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@ Outline

 Basis update methods

» Product-form of the inverse (PFI)
= Sequential LU update

= Sequential QR update
 LP with upper and lower bound constraints

« Dantzig-Wolfe decomposition . . . a prelude to duality
» LP and Goal Programming

* Summary
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@ Basis update methods

* Product form of the inverse (PFI)
= Recall that replacing column [ by g, in the basis implies
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V2 Product form of the inverse (PFI)

* Remarks:
» E is entirely determined by 5 vector
E7=1+(a-g)e
= Don’t store E. Store only # and its column position I; record only non-zero entries of #
 Since B, = | in phase 1, at k' iteration of simplex
B*=EE,_ -—EFE]I,

= this is called product-form of the inverse (PFI), since B! is expressed as a product of
elementary transformations

« Computation of simplex multipliers is called BTRAN (backward transformations)
/_1T = QgBil = g;EkEkfl'” E.E,

» Consider
T T T T T
CgE, =Cg + (957_7_93§|)§|

= () < Egﬁ

= Only one element changes at each iteration

* so, BTRAN can be summarized as:
Doi=k,k—-1,...,1
(gB)il<— (cg, n(0)), i, = column position at iteration |
end Do
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FTRAN

Computation of ¢; is called FTRAN (forward transformation)

Consider
gj =a; +(7_7 € )alj
q; = a; +aymp;, i =1

a; mawizl
* So, FTRAN can be summarized as:
Doi=1,2,..., k
aj=a; + (@ —ey,) ay;
end Do
« Must recompute from scratch a B! every K steps due to round-off problems and to

reduce page faults

Usually K=m + 50
Also do reinversion whenever the residuals ||Ax — b||, > 1076 or ||cg — B™AJ|, > 107°

Compute residuals in double precision
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@ LU factorization of basis

 Finding LU factorization from scratch (e.g., for
reinversion)

= For simplicity assume that B = first m columns of A

» B = LU = want to determine m? + m entries from m?

entries
= Can fix either L = unit lower A, or U = upper A,

1 O 0 U, Uy, U,
L _ I21 1 O U _ O u22 u23 u2m
_Iml Im2 1_ | O umm_
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‘@ B as sum of outer products of [, and u,

I

B=LU =
1 0 Ollu; Uy U, a, ap A
I21 1 0 : 0 U, Uy Uy, _ S TR =
_Iml Im2 1_ | O umm_ _aml a'm2 amm_
=G -
U T 1 T
:B:Z!kgkv I, = | ;Qk:[o o Uge U oo ukm:l
k=1 K+1,k
_Imk_
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¥s Column k of L and row k of U on pass k

» The decomposition is done in m passes
* On pass k, we get:

Uy
= columnk of L

= rowkofU
« Initially, we start with the first column of B

ay = Uy > Uy =ay/ly=a; =1 =a,/uy

a1 = |y Uy = 1y = ay/uy

Ay = lngUy = Iy = apgfUy
 Also, a;; = uyly; = uy = a

= 1st row of U = 1st row of B
 Finished computing the 15t column of L and 15t row of U
« The sequence of computations is:

= U, — Diag(V); l;— column of L; u] — remaining row of U ;
* Note: a;; and a;; are used once and never again

= can overwrite [; and u! in the 15t column and row of B

- Except for |,;, which we knowis 1 anyway =+ Problem: what if a;; = 0?
l, < a,/a,, i=2,....m

0 1
_ example nonsingular, buta, =0
u; < a;, J=L2,....m — |1 6
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¥ Pivoting Idea

1.  Compute |, ..., |, except for division = I;;u;,

2.  Find the largest |I;;| relative to initial row i norm = # Vi
1%

. ! [;
» Assume that the maximum occurs in row r, = r; = arg max; 5 |’; |
J1%

3. Swaprowsr,and linBand L. Let IP(1) =r,

= What does it mean?
o Multiply B by

0 0 1 0
0 1 .o - 0
P*=|0 0 1 --- 0|PERMUTATION MATRIX
1 0 - .- 0
00 - - 0

On the left
Note: PJ! is symmetric and orthogonal (PJ)' = PJ?

4. Divide throughout by (new) l;; # 0 to get l,,, ..., |,

o1
—U
0 1
5. Up; = l1; (new). In actuality, [;; replace a;,
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@ Formalizing LU decomposition

* So, really have found the 1st LU factor, [;ul of P/:B = B and not B!!
= Can we do it recursively? Is it useful? YES!!

