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• What is duality?
 Examples

 Dual of standard and inequality constrained LPs

• Properties
 Minimum of primal ≡ Maximum of dual

 Dual of dual ≡ Primal

 Interpretations as shadow prices

• Application of Duality
 Game theory

 Large-scale mathematical programming



What is Duality?
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• Q: Is there anything more to LP than revised simplex? Yes!!

• What is duality?

 Associated with every LP, there exists a dual LP

 Original LP is called Primal LP

 If Primal LP is one of minimization, then Dual LP is one of maximization

• Duality occurs in many areas of science and engineering

 Geometry

o Minimum distance from the origin to points on a line ≡ maximum distance 
from the origin to planes through that line

 Systems Theory

o Observability ⇔ controllability

o State ⇔ costate, adjoint state vector, Lagrange multipliers, dual variables

o LQR ⇔MMSE estimators

 Convex programming . . . ECE 6437

 Philosophy: dualistic versus non-dualistic

 Voltage-current, force-position, Kirchoff’s current and voltage laws



 at termination is related to optimal cost
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• Duality in LP

 Consider standard LP (also called primal problem)

 Transformed problem

 Define 

 Optimal if:

o For non-basic variables

o Also for basic variables

 So, we obtain the key result:

⇒

⇒ The simplex multipliers satisfy the constraint

⇒ Optimal cost
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Dual of SLP
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 Suppose we formulate the problem:

 Cannot have minimum since 

• So, we have our first result linking primal and dual: 

 Note that no restriction on sign of λ variables

 This relation is called asymmetric form of the dual 

 m equality constraints ⇔ m variables

 n variables ⇔ n inequality constraints 

 Roles of b and c are reversed
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Key Questions on Duality
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• Example

 Primal:

⇒ Optimum at: x1 = 0, x2 = 1 

⇒ Optimal cost = 4

 Dual

⇒ Optimum at: λ1 = 4

⇒ Optimal cost = 4

• Key questions

1. Is the minimum of primal = maximum of dual? Yes!!

2. What happens when you have inequality constraints?

3. What is the dual of the dual?

4. What interpretations can we give to dual variables?

5. How do we solve dual problems?......Dual Simplex

6. Can we combine primal simplex and dual simplex?...Primal-dual 
methods
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Dual of LP with  inequality constraints
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• Let us take questions 2 and 3 first

• ≥ constraints

 Primal

 Dual

 So, 
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• ≤ constraints

• xj unrestricted

 Dual

 So, if a variable is unrestricted, the corresponding dual 
constraint must hold with equality
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Dual of Dual  Primal
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• Schematic description of duality

• Dual of a dual ≡ primal (question 3)

 So

 Let 
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Maximum of Dual  Minimum of Primal
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 Then

• Q1: Is maximum of dual ≡ minimum of primal

 First we prove that maximum of dual ≤ minimum of primal

⇒ this is the so-called weak duality theorem

 Recall
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Weak Duality Theorem
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• Weak duality theorem

 Suppose x and λ are feasible for primal and dual problems, respectively. 
Then λT b ≤ cT x

 Proof: λT b = λT Ax ≤ cT x

 Since x ≥ 0, we have λT A ≤ cT

Maximum of dual  minimum of primal

(or) cost in the dual is never above the cost in the primal

Fortunately for LP, gap = 0 ⇒max. dual = min. primal

• Suppose x and λ are feasible. If λT b = cT x, then x and λ are optimal

 Proof:

o No λ can give a cost greater than cT x

o No x can give a cost smaller than λT b⇒ must be optimal and gap = 0

 An LP terminates in one of three ways

1. Finite optimum, 2. unbounded solution, 3. infeasible solution

⇒

⇒
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“gap”

* 1

*

* * *

Pr

,

,

T T

B B B

T T

T T

T T T

B B

Optimal imal c x c B b

b b

But b c x feasible x and

so b c x c x

 

 



 

 

 

 



