 mgms of calcium

o 10 mgms of iron

poultry | spinach | potatoes
cost/100 gms 40 15 10
protein gms 2 3 2
carbohydrate gms 0] 3 18
calcium mgms 8 83 7
iron mgms 1.4 2 0.6
vitamins (1U) 80 7300 0]

o 5000 international units (IU) of vitamin A

X1 ~amount of poultry (gms)
X, ~amount of spinach (gms)

X3 ~amount of potatoes (gms)




@ LP formulation of Diet Problem
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Optimal solutions:
X, = 0; X, = 20.626; x5 = 1:5625, and f = 325 (solver)
X, = 0; X, = 0.7047; X, = 31.443, and f = 325 (MATLAB)
Show via solver in Excel or MATLAB
More general diet problem can be formulated
in a similar way
Have n different food items
¢; = cost of food item |

min 40x, +15x, +10x,
S.t. 2X, +3X, +2X%; 265
3X, +18x%, > 90
8x, +83x, + 7X; = 200
1.4x, +2x, +0.6x, 210
80x, +7300x, > 5000
X, X5, X3 20

x; = units of food item j (in grams) included in our diet

Have m nutritional requirements

b. = minimum daily requirement of it" nutrient
a;; = amount of nutrient i provided by a unit of food item |

The problem is an LP
min ijlcjxj min ¢' x
sty agx 2b;i=12,..,m = st Ax>b
x20

szo;jzl,z ..... n

[x,fval,exitflag,output,lambda]
=linprog(f,A,b)
MATLAB uses Ax<b




@ Portfolio optimization problem

* 4. Portfolio Optimization
= J investment options (Stocks, T-bills, Corporate Bonds, S&P, Gold,..)
= Have historical data on returns

° I (t) = Return on investment j in time period t,t =1,2,..,T

J
e X; = Fraction of portfolio to be invested in j;ij =1x;20,j=12,..,J

j=1
Portfolio's historical returns with this alloction in time period t :

J
rt)= > xrt)
=1
Portfolio's average return over t=1,2,..,T

ENOEES HRIIC

tljl

Portfolio's risk (some measure of variability around mean)

q = risk(x)= Z|r(t)—r|— Z{Zx,r,(t)——zzx,rj(s)}

=1 j=1

——ZI{ZX[r(t)——Zr(S)}I— ZI{ZJ:X,[r(t)—rJ]}

=1 j=1

where rj = ?er (t) which is precomputable
t=1

UCONN



@ L -version of Markowitz problem

- Maximize average return subject to a constraint on risk

 Problem

T J

I\4I>a0xr_i22x (1)

t=1 j=1

_%g{i;xj[r

J

2.%

e LP formulatlon

J

M% r _—ZZerJ (t)

t=1 j=1
J _
st —yts[ZxJ[rJ(t)—r,-]
j=1
1 T
?zyt

X; =

IA

U

—n
Il &
N
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(t) - r,]} | < u; 1 = risk aversion parameter

}Syt;t—l,Z,..,T

R[sk

NASDAQ EAFE
Composite %
S&P Wilshire
Long 500, . 2000
Bond:
Corp.
Bonds

T-Bills

P ) EAFE: Europe, Australia, far East

L.’i;’ 1.13 ‘_,AN
1+ Reward

From Vanderbei




@ Optimal Control
5. Optimal L, and L_ control

= Consider a linear time-invariant discrete-time system

Xk+1 = AXk + buy, ux ~ scalar for simplicity, k=0, 1, ...