» Consider the situation at column k > 2. Get column k of L and row k of U from
column k and row k of B

k-1
PRz BB =>Lu H.u; + other terms
X i=1

B
1 0 - 0 O0][u, u, U, U, |
, 1 0 01l 0 uy Uk Upp
Iil Ii2 1 0 O ukk ukm
LIS s 1) 0 R 0 Uy,

« Step 1: Fori=k,..., m
K k-1
ay = Zlipupk = LUy =& _Zlipupk
p=1 p=1
_ k-1
Iik = _Zlipupk
p=1
ifk=m, setu__ =1 and DONE. IP(m)=m
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@ LU decomposition procedure

» Step 2: Find relative max; |[;;|, r, = row(r, = k)

- Step 3: Swap row k and row r, in lower right (m — k + 1) subblock of B
and L. Columns |, ..., |, are A, sincer, >k

« Step4: Fori=k+1,...,m
If rkkio’ |~ik:|ik/|:<k

if [, =0, then OKssince I, =0

» Step 5: Set Uy = [y and U = dj — X521 lkpUpjs j = k+1,...,m; ki row of U

« Step 6: Setk =k + 1 and go to step 1

MATLAB command: [L,U,p]= lu(B, vector’)
p is a row vector containing permutation information
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¥ Comments

« Don’t need 3 matrices. All work can be done in place:
I, < a,;i=k+1...,m

u11 ulZ ulm
| u u
when done, | 2 % 2m
_Iml Im2 umm _

and vector IP that summarizes the permutation matrices B,k =1,2,...m

« det(PB) = det(P)det(B). So,
det(B) = (—1)"™* [,
 P/xs are symmetric and orthogonal so:_1
B=PP>...P"LU
« Bl=UIL'Pln- Pl

* Number of operations

3 m3 m3

m m - .
éz(k—l)(m—k+1):;|(m_|): > _ 5 _ ;

Pivoting is essential. Otherwise, the method can be unstable
Accumulate all inner products in DOUBLE PRECISION
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A £

Forward Elimination and Backward
Substitution

* Remaining step: solution of Bx = b

PBx=Pb= Pb=P™P™...

= swap b, <> b, , etc ... can do in place

~

= LUx=»b

* Solve
= Ly= E ; via FORWARD ELIMINATION and
= Ux =y; via BACKWARD SUBSTITUTION

UCONN

= O(m? — m)/2 operations

0
0

Y1
Y2

Y _

.. NUI O

(@)

Y1 = b1

Y, =b, =1,y
k1

Y =b — ijyj



Forward Elimination and Backward
Substitution

A £

* can overwrite on b, with y,

X, = Y

umm
u11 u12 ulm X1 yl X . ym—l o um—1,me

m-1 "~
U.zz U%m X, _ y.2 Ny .uml,ml
0 0 - u X y m
L mm [ " 'm_] L m _|
Ye — Z | X
X — I=m
k
Uy

O(m? + m/2) operations
Total operations: O(m?) = Total = O(m3/3) + O(m?)

But, in revised simplex, we drop a column and add a column at each iteration
*= (Q: can we do it sequentially?

* Q: can we do it faster? yes!!

The sequential algorithm is due to Bartels and Golub, 1969 CACM, vol.12, no.
5, pp. 266-268
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@ Sequential LU Update

U
B = = LB=U
L

= Usually keep track of L' and U
= Recall

B=B+cola, —cola,,B=LU
= B+(§-k _B§|)§|T

o So —
’ L'B=L"B+(L"a,-Ue g

=U(1-gef )+ref,r=L"a,

= Pictorially, r replaces the Ith column of U

\r U, Uy - - Uy

\ U 0 u, - I, - U,

—~|: o ... i ..
: : cee rk s ukm
_O ...... rm umm_

I
-
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@ Key: Need to convert upper Hessenberg to upper triangular

= Permute columns of U so that
o ris the last column = r ~ mth column
o Move other columns up by one place
|+1 —1
m-—-m-—1
o The result is an upper Hessenberg matrix

~

H=U[ee,...6,1€,:8.,,6.6 |=UP

o Don’t physically have to permute, but can keep track of column
positions ... not worth the added complexity of coding

o The result is:

I=s
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@ Elementary Operation Matrix

= Now we want to reduce H to A

upper

» Use Gaussian elimination with pivoting
» Unwanted elements

Upsq 41 10 column |
U; in column j—1
U, in column m—1

= Note that these are original U elements
= Consider column |

UCONN

u

u2,I+1

u

ul+l,|+1

11+1

I,1+1
0

0

And then we
premultiply by

MIHIH:

where m =

—Ul+1,14+1

Urpi+1

u1,I+1

l'12,I+1

uI,I+1

uI+1,I+1

0

0




@ Sequential LU Update

* When the subdiagonal element u;,, ,; > U;),, (the diagonal element
of column | in H), then interchange rows | and | + 1 = interchange

columns of M; and me —

1

l ul,l+1 ul,l+1
u2,|+1 u2,I+1
u u
M|Q|+1 — 1 I, 1+1 |8+1
m uI+1,I+1
1 0 0
1 : :
i 1911 0 | [ 0 |
— ~Ull+1
where m =
Ul+1,1+1

= Note:
1. Must do the same for b vector

2. Must consider effect of multiplying by M, on all r columns I, | +
l,...,m-1

Applylng'\L B=U,whereL =M, ,...M,L"

m_l-o
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¥2 QR Decomposition

QR decomposition methods MATLAB command: [Q,R,p]=
= Householder QR(B,'vector’). p is a row vector

. containing permutation information
= Gram-Schmidt, and

= Givens orthogonalization methods

Key idea of all three methods
* Find an n x n orthogonal matrix Q such that Q"B = R where R is A

upper
= Q=BR
= Do the same thingtob=Q™b = b
= Solve A, System of equations Rx = b

