

Prof. Krishna R. Pattipati Dept. of Electrical and Computer Engineering University of Connecticut Contact: <u>krishna@engr.uconn.edu;</u> (860) 486-2890

February 11 & 18, 2016

- What is duality?
 - Examples
 - Dual of standard and inequality constrained LPs
- Properties
 - Minimum of primal = Maximum of dual
 - Dual of dual \equiv Primal
 - Interpretations as shadow prices
- Application of Duality
 - Game theory
 - Large-scale mathematical programming

What is Duality?

- Q: Is there anything more to LP than revised simplex? Yes!!
- What is duality?
 - Associated with every LP, there exists a dual LP
 - Original LP is called *Primal* LP
 - If Primal LP is one of *minimization*, then Dual LP is one of *maximization*
- Duality occurs in many areas of science and engineering
 - Geometry
 - Minimum distance from the origin to points on a line = maximum distance from the origin to planes through that line
 - Systems Theory
 - \circ Observability \Leftrightarrow controllability
 - \circ State \Leftrightarrow costate, adjoint state vector, Lagrange multipliers, dual variables
 - \circ LQR \Leftrightarrow MMSE estimators
 - Convex programming . . . ECE 6437
 - Philosophy: dualistic versus non-dualistic
 - Voltage-current, force-position, Kirchoff's current and voltage laws

$\underline{\lambda}$ at termination is related to optimal cost

- Duality in LP
 - Consider standard LP (also called primal problem)

$$\min \underline{c}^{T} \underline{x}$$

$$s.t. \ A \underline{x} = \underline{b}$$

$$\underline{x} \ge \underline{0}$$

Transformed problem

$$\min \underline{c}_{B}^{T} B^{-1} \underline{b} + \left(\underline{c}_{N}^{T} - \underline{c}_{B}^{T} B^{-1} N\right) \underline{x}_{N}$$

s.t. $\underline{x}_{B} = B^{-1} \underline{b} - B^{-1} N \underline{x}_{N} \ge \underline{0}$
 $\underline{x}_{N} \ge \underline{0}$

- Define $p^T = \underline{c}_N^T \underline{c}_B^T B^{-1} N = \underline{c}_N^T \underline{\lambda}^T N$
- Optimal if:
 - For non-basic variables $\underline{p}_{N}^{T} = \underline{c}_{N}^{T} \lambda^{T} N \ge \underline{0}, \quad \underline{\lambda}^{T} = \underline{c}_{B}^{T} B^{-1}$ Reduced costs of basic

variables are zero

- Also for basic variables $p_{B}^{T} = \underline{c}_{B}^{T} \underline{c}_{B}^{T}B^{-1}B = \underline{0}$
- So, we obtain the key result:
 - $\Rightarrow \left(\underline{c}_{B}^{T} \mid \underline{c}_{N}^{T}\right) \underline{\lambda}^{T} \left[B \mid N\right] \ge \underline{0} \quad \text{or} \quad \underline{c}^{T} \underline{\lambda}^{T} A \ge \underline{0} \Longrightarrow \underline{\lambda}^{T} A \le \underline{c}^{T}$ $\Rightarrow \text{The simplex multipliers satisfy the constraint} \quad \underline{\lambda}^{T} A \le \underline{c}^{T}$ \Rightarrow Optimal cost $= \underline{c}_{B}^{T} B^{-1} \underline{b} = \underline{\lambda}^{T} \underline{b}$

Suppose we formulate the problem:

$$\max \underline{\lambda}^{T} \underline{b}$$

s.t. $\underline{\lambda}^{T} A \leq \underline{c}^{T}$

• Cannot have minimum since $\lambda = 0$, ok

 $\underline{\lambda} = -\infty$, may be ok; at $\underline{\lambda} = \underline{c}_B^T B^{-1}$ cost of dual = optimal cost of primal

• So, we have our *first result* linking primal and dual:

<u>Primal</u>	Dual	
$\min \underline{c}^T \underline{x}$	$\max \lambda^T b$	
s.t. $A\underline{x} = \underline{b}$	$s.t. \lambda^T A \le c^T$	This is because of equality
$\underline{x} \ge \underline{0}$	$S.I. \underline{\lambda} A \leq \underline{C}$	constraint A <u>x</u> = <u>b</u>