Xk = Akxo + YK Aklpy,
= Define terminal error: e, = X4 =Xy = Xq —ANx, =Y Vot AN-Hpy,
= Given X,, Xyand given the fact that u is constrained by

Urin < U, < Un.,, We can formulate various versions of LP

) minY ey = (% - A"x) (Z A, j
i=1
_ Zi”l‘ci +d/ ;\,gi ~ N vector components

—(AV"p) =d,

= 1-norm of error

mlnz ‘c +d! z‘ z=[uu,---uy,] | o Convert to standard form via:

—u. =c: +d.T <j<
stu.1<z<u_1 Vi— U =¢i+d'z,1<i<n

max =

optimal solution:

min " (v +u)] v = d; z+c ifd z+¢ >0
AR P 0 otherwise o Can also include constraints
St uminlgzgumaxl . g

ol —(QiTZ+Ci) IfQiTz+Ci<0 on state variables

oo e 0 otherwise
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@ Properties of optimal control

- - T
b) min max,.;, ey ‘ =minmax,,_, |C; +d, ;‘ = co-norm of error
. T
define v=max,_ |C, +d; ;‘
minv
st.u,l<z<u_.l1

= Proof of equivalence for (a)
o Suppose V', u;", and z" are optimal solutions
o V;" & u;" cannot simultaneously be non-zero
o If they are, define ¥;=v;," — u;” and #i;= 0 = feasible
But, cost ¥; + 1i; <Vv;"+ u;" ....a contradiction
= only either of the two is nonzero
= Proof of equivalence for (b)

o Letz",v" be optimal for the revised problem, but z" is not optimal for the
original problem

o Suppose Z is the optimal solution of the original problem
o Define v =max |c; + d;" Z | = feasible for the revised problem = v <v;”
= contradiction

UCONN



@ Transportation or Hitchcock Problem

m sources of a commodity or product and n destinations
Commodity amount to be shipped from source i =a; 1 <i<m
Commodity amount to be received at destination (sink, terminal
node) j=b;; 1<j<n

Shipping cost from source i to destination j per unit commodity

= ¢;; dollars/unit

Problem: How much commodity should be shipped from source i
to destination j to minimize transportation cost

- m n
min Zi:l j:lcij X

s.t, " x =a:Vi=12,..m
j=1 i i

Z.m X; =b;; Vi=12,...,n

=17
also: D7 8= b,

Conservation constraint

I =m

m sources (or) n terminals, sinks,
supply nodes destination nodes

= Directed network or graph, mn variables and (m+n) constraints
= Note: arcs emanate from sources and terminate on sinks

= BIPARTITE GRAPHS = special LP problem = a;=bij=1
= Assignment problem or weighted bipartite matching problem
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@ Shortest Path Problem

= (For conceptual reasons only, but solved differently)

= S, U, V, t are computers, edge lengths are costs of sending a message
between them

= Q: what is the cheapest way to send a message from s to t
» Shortest paths -u—-v—-ot=x,=x,=x,=1
= Shortest path length=2+1+3=6

» Intuitively, x,, = X, = 0 (i.e., no messages are sent from s to v and
from u to t)

= Let x,, be the fraction of messages sent from s to v. Similarly, for
arcs (s, u), (u, v), (u, t), and (v, t)
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@ Shortest Path Problem

= Problem formulation

M 2Xg, +4Xg, + Xy, + 5%y +3X, = Add all constraints

= Xq, T X, = 1 which it must be!!
= only 3 independent constraints

X, + X, — X = 0(message not lost at v) (although 4 nodes)
X, + X, =1(message received at t)

St X X Xy X Xyt 20
X, — X,y — X, =0 (message not lost at u)

= In matrix notation

X, | = nnodes = n — 1 independent
10-1-107x,| [0 equations
Ax=/0 11 0 -1[x,|=|0]|=b = Similar to Kirchoff’s laws
000 1 1]x,/| |1 = Ais called the incidence matrix
X min e'x
T st. Ax=b

= Note: b is a special vector s.t. Ax = b, x>0. A 1S a unimod}llar
matrix and so are all invertible submatrices A of A = det A=1 or —1.

= Inverses will have integer elements = Solutions are integers if b
1s integer.
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@ Standard Linear Program
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= Let us return to the solution of SLP
= min c'xs.t. AX=Db, x>0
A 1s an m x n matrix of rank m

= Example

min X, + X,
S.t.x +2x,=4

A

3 4 Feasible set

2 /
AN
N
AN
N
AN \\
AN
N

N

1 2 3 4

= First contact of x;, + X, =aoccursata=2,x, =0, x, =2
= optimal solution: x, =2,x, =0

» In general, the optimal solution x” is such that (n —m) of its
components are zero. If we knew which of the n — m components
are zero, we can immediately compute the optimal solution (i.e.,
the remaining m nonzero components) from Ax = b. Since we don’t
know the zeros a priori, the chief task of every algorithm is to

discover where they belong.