Givens transformations (rotations)

X X X X X X X X X X X X| x x x| X X X]
X X X 0 x X 0 x X 0 x x 0 x x 0 x x
X X X _EEEZ, X X X _EEEZ, 0 x X _§E§Z, 0 0 x _flfg,. 0 0 x _§Efl, 0 0 x _Sifl,
X X X X X X X X X X X X 0 x x 0 0 x
X X X] X X x| X X X X X X] X X X] X X X
X x X]| [x x x| X X X] [x x x|
0 x X 0 x X 0 x x 0 x X
0 0 x _EEEl, 0 0 x _§E§Z, 0 0 x _EEEZ, 0 0 x
0 0O 0 0O 0 0O 0 0O
X X X 10 x X 10 0 x| |10 0 0
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@ Givens Transformations

JasdesdusdeadeadundesdosgderB =R

= Q" =J59 s s dinnd 20

2,5)Y (15)¥ (3.4)% (2,4)Y (1.4)

= Zig-zag pattern of zeroed-out elements

X X X
X X X
v

o
o
X X—>X

= What are these Givens rotations?

0 0

1 0 e e 0] 0 0

0 1 0 - 0lc=cosd : :

) ) ) C s Note: V’111V2 =0
J(i,k,0)=i|0 -~ ¢ s Ofs=sind | where v,=|  |v,=|.| T

k(O s ¢ 0 '

-s c
0 o 1 :

Ik 0 0]

=1 +(vi—e e +(v, —&)e
= J(i,k,0) is a rank two correction to an identity matrix
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@ Givens Transformations

UCONN

= To motivate Givens rotations, consider the two-dimensional case:

¢ s|[x | [ox+sx,
—s c||x,| |—sx+0cx,

-]

X, 1 P(X1,X,) X, = COS¢, X, =rsing
" P(y1.Y>) ¢ y, =rcos(¢—0)=rcosgcosd+rsingsing
2 . y, =rsin(¢—0)=rsingsind—rcosgcosd
Y2 Y1
’ Y, cosd sind || X rotation of x, — x, axis
= =
o Y, | |-sing@ cosé || X, through an angle
y2 9 \" R J(1,2,0) matrix
X1 X1
Also. |% cosd -—sind ||y,
> =
X, sing coséd ||y,
J(1,2,-6)matrix

= So we have the important result that

171(1,2,6)=3"(1,2,6) =3 (1,2,-6)



@ Givens Transformation

= In general, J(i,k,0) rotates i — k coordinates by an angle #in a
counter-clockwise direction
J(i,k,0)x=y

=Y, =CX +SX,, Yy = =S +CX, Y; =X, V] =1,k
= Coming back to the general case, we can force y, 1 to 0 by letting
e i oo Xk
= Any specified element can be zeroed out by approciate choice of ¢

and s

= Since the effect is local, the procedure is well-suited for parallel
processing and ideal for revised simplex

= What is J(i,k,6)B and BJ(i,k,6)
J(I,I.(,Q)B affects only rows i anffl k of B } local effect
BJ(i,k,0) affects only columns i and k of B
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@ Givens Transformations

J(i,k,0)B BJ(i.k,6)
Forj=1,...,mDo Forl=1,...,mDo
v =g vV =
w = ® = a
q;; = Cv + Sw a,; = Cv +Sw
qj = —Sv + Cw a = —Sv+ Cw
End Do End Do

Note: J(i,k,0)B requires O(2m) operations; BJ(i,k,0) requires O(2m) operations
= Givens Orthogonalization Procedure

Fork=1,...,mDO o Number of operations: m?
Fori=1,...,.k—1DO .

Find ¢ and s such that

N

B — J(i,k,6)B
End DO
End DO

o If want to solve Bx = b, insert
b < J(i,k,0)B and solve Rx = b
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@ Sequential QR Updates

= Recall

B=B+cola, —cola,,B=QR
= B+(§k _Bgl)ng
o So,
Q'B=Q'B+(Q"a,~Re )e
=R(I1-eel )+rel,r=Q'a,

= As before, we move r to column m and move other columns to the
left by one (m — (m—1), (m-1) —» (m - 2), etc.)

The result is an upper Hessenberg matrix in columns I, | + 1, ..., m
Zero out unwanted subdiagonals hy,,,..., h
=J' ...J JH=R
=Q=QJJ,;...d,,
Computational load: O(m?)
Do the same thing to rhs = b and ¢,

m,m-1

MATLAB command: [Q1,R1]= qrupdate(Q,R,u,v)
u and v are column vectors corresponding to rank one update
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@ Storage Schemes

Store matrix A column by column

Record only nonzero entries a; and the corresponding row index i

Usually < 5-10 entries per column = Density < 5%

Typical storage scheme for column j
o # of nonzero row elements
o Elements: a;; a5 ag

o Locations: 1 5 9 200

MATLAB command: [L,U,p,q]= lu(B)

p is a row vector containing row permutation information

g is a column vector containing column permutation information
Performs the decomposition: PBQ=LU
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@ LP with Upper bound Constraints on Variables

» Variables with upper bounds
minc' x

s.t. AX

0<

* Can convert to SLP: (m + n) x 2n matrix A

b
<h

X<

* Q: can we solve it without converting to SLP? Yes!!