Four Primal-Dual Relationships 
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• Primal finite and dual infeasible case
 Since primal is finite

⇒ A contradiction to the assumption that the dual is infeasible 

• Dual finite and primal infeasible case

⇒max λT b s.t. λT A ≤ cT has finite optimum

 Convert into SLP as before

 Solution finite ⇒ by duality Ax = b, x ≥ 0 is feasible since dual of a dual is a 
primal
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• Case 1: Both feasible sets are empty

• Case 2: 

 Minimum in the primal = −∞ (unbounded) ⇒ no feasible λ

 If there is a feasible λ ,all feasible costs cT x ≥ λT b

⇒ cost cannot go down to −∞

 Example: 

Infeasible and unbounded cases
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x1

x2

Feasible set 
empty

1 2 1x x 

1 2 1x x  

Primal:

1 2

1 2

1 2

1 2

min ( )

. . 1

0

, 0 primal unbounded

x x

s t x x

x x

x x

 

 

 

 

1

1 2

1 2

min

. . 1

1

x

s t x x

x x

 

  

1 2

1 2

1 2

1 2

max

. . 1

0

, 0

s t

 

 

 

 



 

 



Primal
Dual

Feasible set 
empty

1 2 

1 2 1  

λ2

λ1

1

1 2

1 2

max

. . 1

1 dual infeasible

s t



 

 

   

   

Dual:

Feasible

Feasible



• Another Example

Infeasible dual and finite-finite cases
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• Case 3: Maximum in the dual = + ∞ ⇒ there is no feasible x

 If there is a feasible x⇒ cTx ≥ λTb ∀λ ...a contradiction ⇒ infeasible x

• Case 4: Finite-finite case

 Is finite primal optimal = finite dual optimal

 Suppose it is: what does it mean?

 Consider SLP and its dual

Infeasible dual and finite-finite cases
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Reduced costs and basic variables at optimum
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 But, we know x* ≥ 0 and 

 The inner product can be zero in only one way:

 x* must be zero in every component where                     is positive and vice 
versa ⇒ x* and λ* must enjoy a special relationship

• Complementary slackness condition or orthogonality 
condition or Karush-Kuhn-Tucker (KKT) conditions

 For SLP: feasible vectors x* and λ* are optimal iff

 For each i =1,2,…,n, optimality requires:

 In order to know that we have found an optimal solution x*, we must also 
know the dual solution λ*

 
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Orthogonality of reduced costs and x*
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• Example:

 Take basis

 Reduced cost vector:
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Inequality case 
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 Dual

⇒ Inner product of reduced costs and x* is zero and 

 Case 4: What happens if we had inequality constraints and both primal 
and dual are finite?

o Does                           always? Yes!

o This is symmetric form of the dual

o Easy to show the complimentary slackness condition
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Complementary Slackness Conditions
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o In standard form

o Apply c. s. conditions of SLP

o In words,

where ai is row i of A

o We will provide physical interpretations later
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Duality Theorem

VUGRAPH 20

• Duality Theorem

 If there is an optimal solution x* for the primal problem, then there is an 
optimal λ* in the dual and the minimum primal cost cTx* = the maximum 
dual cost λT*b

 Proof:

o x* optimal ⇒ (n – m) components are zero and m components are nonnegative

o We know 

o Pick

o In addition:

⇒ max. of dual and min. of primal have met

o Since the dual of the dual =primal, the theorem also says that if the dual has a 
finite optimal solution, so does the primal

o Simplex multipliers at the optimum x* solve the dual LP
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* ** * 1 *T T TT T

B B Bc B b c x c x    
*from 0 is feasible
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* 1 * * * 1 *[ ] [ ]
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Dual variables as synthetic prices
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 Interpretation of simplex multipliers as synthetic prices of unit vectors in 
Rm (also called shadow prices)

o

o Cost of vector i = ci since r.h.s

o If ai is in basis, it costs ci units per unit of xi

o Suppose basis is first m columns and independent

o What is the cost of , the jth unit vector

o Simplex multiplier λj is the synthetic price of unit vector ej

 What are the uses of multipliers?