= Need to look at only extreme points of the feasible set.



@ 2-Phase Simplex Algorithm

« How does Simplex algorithm work?

= Phase 1: Find a vector x that has (» — m) zero components, with
Ax = b and x > 0. This is a feasible x, not necessarily optimal

= Phase 2: Allow one of the zero components to become positive
and force one of the positive components to become zero

o Q: How to pick “entering” and “leaving” variables
o A: Costc™x | and Ax = b, x> 0 must be satisfied
» Inequality constraints:

o X, : invest in stock 10 by
o X, : invest in real estate 0 1ix<|b,

= can also look at it as a 5 dimensional problem with slacks
Assume b; > b; and b; > b,

min —4x, —2X, = In n dimensions

s.t. Ax<b o &'x =Db; define hyperplanes

=X =b; X, =h,—b, o @;'x <b; define half spaces
x> max. profit: 2b, +2h, o X>0 positive cone
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@ Infeasibility

= Feasible set is a convex polytope. If bounded, a convex
polyhedron. Need to consider only extreme points of this set.
= Some other nuances
o An LP may not have a solution

o e.g., min X, + X,
st.x+x,=-4 |  =Feasible set is empty = inconsistent constraints
X, X, 20

v
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@ Unboundedness

= An LP may have an unbounded solution

o €.g., min —(x +X,)
S.t.x, —2Xx, >4
= 0pt. X;,X, = (0,)

= So, an algorithm must decide
o Whether there exists an optimal solution
o Ifit does, find the corner where optimum occurs

A
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@ Basic Feasible Solution (BFS)

= Assume rank(A) = m, then we can partition A=[B N], where B has m
linearly independent columns

= Assume first m columns for convenience

Xg

[B N] =b, x; €eR™; x, €R"™"

o
_ﬂ
o
I
vs]
+
=z
[><
=
Il
l=p
o
I
vs]

Il
l=p
I
=z
[><

=z

= Since rank(B) = m = B! exists
= xg= Bb — BINXx,
o Xg = vector of basic variables
o Xy = vector of non-basic variables
= Basic solution: set non-basics to their lower bound (i.e., xy = 0)
= Xg= Bb; B is called the basis matrix
= Basic feasible solution (bfs): x;> 0 = x is feasible
X=[Xg=0xy=0]"
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@ Fundamental Theorem of LP

e Theorem

a) Existence of a feasible x = existence of x;> 0, a basic feasible
solution

b) Existence of a optimal x” = existence of x;" >0, an optimal basic
feasible solution

= Proof of a:
o Feasiblex= Y a;x; = b

o Suppose X4, X, ..., Xp=> 0 and the rest are zero
|YY 10 A2 p

p
= Z@ixi =b
i=1
o Case 1: linearly independent (a,, a,,...,ay) = p<m

Ifp=m, X, = Xg, where x; = Bb

If p<m, can find (m — p) dependent vectors
Setx,=0,i=p+1,...,m

= Xg 1s (degenerate) basic feasible
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@ Feasible = Basic Feasible Solution (BFS)

o Case 2: (a,, a,, . . ., &) are linearly dependent
= Can find y,, V,, ..., Yp, such that

igiyi =0
=)

Assume, without loss of generality, at least one y; > 0
p
Zﬁi (% —¢y;)=bVe
i=1

Assume ¢ > 0 without loss of generality
Note that as ¢ 1:
Xp— ey 11fy; <0
We have
X; ify, =0
X —ey; LIfy; >0
Set ¢ = min {xi/y; :y; > 0}
% For this ¢, we have an x with (p — 1) positive values