* Solution is always an extended bfs
= (n—m) variables are at their lower bound (zero) or at their upper
bound (h;)
» Suppose we start with an extended bfs
= A non-basic variable at its lower bound can only be increased
= p; < 0 to decrease cost
= A non-basic variable at its upper bound can only be decreased
= p; > 0 to decrease cost
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@ LP with Upper bound Constraints on Variables

= As X, changes, one of two things happen:
o A basic variable goes to one of its bounds .............. (1)
o The non-basic variable goes to its opposite bound ...(2)

If (1) occurs, ok...change the basis
If (2) occurs, basis does not change
Optimality = p;>0if x; =0

UCONN

Modifications to revised simplex algorithm

o Change steps 4 and 5 as follows:
% Pick nonbasic variable x,, and compute B-'a,
% Step 4: Evaluate three numbers (called “bottlenecks”™)

1. h, 2. min ﬁg. “min (Bizhi)
L:aj>0 Ak Lair<0 Qi

s Step 5:

1.

If h, is the smallest, x,, — opposite bound and the basis does not
change. Replace Xy, by (h,- x’y,) throughout. Basically, p;— - p;

Suppose | is the minimizing index in 2. Then the Ith basic variable
returns to its lower bound (= becomes non-basic)

If | is the minimizing index in 3, then the Ith basic variable goes to its
opposite (upper) bound (= becomes non-basic)



A £

Iteration1: slack variables as basis

min f =—4x, —2x, —3X, S| |10
Xg=|S, |=| 6 ;B=1=B7
st 2x+ X, +X%,<10 =P
S, 20

X, + 0.5%, +0.5%; <6
2X, +2X, + 4%, <20 m)
0<x <4

0<x,<3

0<x,<1

A'=[0 0 0]B*=[0 0 0]
p' =[-4-2-3000]

Evaluate the three bottlenecks for x;:
@) h, =4;(2)8, =min(5,6,10) =5,(3)6, =
So, x, > h, =4; basis does not change!

Replace x, by (4-x,)
= change b »>b—(B),h, =[2 2 12]T
(new slacks!) and negate column 1 of B

Iteration 3:
S, 1
Xg=|S,|=|3/2;B=1=B7;
S; 8
A'=[0 0 0]B*=[0 0 0]
p' =[4-23000]
Evaluate the three bottlenecks for x,:
M h, =3;(2)6, =min(1,3,4) =1,(3)0, = o

So, x, = 1; bring x, into basis; s, goes out.

UCONN

Iteration 3: (continued)

Example with Upper bound Constraints

Iteration 2:
S, 2

Xz =|S, |=|2|;B=1=B";
S, 12

A'=[0 0 0]B*=[0 0 0]

B p" =[4-2-3000]...recall x, > 4—x,

Evaluate the three bottlenecks for x,:
@ h,=1(2)6, =min(2,4,3) =2,(3)6, =
So, x, = h, =1, basis does not change!
Replace x, by 1-x,

3 T
= change b »>b—-(B);h, = [1 2 8}

(new slacks) and negate column 3 of B

10 0 1 0 0

X, 1 . .
Xg =| S, =1;B:E 1 0;5*1:_5 10
;| |6 2 0 1 2 0 1

A'=[-2 0 0]B*=[-2 0 0]
p' =[805200]= optimal

SO, X, =0=X =4X,=1X,=0= X, =1;

s,=0;s,=1s,=6;f =-21



@ Decomposition Methods

 Large-scale LP problems are typically separable and/or
have very few dependencies among (sets of) variables

» Consider
minc' x
s.t.AXx=Db
x=0
» Suppose A has special “block-angular” structure
LoL oo L]
A A
A2 .
i ces A |
* Define
m = Zr: m,n= Zr: n.
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@ Decomposition Methods

« Partition c, x, b conformally as:
X' =(X,%....x ), 0" =(bf,b;.....b )

cTz(cI,c; ..... CT)

= Then, the problemis: i, > CiX

st. Y. Lix =b,
Ax.=b,,1=12,....r
X, >0
e 1 separable LPs linked by m, constraints

 Physical interpretation
= Minimize total cost of operation of an r division firm
= Division activities are constrained by Ax: = b
= Overall resource constraint b,
» Suppose we use regular LP
= Letr=100, m;=100,0<i1<r
» Need a basis matrix of = 104 x 104 = storage/computational problems
UCONN



@ Dantzig-Wolfe Decomposition (DWD)

 To illustrate the idea of decomposition, consider r = 2 case

MiN, 2,50 C1 % +C3 X,

%20,%x,20 =1

s.L. L x, +L,X, =b,
Al)_(l - 91’ Az)_(z - t_)z

 Consider subproblem 1:

- T

min, ¢, X,

s.t. AX, =b
X, 20

 Recall that the feasible set is a convex polytope and if
bounded it is a convex polyhedron

e Then X, = i 5y = {y;} are the extreme points of the polyhedral set
=t = For an unbounded convex polytope, add a
nonnegative combination of extreme directions
" ;=20e6=1
= But, don’t know 4;!!!
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@ DWD: Master LP