 Pricing out a vector

o Consider any vector ak ;  Synthetic price of ak

o True cost of ak = ck ;

o Relative cost=                           pricing out a vector

o Optimality ⇒ synthetic price < actual (true) price for a non-basic column ak
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Dual variables and sensitivity
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• Fundamental data items in LP: (c, A, b)

• Changes in c

 Changes in non-basic coefficients

 Changes in basic coefficients

• Changes in b

• Changing the column of a non-basic variable, i.e., change in A

• Adding a new variable  add a coefficient to c and a column in A 
corresponding to the new variable

 Change the number of columns in A and size of c vector

• Adding a new constraint, i.e., add a coefficient to b and a row in A

• What if multiple parameters change?



Changes in objective function coefficients
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 Allowable changes in non-basic variables (NBV) w/o changing the basis

o Consider the example again: p1=1 can change c1 from 3 to 2 w/o changing basis 
and optimal solution  

o p3 = 4 can change c3 from 9 to 5 w/o changing basis and the optimal solution

o In general, for non-basic variables 

 What if the changes in NBV are outside of allowable range?

o Reduced cost, pi < 0 and the current basis is no longer optimal

o Bring xi into the basis (good to use primal simplex!)

 What if the objective function coefficient of a basic variable (BV)

changes (again good to use primal simplex!)

o If cj is the cost co-efficient of lth basic variable, that is, j=BV(l)

1 1 1 1 1where 1 ( ) 2c c or c        

11

1 1

1

1 1
:( ) 0:( ) 0

then 

( ) & ( )

( ) max min
( ) ( )lili

B B lj

T T

B l i B l ij i j i

i i
ij l i j

i NBV B ai NBV B a
i il l

c c e

c e B a c i BV c e B a c i NBV

p p
B a p i NBV

B a B a



 

 


 



 
  

 

        

   
         

   

3 3 3 3 3where 4  5c c c         

 

 

1 2 3 4

1 3 4

2 3 4

2 4

*

*

1

2

4

min 3 9

. . 0

2 4

2

: ,

2 1

1 0 4 0

0 1

1 1

1 1

1 0

2; 1

min{1,4 / 3} 1

min{1,4 / 2} 1

T

T

x x x x

s t x

x x x

x x x

Basic x x

p

B

B

j l









  



  

  





 
  

 

 
  
 

 

 

 

1 ;
T T

i B i ia c B a c i NBV     

f* does not change
x* does not change
* does not change

f* changes
x* does not change
* changes



Changes in objective variable coefficients

VUGRAPH 24

 Example
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 Sensitivity analysis

o How does optimal cost change as we change b by “a  small amount”?

o Recall that                               = marginal cost

o ∆bi =“small” in the sense that the basis does not change

o So if

o Another way: changes in b causes changes in bfs

o If b = ei, that is, bi = bi + , 
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How much can you change bi
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 A key question often asked is:

o How much ∆ b can we tolerate w/o changing basis: 

o Recall

o Suppose 

o For feasibility, need

o Let

o Or

 Example:
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 Changes to a non-basic column (“pricing out a new column”)

o Cost ci ; column ai

 Adding a new variable is similar to changing a non-basic column

 What if multiple cost coefficients are changed?

o For non-basic, reduced costs tell us whether the basis is optimal or not

o For multiple changes in basic coefficients, use 100% rule

 Similar rule applies to multiple coefficient changes in b

*
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Otherwise, bring variable  into the basis.
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Economic interpretation of dual variables
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 Economic interpretation of Lagrange multipliers

o Consider the shortest path problem again

o s, u, v, t are computers, edge lengths are costs of sending a message 
between them

o Q: What is the cheapest way to send a message from s to t?

o Want to minimize message cost…AT&T

o Intuitively, xsv=xut=0 (i.e., no messages are sent from s to v and from u to t)

o Shortest path s→ u → v → t⇒ xsu=xuv=xvt =1

o Shortest path length =2+1+3=6

s

v

t

u

5

1

3

2
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LP formulation of shortest path problem
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o Let xsv be the fraction of messages sent from s to v

o Problem Formulation

o Add all constraints ⇒ xsu+ xsv=1 which it must be!!