% The equation for ¢ is simply that for the simplex step

% Continue this process until all vectors are independent, then case 1
applies
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@ Optimal Solution = Optimal BFS
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= Proof of b:

o Case 1: linearly independent (a;, a,, ..., 8p) = p<m
If p=m, x,=Xg", where x;"=B~'b
If p<m, can find (m — p) dependent vectors
Setx,=0,1=p+1,...,m
= Xg 15 (degenerate) optimal basic feasible
o Case 2: (a;, a,, . . ., &) are linearly dependent
= Can find y,, V,, ..., Yp, such that

i@i y, =0
=

Assume, without loss of generality, at least one y; >0
p
Zéi (Xu* _gyi): b,Ve
i=1

Assume ¢ > 0 without loss of generality

Note that as ¢ 1:
X; — &y; T ify; < 0 = feasibility is maintained
We have x; if y; = 0 = feasibility is maintained



@ Finite search space of LP

X; — ¢&y; | ify; > 0 = feasibility for some ¢
Set ¢ = min {x/y; : y; > 0}
% For this ¢, we have an x” with (p — 1) positive values
% But, what is the cost at (x" — &y)?
% The cost is cT(x" — gy)
% Since x” is optimal, ¢y = 0. Otherwise, we can find a small ¢ such that
ci(X™ —ey) <c'x
% A solution with (p — 1) positive values is also optimal!
% Continue this process until all vectors are independent, then case 1
applies
= What this theorem says is that we need to find (n — m) zero
variables among n nonnegative variables

o))

=LP is a finite search problem (fortunately, we never have to solve it
that way!)
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@ Two views of convex polyhedron

» Basic feasible solutions of LP = extreme (corner) points of
a convex polytope

 Recall from lecture 1:
= Ax = b is the intersection of m hyperplanes in R™
= x>0 = convex cone in R"

= Feasible set is a convex polytope; if bounded, it is called a convex
polyhedron

Intersection of a finite number of half spaces

Convex
polyhedron

Convex hull of a finite number of extreme points

= Any point X = Z.o:X;; o = 1; ;> 0
{x;} are extreme (corner) points of the feasible set
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@ BFS = corner points of convex polyhedron

» Theorem: extreme points of convex polytope (polyhedron)
K={x:Ax=Db, x>0} © basic feasible solutions of LP
o Proof of & part:
% Suppose we have abfs x=[x3 0]"= Ax=Db
% Suppose X is not an extreme point = x = ay+(1 — a)z,
O<a<l =>Ax=b
Az =bandy, z are bfs
* Supposey,z>0,and xy=0=>yy=zy=0,Ay=Az=b
% Since m columns of A are independent = x=y =12
= a contradiction = X is an extreme point of K
o Proof of = part:

% Suppose we have an extreme point of x of K with components:

X1, Xoy o« o, Xp>0
% To show that x is a bfs, we must show that a,, a,, . . ., ayare linearly
independent
Suppose a,, a,, . . ., & are linearly dependent
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@ Development of Simplex Algorithm

% Since x > 0, we can pick ¢ such that
(x+ey)=0and (x —ey) =20
then x = %4(x + ¢gy) + %(X — ¢Y) ... contradiction
= X is a bfs (degenerate if p <m)
= Simplex: partition c¢ as follows

C:FB} . f=c'X=CpXgs+Cy Xy; Xz =Bb—BNX,
~ Loy f =cg (B b—B'Nx, )+cyxy =CcgBb+(cy —csB™N)x,
original transformed problem
min f =¢' N C lb+( —c,B" N)
st. Ax=Db = Xg =Bb—-B*Nx,
x=0 x>0

o Letf=Bb;AT=c;"B?
o BB =0; BT/_1:Q|3
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@ Basic and non-basic aspects of simplex

o Transformed problem is:
min f =cg B+(cy —2"N)x,

St.Xg=/0- B_lN)_(N

=>f= QBTQ P Xy, T oos T PromXN,

where p; = Cn; ATa;; 8;= column j of N p; = reduced cost of |

= aISO XB - ﬁ - ngNl - QZXNZ ~ oo Qn_m XNn-m
where a; = B‘lgj; ;= column j of N

Note: when xy=0, xg =g and f=¢c;'g =1,
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@ Optimality Conditions