{z;} are the extreme points; ;> 0, &'

I(2
’ Slmllarly’ 2 = Z;ﬂ iZ) = But, don’t know z4!!!
. ,

e Original problem in terms of extreme points is called
Master L.P

min,.,, X+ 6%, = Y (8)(cly, |+ 25 (#)(Sh 2
s.t. yﬁ>0§ 06(5 6/1 1
Z—l JLly +Zjl’u1|—zzl_b

# of variables k,n, + k,n, + k; + k,
# of constraints: my+2 ... for an r-division firm: my+r

Need a basis matrix of dimension (m, + 2) x (m, + 2) only
Thus, let ' =(51---5k1,ﬁﬁ---ﬂkz)

y
T T T T T T
S :(91Xl’glXz'---'glXk1’9211'9212"--’921k2)’ gj: 1], gklﬂ-: 0
1

UCONN
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@ Solving Master LP

= In terms of g, the master LP is:
. T
mins o

st. Qo =

a=>0

= Suppose we had a basis B and

A" = 5387 =(Ag A iy )

my+1
= Relative (reduced) cost vector p= (§TN = N)

1< j<k,

my+17

= Pj =5 _&ngXj_i
P, =5, — ALz, — A, ik +1< j<k +k,

My+2?
= Want to find the minimum relative cost coefficient p,
= For Bland’s rule, all we need is a first negative reduced cost
= Fortunately don’t have to evaluate at each extreme point

UCONN
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Decomposition Framework

» Weknow p = min (p.):min{min(p.), min (pj)}zmin{p:,p;}

1< j<ky +k, N 1<j<k NIk < kg +k,

= Consider the 15t term

min(pj)= min {Sj _&-(I)- lej _/’Lm0+l}

1< j<k, 1< j<k,
= But, this is equivalent to an LP
- T LT
min_ (C, — 4 X
- (‘1 = Ll)_l and similarly,

st AX=Db st AX, =D,
X; =20 X, >0

min, (¢ ~Z3L, )

= Finding reduced costs is equivalent to solving two LPs =
distributed problem solving

Master Problem

(Coordinator) Ifp* > 0, Stop

Compute A

<‘ '> Optimal coit( ) Ay =cost of common resources
Xq X2

Subproblem 1 @ C) Subproblem 2




@ Steps of DWD Algorithm

Step 1: Calculate the current basic solution x; and solve
A'B=sgwhere A" = (2, Ay 11 An 2 )

2207 7" mg 417 “my+2

Step 2: Solve decoupled LPs

min, (6] ~ 3L, )1 -

st AX =b

X; 20
° o . . i ?
Step 3: Compute p; = z; - /lm0+i Q: do {4} have any meaning:
... Lagrangian dual & lecture 4

Step 4: If all p; > 0 = optimal

Step 5: Else find minimal p;,"=p”
Suppose this corresponds to subproblem k
Compute [Lgx, 0 --- 1 - 0]F

Step 6: Enter column into basis as in revised simplex
UCONN




@ A Preview to Duality & DWD

Primal : Master LP

min f = y QTZ r{gj'l?gzlj':l(éu)(QuTL.)
r st XELY, b

i=1
_ > S =Ti=12.,

0;20,j=12,..,k;i=12,.r

Lagrangian Dual of Master LP :

max q(//LO’{/I }| 1) ﬂ' b +Zﬂ’m +i

Ao LAy, Ha

St oLy, + 20 SG Y T =120 ki =12 column

generation

If p. :m_in{pij = (¢ - 0L,)y Aosin 1 =1,2,.,k}>0Vi=12,..,r = optimal

If k=argminp;, bring [L,y.. ..o Lo ]" into basis and do simplex step.

Dual (Iower)bound
P < (6 ~A0L)Y , ~ i =7~ A Vi =12,k

:)igLin*i-Fﬁ +p|—C y (I)|:>ﬂ, b +Z|: m+|+p|:| 43Q0+§zi§ f*
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@ Dantzig-Wolfe Decomposition Example 1

min f =—-x, —2x, —4x, —3X,
S.t. X +X,+2x,<4

X, + X3+ X, <3

2% + X, <4

X +X, <2

X, +X, <2

3X; +2X, <5

e Detfine

<]

¢ =[-1-2]; ¢ =[-4,-3]

p g !

. Recallk k
X :;51Xj X, :jzzlf“jzi
* So, master problem is
minZ?_ﬁj Q. Y, +ZE2_1'UJ C, 2,
St 2?2151'-12] +Z|J(-2:1:“j Lz; =b,
2.0 =2 1 =1

= # of constraints = 2
coupling constraints + 2
convexity constraints = 4 =
basis matrix is 4 x 4

* Introduce slacks d, and d, in master problem

UCONN



@ Dantzig-Wolfe Decomposition Example 1

» Iteration 0: Getting started

LBl | e

d, 0
X, =0,%,=0;8=Lu=1 y _|%|c _|O
T ZB 5 1XB O
p=[4 3 1 1] :
- | 44 | 0]
A"=[0 0 0 0]B*=0
e Iteration 1:
= Subproblem solutions
min_)(l_zx2 min —4X3 —3X4
s.t. 2x, +X, <4 St X +X,<2
X, + X, <2 3X; +2X, <5