⇒ only 3 independent constraints (although 4 nodes)

o In matrix notation:

o In general, n nodes n-1 independent equations

min 2 4 5 3

. . , , , , 0
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Dual of shortest path problem
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 Dual of shortest path

o Can view it as competition to AT&T (say, Sprint)

o Sprint doesn’t say how it gets the message from source to destination

o Sprint announces the price of a message at each node: λs , λu ,λv and λt 

o Sprint will buy at these prices at any node and sell it back at other nodes

 λs = price of a message at node s (buying or selling)

 λt = price of a message at node t (buying or selling)

 Profit: λt – λs price difference

 Assume λs =0, since we are interested in price difference

o To stay competitive, Sprint cannot charge more than AT&T:

o Sprint problem

o Sprint maximizes its income and AT&T minimizes its cost!!

o Lowest cost on AT&T = highest income of Sprint!!
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CS condition in shortest path problem
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 Let us formalize these notions with our example

o Optimal path s → u → v → t

o Sprint prices λu = 2, λv = 3 and λt = 6; profit: λt – λs = 6

o AT&T path: s → u → v → t; cost: 6

 Duality: minimum cost on AT&T=maximum profit on Sprint
 Optimality:

o

o Edges in the shortest path > 0

o On these edges, λu – λs = λu = 2 = csu; λv – λu = 1 = cuv; λt – λv = 3 = cvt

o Satisfies complementary slackness condition. Note that λu , λv , λt are the 
lengths of the shortest paths from s to the nodes u, v, and t, respectively

o Dual can be solved by successively relaxing the dual constraints & finding the 
shortest paths from source to each node recursively…DIJKSTRA’s algorithm
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CS condition and ideal diode
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 Synthetic price interpretation …inequality constrained case

 Optimality:
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Minimax theorem
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o Top relation equivalent to grounding a node to recover KCL ⇒ conservation of current

 If λj > 0 the node is above ground and KCL applies

 If λj = 0 node is grounded to draw excess current (Ax–b)j

 Saddle point interpretation and minimax theorem

o Consider standard LP

o This is equivalent to:

=

o λ ~ vector of Lagrange multipliers enforcing the constraint

o If 
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Duality and Game Theory
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o Suppose we can interchange x and λ

o Note: Don’t get minimum = -∞ if 

o So, duality is equivalent to finding the saddle point                 that maximizes                                         
w.r.t λ and that minimizes              w.r.t x

o This is called minimax theorem

 Game Theory: Suppose we have two decision makers (players)  y and z

o y is the row player; y chooses one of m strategies

o z is the column player; z chooses one of n strategies

o If the row player chooses strategy i and column player chooses strategy j, the row

player receives a reward of aij and the column player loses an amount aij

o Such a game is called a two person zero-sum game
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Minimax Strategies
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o Example

 Mixed (Randomized) Strategy: Suppose we have two football coaches y and  z

o z is the offensive (column) coach and y is the defensive (row) coach

o z chooses between run and pass

o y chooses defense against run or pass

o To fix ideas, suppose if y defends against a run and z chooses to run he gains 1 yard. 
On the other hand if z chooses to pass, he gets 7 yards

o If y defends against a pass and z chooses to run, he gets 5 yards. On the other hand, 
if z chooses to pass, he loses 5 yards

Row 
Strategy

Column Player Strategy Row 
Min.

Column 1 Column 2 Column 3

Row 1 4 4 10 4

Row 2 2 3 1 1

Row 3 6 5 7 5

Col. Max. 6 5 10

all rows

all columns

Saddle point condition:

max  (row minimum) 

= min  (column maximum)

Neither player can unilaterally

change strategy and benefit.