= p" =c," — AN is called the vector of reduced costs
» This vector indicates how f changes as ¢, changes
= What is p;, the j"" component of the p vector?

p; =¢, —(/ITN)J_ =c,-4'a,

o Note: need only column g, to compute p;
= If X3 = £ >0 and x\ = 0, we need p; > 0 for optimality V j = it
doesn’t pay to increase X,
= So,
o Feasibility: 5;>0,i=1,2,..., m
o Optimality: p;>0,j=1,2,...,n—m
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@ Illustration of Optimality Conditions

= Example:

min f =30+4Xx, + 5%, +3X, +4X,
St. X, =5+3X, —3X; + Xs — X,
X, =6—7X, +2X; —2X, —2X,
Xy = =X, —3X; +3X; +3X,

_ X _
5 * X,
X5
é: QTBé:?’O XN = X Xg = %X,
6 X3
| /] x| REW
[ 3 -1 1 -1]
-B*N=|-7 2 -2 -2|;
|1 -3 3 -3

p =cy-A'N=cy-¢c;B'N=[4 5 3 4]>0
=[5 6 7 0 0 0 OJisoptimal
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@ Proof of Optimality Conditions

= Proof of sufficiency:

o Since p; > 0, an increase in X,; results in an increase in cost. Thus, if

we have a basic feasible solution such that p; > 0, then it is optimal
= Proof of necessity:
o Suppose p; <0, forsomej=1,2,...,n —m
o Two cases can occur

1. ¢=B'3<0= X, = 0 can be increased to any positive value and xg
remains feasible

= set of solutions to Ax = b, x>0 is unbounded and f can be
made an arbitrarily large negative number (—x)

= This is the way to detect unboundedness

= in practice, what it means is that some constraints were over-looked!!
2. pj<0andq;>0foratleastonek=1,2,...,n—m

= Xy, can increase from zero to reduce cost

= Xg 1s not optimal... contradiction

— This is the way to go from corner to another corner
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@ Picking the Entering Variable and Step Size

When p; < 0, we can increase Xy from zero to reduce cost
Two questions:
o If several p; < 0, which one should we pick to enter the basis?
o How far to go? = Which one should leave the basis?
Which one to pick?
o Most widely used: pick k = arg min p,
= “steepest coordinate descent” or “nonbasic gradient method”
o All variable gradient method

. P;
k =arg min —————
J V1+Zr1aﬂ?

o k=min {j: p; <0 } (i.e., choose the lowest numbered column that gives
p;< 0= 1st j with negatlve p;) ... Bland’s method avoids cycling

How far to go?
o Suppose k is the entering variable
o Recall xg :.,Q — oyXy,
< As X, increases, Xg changes
 If a; > 0, then x decreases and goes through zero
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@ Updating the Basis

= Must not go below zero, since this would ruin feasibility

o So, increase Xy, from zero until one of the basic variables goes to zero
: 6= mln {,B/alk . ik > O}

= 1f | = | is the minimizing index, then Xy = f/a; and Xg = 0 = the basic
variable | will leave the basis

o If more than one hits zero at the same time, pick one
arbitrarily = degenerate basic feasible solution

= What happens to B?

o Xy, goes from zero to f//a; and Xz goes from f, to zero
= replace I column of original B with k" column of N

B=B-Bee +a.e =B(I-ee +Brae)

= [Ql QZ §|_1 gk §I+l Qm]

o We will have more to say about this in lecture 3
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@One Iteration of Revised Simplex Algorithm

 Step 1: Given the basis B such that x;, =B b >0
 Step 2: Solve B = ¢, for the vector of simplex multipliers 4
* Step 3: Select a column g, of N such that p, = ¢y —4'a, <0

Note: we may select the a, which gives the largest
negative value of p, or the first k with negative p,

if pT = ¢y, — A'N >0, stop = current solution is optimal
* Step 4: Solve a : Ba = 3,