= Optimal solutions of subproblems
xW=[0 2% =[1 1;z,=—4iz,=-7 -11<f7 <0

= Relative cost coefficients
p,=—4+0=-4, p,=-7+0=-7

UCONN



@ Dantzig-Wolfe Decomposition Example 1

 Master Iteration

= Need to bring in solution corresponding to u, into basis = column
to enter basis is

L,x\ 1 Y| |
O = O = = Q‘k
0
1 1
L . _1_
2] [y ] 2]
2 a |15
B_lgk = = 2k — ﬂ =
0 0 a,
1] [y 1]
Note: remember division by non-zero a; only and minimum f—‘ is
ik

the one that leaves basis

UCONN



@ Dantzig-Wolfe Decomposition Example 1

= Column 4 must go

d, ] [2] [4] [2] [o] [2

d,| |1| |3] [2] [o] [1] 4
NewXs = s 1511|7170l H]o| 7|72

1

] 1] (2] (1] 1] |1

Note: remember i, (element 4) is replaced by u, = 1

1 0 0 -2]
ga |01 0 2
001 0
000 1]

As a check, note that g0 =B1b=[2 1 1 1]T

A =[0 0 0 -7]B*=[0 0 0 -7]

UCONN



@ Dantzig-Wolfe Decomposition Example 1

» [teration 2
= oM = 4,0 = subproblem solutions do not change, but p,"=-4,p,"=0

e Master Iteration

1< <7
= Bring in column corresponding to subproblem 1
- a7 (2
(2)
X
1 =
1
0
L7 1o

Q: Which one should go?
Remember pU =B1h=[2 1 1 1]

o y)
1
2 : =
B™a, = :>ﬂ: 2
1 iy 1
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@ Dantzig-Wolfe Decomposition Example 1

A: Column 2 must go! * Iteration 3:
1 -1 0 O] = Subproblems
1 min—x, min —2x, — X,
O - 0 -1 st 2X +x, <4 st X +X,<2
new B = 2 AR o
0 1 11 X, +X, <2 3X;+2X, <5
2 X, X, =0 X3, X, 20
0 0 0 1 3 3
- = x{" =[2,0],x§" =[1.1]; p; =2, p; =0
21 2] |9
1 1 = Column to enter: solution
@_ |1 12| |o|_gan_|2 :
=87 |51 |1 2|=87b=| ] corresponding to subproblem 1
0 - at iteration 3
1 0 2
L L _O_ 1

-6-2-3=-11<f " <-8.5

UCONN



@ Dantzig-Wolfe Decomposition Example 1

a = 1
0

= Pick column 3 to go

new B =

UCONN

_legs)_

1

0

O NIFLDNIF O

O rr O PN

I
N

= B_lﬁk =

O rr O N

= To determine column to go, recall:

11 _

ﬁ(z) = [1 25 1], SO E
2

R

a, |1

2

_X_
1 -~1 | 0
d, 1 2 8 1

:>§2 =i—lo+1=2=§“)

2 211 — 1
| | 2 _O_ g 2
_1_ - _l_

A9"=[0 -4 -2 -7]B*=[0 -1 -2 -5]



@ Dantzig-Wolfe Decomposition Example 1

* Jteration 4
= Subproblems

min—x, — X, min —3x, —2X,
s.t. 2% +X,<4 St X;+X, <2 -3-2-5=-10<f * < -10

X, +X, <2 3X; +2X, <5

X, X, 20 Xg, X, =20

= xY =[11]or[2,0],x}" = [1,1]

= Optimal value = 0 for each subproblem

= Reduced costs: p;" =2, p,” =5 = found an optimal solution for
master problem

e Solution:

1 1 . .
> X2 + > X7+ xy) = optimal solution

1
2

R O O

e e

o O N O
N
OO O o N

Optimal cost =-10
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@ Dantzig-Wolfe Decomposition Example 2

min f =-90x, —80x, —70x, — 60X,
st 3x + x,<12
2% + X, <10
3X, + 2X, <15
X+ X, <4
8X, +6X, + 7X, +5X, <80
L:(8 6),L:(7 5)
= Introduce slack s, into the master problem

e Tteration O:
bfs=(80 1 1) 1 OO0

S 202

M_)(ij:m A” =c,B*=(000)B"=0
0
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@ Dantzig-Wolfe Decomposition Example 2

« Subproblem 1:
{[-90 —80]-0[8 6]}()(1)

2 1)

s.t. 3x +X, <12
2%, + X, <10

Opt. solution: (x4, X,) = (0, 10)

Opt. cost z, : —800

UCONN

12
10

X

j — —90x, —80X,

e Subproblem 2:

{[-70 —60]-0[7 5]}(2)

s.t. 3x; +2x, <15
X, + X, <4
= min—70x, — 60X,
s.t. 3x;, +2x, <15
X+ X, <4

Opt. solution: (X3, X,) = (4, 0)