Q: Are all strategies pure? NO!



Minimax Randomized strategies
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o Pay-off matrix for y = -pay-off matrix for z

o y and z must employ mixed randomized strategies

o If z always runs, he cannot make it (the opponent can learn and defend against run!)

o Suppose λ1 is the probability that z will run, (1- λ1) is the probability of pass

o Expected gain

o y would minimize z’s gain. z will maximize the minimum gain

o Note: 7 – 6λ1 decreases with λ1 , while 10 λ1 – 5 increases 

o Optimum when 7 – 6λ1 = 10 λ1 – 5 ⇒ λ1 = 12/16 = 3/4

⇒ offense should run ¾ of the time

⇒ expected gain: 7- (18/4 ) = 2.5 yards

o What about y?

 y will minimize the maximum

 Expected gain of z

1 7

5 5
A

 
  

 

Run    Pass

Defend against run
Defend against pass

y

z

1 1 1

1 1 1

7 7 7 6 if  defends against run

5 5 5 10 5 if  defends against pass

y

y

  

  

   

   

1 1 1

1 1 1

5 5 5 4 if  chooses to run

7 5 5 12 5 if  chooses to pass

x x x z

x x x z

   

   



Minimax Theorem and Duality
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o Minimize maximum gain ⇒ x1 = 5/8

o Expected gain of z: 7 – (18/4 ) = 2.5 yards

o Neither player can do better by making a change

 A simple derivation of minimax theorem of game theory

o Two players y and z

o Pay-off to 

o Consider the minimax problem

o Recall

11 12 1

21

1 2

n

m m mn

a a a

a

a a a

 
 
 
 
 
 
 
 
  

y

z

T
f y Az

min max

. . 1

1

0

0

T

y z

T

T

y Az

s t z e

y e

z

y









,min

. .

1

0

y

T

T

s t A y e

y e

y

 






max

. . 1

0

T

z

T

y Az

s t z e

z





min

. . Ts t e A y



 

⇒

⇒

dualize
z constraint



Proof of Minimax theorem
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o Alternatively, consider maximin problem

o To prove equality

 Let 

o From duality theorem maximin ≡ minimax

o You can always add a constant to all elements of A so that  and  > 0. 

1
;

1

1 1
&

T T

T T

y
x z

x e z e

x e e


 




 

  
    
   

 
  
 

  

max min

. . 1

1

0

0

T

z y

T

T

y Az

s t e z

e y

z

y









,max

. .

1

0

z

T

s t Az e

e z

z

 







⇒

min

. .

0

T
x e

s t Ax e

x





max

. .

0

T

T

e

s t A e











⇒

maximin minimax

dualize
y constraint



Stone, Paper, Scissors Problem
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o Reward structure for row player: 

Row 
Strategy

Column Player Strategy Row 
Min.

Stone Paper Scissors

Stone 0 -1 1 -1

Paper 1 0 -1 -1

Scissors -1 1 0 -1

Col. Max. 1 1 1

; ;Stone Scissors Scissors Paper Paper Stone

1 2 3

1 2

2 3

3 1

 game:Maximin

max

. . 2 1

1
          2 1 ; 1

3

          2 1

0

i

y

s t

  

 

   

 



 

 

    

 



Add 1 to each element of matrix A

Row 
Strategy

Column Player Strategy Row 
Min.

Stone Paper Scissors

Stone 1 0 2 0

Paper 2 1 0 0

Scissors 0 2 1 0

Col. Max. 2 2 2

1 2 3

1 3

1 2

2 3

 game:Minimax

min

. . 2 1

1
          2 1 ; 1

3

          2 1

0

i

z

x x x

s t x x

x x x

x x

x



 

 

    

 



Reward of original game = 0 



Other interesting game problems
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 Two person non-constant sum games: Example: Prisoner’s dilemma

 Non-cooperative Game Theory

o Nash equilibrium, Bayesian games,…

 Cooperative  game theory with N decision makers

o Now, you can form coalitions

o Characteristic function of a coalition v(S), S  N={1,2,3,..,N}

o Core of a game: Undominated reward imputations

o Sahpley value: How should rewards be allocated equitably?