* Step 5: Find 0 = xg /oy = min xg /o;, 1 <i<m, a; > 0
» If none of the {a} is positive, then the set of solutions to Ax = b, x

> 0 is unbounded and the cost f can be made an arbitrarily large
negative number

= Terminate computation, since an unbounded solution
» Step 6: Update the basic solution, x; = x; — 0a;,i # k; X, = 6
 Step 7: Update the basis and return to Step 1
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@ Remarks

= Typically, the # of simplex iterations, k € {2m, 4m}
» Computation time is o Kk
= Round-off errors

o Inability to store numbers and perform computations exactly gives
rise to round-off errors

o Rounding error accumulates with floating point operations (flops)
o To reduce round-off errors:
< Balance matrix A = try to make ||A||; = ||All.,
% Monitor residuals: ||Ax — b||,, and ||cg — BTA||.,
¢ Use error tolerances,
> p;>—107 = optimal
> 8;<1010=a;=0
> If xy, > 107® = reinvert basis

> If |Ax — b, or ||lcg — B"A||,, > 107¢ = reinvert basis
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How to get initial feasible solution —
¥4 Phaselof LP

= Method 1

o An initial basic feasible solution can be obtained by solving the
following LP problem
minY." ¥,
st. Ax+1y=b, ¥ ~artificial variable
X,y20
o If we can find an optimal solution 3}, ¥; = 0, then we have xg

o If )7, ¥; > 0, then there is no feasible solution to Ax=b, x>0
= an infeasible problem

o Solve via the revised simplex starting withx =0, y,;=band B =1
o Note: we have assumed b >0 . Is it OK? Yes!!
% If b; <0, scale the corresponding equation by —1
= Method 2
o Another approach is to combine both phases I and II by solving:

min,, ¢’ x+Me'y;| M is a large number > 100 ||c||..
st. Ax+y=Db

,y=20

I><I

o This is called the “big-M” method
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Example: Detecting unboundedness (Phase II)

A £

» Consider Phase | :miny, +y, =[¢, gzlm;d =[000];c; =[11]
_{2—2 110}
max X, +4X, + X, [10-101
St.2Xx —2X, +X;=4 lteration1:B=1=B™;x, {;’jzm;f =[L1]B™ =[11];cost =5
X=X = 1 Reduced costs: p,=0-A"'a, =-3;p,=0-4"'a, =2;
X, >0;%,>0 p,=0-2"a,=0;p,=1-2"a,=0;p;=1-4"a, =0

2
X, comes into basis = a = Ba, = [J =0=min{4/21/1}=1=y, should go out

¥

Iteration 2:
max 4x, +2X; F 2} } F —2} e H H

= =B"= =4 =[10]B" =[1-2];x; = =| _ |;cost=2
St.—2X, +3X, =2 01 0 1 x| [1

) Reduced costs: p,=0-1"a,=0;p,=0-1"a, =2;
X, >20;%, 20 . ' L 2
pszo_/_1 §-3:_3’ p4:1_4 §4:O! p5=1—/_1 Q-5=3

¥

16 : : .. [3 B
max 8X3 or max — X2 X, comes into basis => o =B a, = B = 0 =2/3=y, should go out

0 0 Iteration 3:

St.x, 2> s.t. X, > B

U b3 ded 2 B{ll ﬂjBl:Eg 12//33}352[00]812[00];>_<B{)ﬂ:[:ﬂ;costzo
noounde -

Reduced costs: p, =0—4'a, =0;p,=0-1"a, =0;
P, =0-1"a,=0;p,=1-4'a, =L p,=1-1'a, =1

X 2/3
= optimal and cost =0= x; = Lj = [5/3} is feasible; You can get this by setting x, = 0.
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Y:2 Example:o vector has all negative (non-positive) elements

= Consider

max X, +4X, + X,
St.2Xx —2X, +X;=4
X, —X; =1
X, 20;%,20

¥

max 4x, +2X,
St.—2X, +3X, =2
X, >20;%, 20

¥

1
max 8x,  or max ?XZ

st.x; =20 st x, 20
Unbounded

Let us continue with Phase Il
min —x, —4x, — X,

{Xﬂ {2/3}
Xg = =
X, 5/3

1 2| _, |1/3 -2/3
B= BT =

-1 1 1/3 1/3
1/3 -2/3

AT =c Bt=[-1-1
- [ ]{1/3 1/3

}: [-2/31/3]
Reduced costs:

2
p=C—-A'a :—1—[—2/31/3]{1} =0

-2
P, =C,—4 &, =—4—[—2/31/3]{ ; }:_8/3

1
p3203—4T6_13=—1—[—2/31/3]{ J:o
Bring a, into the basis

4 1/3 -2/3| -2 -2/3 0
Q:B §2= = <
1/3 1/3 || 0 -2/3 0

= unbounded because x, and x, can be increased to co.

All you need to do, for example, is to put an upper bound on x,
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@ Example: Regular termination

min —60x, —30x, —20Xx,
SL.8X + 6X,+ X, +S; =48
4% + 2%, +15%,+ s, =20
2%, +1.5x, +0.5%; + S, =8
= Jteration 1

o Initially B =1,

6
p,=c,—A'a,=-30-AT| 2 |=-30
15

1
15|=-20
0.5

Ps :Cs_/_f@s =-20-4"

o p, is the most negative. Bring X, into the basis
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@ Example: Iteration 2

o Solve for a = a =B a,

6 =min 48 20 8 =min{6 5 4}=4
8 4 2
= s, goes out of the basis

New basic solution:

S, 48-32=16 16

X 4 4
= Jteration 2
1 0 8
NewB=|0 1 4
0 0 2
1 0 4
B'=|0 1 -2
0 0 05
1 0 4
f:C;B’l:(O 0 —60)0 1 -2 :(O 0 —30)
0 0 05

UCONN

min —60x, —30x, —20Xx,

St.8x, + 6X,+ X;+S
4% + 2X,+1.5x, +
2%, +1.5x, +0.5x, +

S,



min—60x, —30x, —20x,

@ Example: Iteration 2 (cont’d) =& % x= =%

4% + 2%, +1.5%,+ s, =20
2%, +1.5x, +0.5x, + s, =8
8
p=—(0 0 -30)/4|+-60=0
2
p,=-30—(0 0 -30)| 2 |=15
1.5
1
p,=—20—(0 0 -30)|15|=-5
05|
0
p, =0-(0 0 -30)|0(=30
1
o = bring X; into the basis
1 0 41 -1 New basic solution:
a=B'a,=|0 1 -2|15|= % = S, goes out S, 16-8(-1) ) (24
0o o 1|°) |1]] and X, comesin 6= 8 =8
L 2 | 2 X, 4-8(0.25) 2
=@=min(* 8 161)
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min —60x, —30x, —20Xx,

@ Example: Iteration 3 SL8X + 6X, + X+, =48

4% + 2%, +1.5%,+ s, =20
. 2%, +1.5x, +0.5x, + s, =8
= Jteration 3 L 2 g § g
- - B'=[0 2 -4
1 1 8 , 1 3
3 S 2 2.
NewB=|0 = 4 T ot
2 A =cgB
o Lo 1 2 -8
-2 —(0 —20 —60)[0 2 —4(=(0 -10 -10)
0 -05 15
o Reduced costs for non-basic variables
0 0] ,
p, =0-4"|1|=0-(0 -10 -10)[1|=10 = all p;> 0 = optimal
0 0 * : :
; T S| (24 Optimal solution:
p, =-30-2T| 2 |[=-30-(0 -10 -10)[ 2 |=5 X |= 8 X\ =2,% =0,%x37=8
15 115 X 2 :
0 Optimal cost:
p, =0—(0 -10 10)M=10 (—60)*2 —30*0 — 20*8
1 =—280

For < constraints with non-negative b (as in this problem), feasible solution is easy; set
slacks = b. For b with negative elements, need both a slack and a y to initiate Phase | or
big M method with < constraints. Complementary comments apply to > constraints.
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Illustration of Big M method for > constraints