Opt. cost z,: —280

p, =-800, p,"=-280

0-800-280=-1080 <f “< 0




@ Dantzig-Wolfe Decomposition Example 2

() e o))
= Bring | L, into the basis 10)] (60
Xa = 1 = 1 |=a,
1 0 0
0
60 80
B'a, =| 1 |bfs=| 1
0 1
=60=1

= Remove column 2 (¢,) from the basis

= Jteration 1
1 -60 0
NewB1=EB*=|0 1 0

80-60) (20) (s
New bfs = 1 =/ 1 |=|5,/|...—800 0O 0 1
1 -60
1 1) \m :
A =c;Bt=(0 -800 0)|0 1
0 0

0-800-280=-1080 <f * < -800

UCONN
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@ Dantzig-Wolfe Decomposition Example 2

« Subproblem 1: e Subproblem 2:
X X3
[-90 —80](){2) {[-70 —60]-0[7 5]}()(4)
{3 1}(le (12) s.t. 3x, +2x, <15
s.t. <
2 1|\ X 10 X;+ X, <4
= —90x, —80x, = min—70x, —60X,
s.t. 3x, + X, <12 s.t. 3x; +2x%, <15
2X, +X%, <10 X+ X, <4
Opt. solution: (x4, X,) = (0, 10) Opt. solution: (X3, X,) = (4, 0)
Opt. cost: z, = -800 Opt. cost: z, =—280

p, =0, p, =-280

UCONN



@ Dantzig-Wolfe Decomposition Example 2

= Bring u, into the basis (ﬂ
0

 5f)| 12
= 0 [ 0 } =a,
1 1

20 s, 20
bfs =| 1 52:9:—23

28
1 )11
1 -60 0)(28) (28
-1 _ _
B =0 1 010/=0 0-800-280=-1080 <f * < -800
0o o 1)l1) (1
= u, enters basis in column 1
» Iteration 2 1o, 160
28 1 60 0O 28 28
5 New B = O 1 0|0 1 0]|= 0 1 0
? H 1 0 1 0 0 1 1 60 1
28 28 28
2 | 1, T 28 28
= A% =clB'=(-280 -800 0)] 0 1 0|=(-10 -200 0)
! 1w
28 28
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@ Dantzig-Wolfe Decomposition Example 2

« Subproblem 1: e Subproblem 2:
X X3
-90 -80|+10(8 6 —7/0 —60(+10|7 5
[-s0 -so]-+ofs 6] (=70 ~sola0f7 i)
= —10x, — 20X, = —10x,
s.t. 3x, +x, <12 s.t. 3X; +2x, <15
2%, + X, <10 X;+ X, <4
=% =0,x, =10 =X, =0, x,=4
Opt. cost: z,=-200 Opt. cost: z2,=—40
P, =0,p, =-40

-10*80-200-40=-1040<f * <-1000
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@ Dantzig-Wolfe Decomposition Example 2

0 20 1 %y 20 2
= Bring (7 5)[4j into the basisa,_| o | 51, _ 208 218 ol o |- %8
= _
1 ~1 60 K1) |8
1 28 28 28
20) (5
2_8 7 H
bfs=| 1 |=| 1|5, =6=1
8 2 |1y
28) \7

= Can enter in column 1 or column 3. Choose column 1

 Jteration 3

2890l 2 80 1 30
20 28 28 20
NewB™*=| 0 1 0|l O 1 0|=f 0 1 O
1
Hs T I D
Newbfs=| 1 |5, 5 28 28 20
1
0 — 30
A T 20
A =cIB*=(-240 -800 0)) O 1 0|=(-12 -80 0)
" 1
-12*80-80=-1040<f " <-1040 55 o1
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@ Dantzig-Wolfe Decomposition Example 2

« Subproblem 1: e Subproblem 2:
X
-90 -80]+12[8 6]!| * X
l J+12] ]}(Xz] {[-70 —60]+12[7 5]}():1}
= 6%, —8X, = 14x,
s.t. 3x, +x, <12 s.t. 3x, +2x, <15
2X1+X2S10 X+ X, <4
— %, =0,X, =10 =% =0,%=0
Opt. cost: z,=-80 Opt. cost: z,=0
p, =720,p,” =0
0
Optimal solution: | 10 -12*80-80=-1040<f * < -1040
0
4

Optimal cost: —800 — 240 = -1040

UCONN



@ LP & Goal Programming

Quite often, need to make decisions under multiple conflicting
objectives (criteria, goals)

= FIR filter pass and stop band constraints
= Ship routing to minimize time, fuel and distance

The achievement of one objective may require abandonment of another

Typically, goals are represented as constraints, which may be infeasible

One approach

= Determine a set of “ideal” goals
= Determine a metric in the objective space to measure the distance to the “ideal” goal
= Minimize the distance to the “ideal” goals

Two ways

= Relative weights on different objectives (goals)
o Makes sense if they have commensurate units (e.g., dollars)
= Rank the goals and solve them in a lexicographic order
o Optimize with regard to the 1t (most important) goal.
o If there are multiple tie solutions, break them by optimizing with regard to the 274 goal, etc.