 Incentives, Auctions and Mechanism Design

Good book: Y. Narahari, Game Theory and Mechanism Design, World 
Scientific,2014. 

Prisoner 1 Prisoner 2

Confess Don’t confess

Confess (-5,-5) (0,-20)

Don’t confess (-20,0) (-1,-1)

Equilibrium strategy:  (-5, -5)

Finding the core 
is equivalent to 
solving a system 
of linear 
inequalities  



Duality and Decomposition
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 Strategies for solving large-scale mathematical programming problems

o Separable Problems

 Due to separability, can solve r decoupled problems

o Dantzig-Wolf decomposition . . . price-directed decomposition

 To illustrate the method consider

min

. .

0

T
c x

s t Ax b

Ax b

x
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


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ix x i

i

i i

f x

s t x i r



 



1

Let { : 0, }

Further, let { ,..., } be the extreme points of this set. Then:p

X x x Ax b

x x

  

for 1,...,

min ( )

. .

end

i ix i

i i

i r

f x

s t x




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T

x X
c x

s t Ax b


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Application of Duality
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 This LP can be rewritten using

 At optimum, we need λ ≥ 0 and

 So need

 or

1 1

0

1

1

1

Let ; 1

then the above LP is equivalent to:

min

. . 1

p p

j j j

j j

p
T

j j

j

p

j

j

p

j j

j

x x
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A x b



 







 









 

 
 
 



 
 

 

 







0 0; 1,...,
T T

j jc x Ax j p    

  0
1
min 0

T T

j
j p

c A x 
 

  

  0min 0
T T

x x
c A x 


  



Application of Duality
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 Note that if 

 The minimization problem decouples into r sub-problems

 Coordinator sets the prices and subordinates solve subproblems using specified prices

o Activity-directed decomposition…….Bender’s method

 The minimization can be written as a nested minimization (also called projection)

 So we need to solve the LP:

 The dual is 

1

2

r

A

A
A

A

 
 
 
 
 
 

 

 

0,min
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T

x y Y c x f y

s t Ax F y b

  

 

    
0

min min . .
T

y Y x
f y c x s t Ax b F y

 
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  
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T T

b F y

s t A c

 



 



Recall that this is related to
Column generation method



Application of Duality
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o So the original problem is equivalent to 

o Since

o Where {λj} are the extreme points of the set:

o Algorithm procedure 

 Start with a trial

 Solve the LP to get  λ (and x = multipliers)… optimum value of z*

 If                        done 

 Else set                   , optimize over        to get new 

o Need convexity of f(y) and the feasible set of Y for convergence

o The above procedure goes under the name of Bender’s decomposition or activity –
directed decomposition

 Resource-directed decomposition
o Consider the same problem as in Dantzig-Wolf decomposition
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Application of Duality
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o Split resource vector b0 into r parts y1,…, yr then

where

o Updating yi is a little more complex here

o Need to find a feasible direction that guarantees a decrease in cost or use subgradient
method

 Non-linear version of decomposition methods… ECE 6437

o Consider

o The problem can be viewed as a two-level scheme

 Coordinator-level: Maximize with respect to λ

 Subordinate level: solve r sub-problems
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



• Summary

 Duality

o SLP ⇒ asymmetric dual

o Inequality constraints ⇒ symmetric dual

o Unconstrained variable ⇒ equality constraint in dual

 Properties

o Minimum of primal ≡ maximum of dual

o Dual of dual ≡ primal

o Interpretations as shadow prices

o Useful in sensitivity analysis (see chapter 5 of Bertsimas and Tsitsiklis)

 Applications of duality to solve large-scale mathematical programming 
problems  …..more to come from lecture 6 onwards

Duality Summary
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