Crude oil problem:
X, = number of barrels of light crude
X, = number of barrels of heavy crude

Big-M SLP:min 56x, +50x, +10000y, +10000y, +10000vy,
s.t.0.3x, +0.3x, —s, + 'y, =900,000

min 6%, +50x, 0.2x, +0.4 800,000
2%, +0.4x, —s, +y, =800, ;
s.t.0.3x, +0.3x, > 900,000 . 3X1 0 2 =%t 500,000 Lot easier to
3% +0.2X, =S, + VY, = , .
0.2x, +0.4x, > 800,000 1 Y ST Yy =T do this
X 20;X,20;8,20;y,20,1=1,2,3
0.3X1-i-0.2X2 >500,000 problem
% 20% 20 geometrically
. zgg’ggg B=1=B"4"=10°[1 1 1] llustrates the
Xg=| Y2 |= : b=1= A= .
v. | 1500000 b!g M method
0.3 0.3 nicely
p,=C-A'a=56-10'[1 1 1]|0.2|=-7,944;p,=c,-A'a,=50-10*[1 1 1]/ 0.4 |=-8,950
0.3 0.2
P; =G4 _iT a, =10,000; p, =c, _iT a, =10,000; p; =¢; _&T a; =10,000
Ps=P;=Pg = 0
= bring X, into the basis
0.3

a=|04|=60=10°min{9/0.3,8/0.4,5/0.2} = 2.10° = y, should go out
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@ Example: Big M Iterations 2-4

Iteration2:
A 300,000 1 030 1 -3/4 0
Xg=|X, |=| 210° [;B=|0 04 O[;B*=/0 5/2 0 ;/_1T=QEB‘1=[10000 —12375 10000]
Ys 100,000 0 02 1 0 -1/2 1
ET=[—3469 0 10000 -12375 10000 0O 22375 0]
0.75
= bring s, into the basis;  =| -2.5 |= & = min{300,000/0.75,100,000/ 0.5} = 200,000 = y, should go out
0.5
Iteration 3:
A 150,000 1 03 0 1 0 -3/2
Xg =|X, |=| 25.10° |;B=|0 04 -1|;B*={0 O 5 ;/_IT:QTBB‘1:[10000 0 -14750]
S, 200,000 0 02 O 0o -1 2
ET=[1,481 0 10,000 0 -14,750 0O 10,000 24,750]
3/2
= bring s, into the basis; ¢ =| -5 |= 6 =100,000 = y, should go out
-2
Iteration4:
S, 100,000 0 03 O 2/3 0 -1
Xg =| X%, |=| 3.10° [;B=[0 04 -1|;B*=]10/3 0 0 ;4" =c;B*=[500/3 0 0]
S, 400,000 -1 02 O 4/3 -1 0

ET:[G 0 167 0 0 9833 10,000 10000]
optimal = x, =0; x, = 3.10°barrels;cost = $150M
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@ Example: Detecting infeasibility (Phase I)

= Consider

min X, + X,
St.x, +X,=-4
X, 20;%,20

¥

X
_ Phase | :miny=[0 0 1]|x,
min X, + X,

y
S.t.—Xl—X2=4 A:[_l _1 1]

=008 20 lteration1: B =1=B"%;x, =y =4; A =1;cost =1

¥ Reduced costs: p,=0-1.(-1) =1, p,=0-1.(-) =1, p,=1-1.1=0

Optimal = y =1and cost =1>0 = inf easible
For phase I:

min y
St.—x —-X,+y=4
X =20;x,20;y>0
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@ Summary

* LP problem: minc™x s.t. Ax=b, x>0

» At least (n —m) components of x are zero

« Such solutions are called basic feasible solutions (bfs)

» They are also extreme points of K = {x : Ax = b, x > 0}

- An LP may have no solution: detected in Phase 1 of Simplex
* Unbounded solution: g; <0 detected in Phase 2

* Unique solution: p >0 and detected in Phase 2 of Simplex

» Monitor residuals and be aware of finite precision
arithmetic

» Must use factorization schemes for efficiency of updating
the basis matrix... Lecture 3
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