UCONN
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@ Deviation variables on Goals

 Advertising problem (Whinston, 1995)

X, = number of minutes of ads shown during football games >0
X, = number of minutes of ads shown during comedy shows >0
Goal 1: 7x, + 3x, = 40M (High Income Men ...HIM)
Goal 2:10x, + 5x, > 60M (Low Income People ...LIP)
Goal 3: 5x, + 4x, = 35M (High Income Women ...HIW)
Budget Constraint (in thousands):

100x, +60x, <600

e Goals are constraints

= Use slack and surplus variables to measure “distance” to the
ideal goal (RHS)

Goal 1: 7x, + 3x,+5S, —s =40M (HIM)
. s” = Amount by which we are numerically under the i"" goal
Goal 2:10x, + 5%, +5s, —s, =60M (LIP)

Goal 3: 5x, + 4x,+s; —S; =35M (HIW)

s” = Amount by which we are numerically over the i" goal

= Minimise distance to the ideal levels via either of two methods
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@ Minimizing weighted deviation variables

 Relative weights on different goals

Goal 1 = 2*Goal 2 = 4* Goal 3

« Minimize weighted penalties for not meeting goals

min f =4s +2s, +s;

St.7x + 3X,+5S, —s; =40M (HIM constraint)
10x, + 5%, +5, —s, =60M (LIP constraint)
5% + 4X,+S; —s; =35M (HIW constraint)
100x, +60x, <600
X, 20;x,>0;s; >0;5" >0;i=1,2,3

Optimal solution: f* =5

X, =6;X,=0;8, =0;8 =2,
s, =S, =0;s;, =5;s; =0
Goals 1 and 2 are met.

Fail to meet Goal 3 by 5.

« What if budget constraint is a goal? Goal 4=0.02*Goal 3

UCONN

min f =4s, +2s, +s, +0.02s;

st.7x, + 3X,+s, —s; =40M (HIM constraint)
10x, + 5x, +S, —s, =60M (LIP constraint)
5% + 4X,+S; —S; =35M (HIW constraint)
100x, +60x, +s, —s, =600 (Budget constraint)
X, 20;x, 20;s; >20;8" 20;i=12,3

Optimal solution: f~ =§

X,=4=;X,=3=;s, =0;5 =

1
3’

Wl
Wl

s, =S, =0;s, =5;3;, =0;s, =0;5; :33%.

Goals 1, 2 and 3 are met.
Need to spend $33,333.34 extra!
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@ Lexicographic (Preemptive) Goal Programming-1

« Ranking goals is easier than specifying weights
Goal 1 > Goal 2 > Goal 3 Note: == preference ordering

 Solve a sequence of LP problems as follows:
min f, =s; Optimal solution: f,” = 0= Goal 1 is met.

St.7x + 3X,+5s, —s; =40M (HIM constraint) X, :4—0-x2 =0;s; =0;s/ =0;
7 ) ) ) )

2 2 2
LP1: - SZ=§,3;:0;53=§;33*=0

100x, +60x, +s, =600 (Budget constraint) o 200

X, 20;%, 20;s; >20;8" 20;i=1,2,3,5,20 b
min f, =s,
st. s, =0
7%+ 3%, +5, —s; =40M (HIM constraint) Optimal solution: f, =0= Goal 2 is met
LP2: 10%, + 5X, +S, —S; = 60M (LIP constraint) X =6;%x,=0;s, =0;8/ =2;
88— i s, =s, =0;s; =5;s, =0;s, =0.

100x, + 60x, +s, = 600 (Budget constraint)
X, 20;%X,20;s” >20;s" >0;1=1,2,3;5,>0
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@ Lexicographic (Preemptive) Goal Programming -2
 Solve a sequence of LP problems as follows:

min f, =s;
S.t.
s, =0
LP3: 5, =0
7%+ 3%, +5 —s =40M (HIM constraint)
10X, + 5x, + 8, —s; = 60M (LIP constraint)
5% + 4X,+5S; —s; =35M (HIW constraint)
100x, +60x, +s, = 600 (Budget constraint)
X, 20;x, 20;s; 20;8" 20;i=1,2,3,5,>20

Optimal solution: f, =5 = Goal 3 is not met
X, =6;X,=0;s, =0;s =2,
s, =s, =0;s, =5;3; =0;5, =0.

o If budget constraint is a goal, use s, ands; in the constraint

» The decision maker may want to do “what if” studies by
reordering priorities
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@ Generic Lexicographic Goal Programming

* Problem of minimizing p ranked objectives

- T T T T
L min{c, x,C; X,.....,C; X,...,C X}
St. A)_( — IQ Lmin: Lexicographic ordering

x=0
« Approach

min f, :QI)_(

x>0
st. Ax=Db

If unique solution, stop. Otherwise, continue
Fori=2p

min f, =¢; xst. Ax=b;cix="f", j=12,.,i-1

x>0
If unique solution, break.
End
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@ Summary

« Dantzig-Wolfe Decomposition is related to the cutting
plane method or column generation method when the
objective functions are nonlinear (see Bertsekas’s
Nonlinear Programming Book, Section 6.4)

* Summary
= Basis update methods

o Product-form of the inverse (PFI)
o Sequential LU update

o Sequential QR update
= LP with upper and lower bound constraints
= Dantzig-Wolfe decomposition

= LP and Goal Programming
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