- Note that no restriction on sign of *λ* variables
- This relation is called asymmetric form of the dual
- m equality constraints $\Leftrightarrow m$ variables
- *n* variables \Leftrightarrow *n* inequality constraints
- Roles of <u>b</u> and <u>c</u> are reversed

- Example
 - Primal: $\min 5x_1 + 4x_2$ s.t. $x_1 + x_2 = 1$

$$x_1, x_2 \ge \underline{0}$$

- \Rightarrow Optimum at: $x_1 = 0, x_2 = 1$
- \Rightarrow Optimal cost = 4

• Dual $\max \lambda_1$ s.t. $\lambda_1 \le 5, \ \lambda_1 \le 4$

- \Rightarrow Optimum at: $\lambda_1 = 4$
- \Rightarrow Optimal cost = 4
- Key questions
 - 1. Is the minimum of primal = maximum of dual? Yes!!
 - 2. What happens when you have inequality constraints?
 - 3. What is the dual of the dual?
 - 4. What interpretations can we give to dual variables?
 - 5. How do we solve dual problems?.....Dual Simplex
 - 6. Can we combine primal simplex and dual simplex?...Primal-dual methods

Dual of LP with \geq inequality constraints

- Let us take questions 2 and 3 first
- ≥constraints
 - $\min \underline{c}^T \underline{x} + \underline{0}^T y$ Primal $\min c^T x$ $\Rightarrow \quad s.t. \ A\underline{x} - \underline{y} = (A - I) \begin{pmatrix} \underline{x} \\ y \end{pmatrix} = \underline{b}$ s.t. $Ax \ge b$ $\underline{x} \ge \underline{0}$ $\underline{x}, y \ge \underline{0}$ Dual $\max \lambda^T b$ $s.t.\left(\underline{\lambda}^{T}A - \underline{\lambda}^{T}\right) \leq \left(\underline{c}^{T}\underline{0}^{T}\right)$ $\Rightarrow \lambda^T A \leq c^T \text{ and } \lambda \geq 0$ Primal <u>Dual</u> So, $\min c^T x$ $\max \underline{\lambda}^T b$ s.t. $\lambda^T A \leq c^T$ s.t. $x \ge 0$ $Ax \ge b$ $\underline{\lambda} \ge \underline{0}$ $\Rightarrow x \ge 0 \rightarrow \le c^T$ constraints $\Rightarrow \geq b \rightarrow \lambda \geq 0$ \Rightarrow *n* variables *m* inequality constraints \Leftrightarrow *m* variables, *n* inequality constraints

Dual of LP with ≤ inequality constraints

• \leq constraints

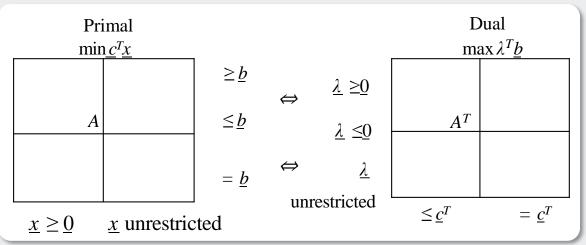
• *x_i* unrestricted

$$\Rightarrow x_j = \overline{x}_j - \hat{x}_j \Rightarrow f = \sum_{\substack{i=1\\i\neq j}}^n c_i x_i + c_j \left(\overline{x}_j - \hat{x}_j\right)$$

$$\underline{b} = \sum_{\substack{i=1\\i\neq j}}^{n} \underline{a}_{i} x_{i} + \underline{a}_{j} \left(\overline{x}_{j} - \hat{x}_{j} \right)$$

- Dual $\max \underline{\lambda}^{T} \underline{b}$ $s.t. \underline{\lambda}^{T} \underline{a}_{i} \leq c_{i}, \quad \forall i \neq j$ $\underline{\lambda}^{T} \underline{a}_{j} = c_{j}, \text{ since } \underline{\lambda}^{T} \underline{a}_{j} \leq c_{j} \&$ $-\underline{\lambda}^{T} \underline{a}_{j} \leq -c_{j} \Rightarrow \underline{\lambda}^{T} \underline{a}_{j} \geq c_{j}$
- So, if a variable is unrestricted, the corresponding dual constraint must hold with equality

• Schematic description of duality



• Dual of a dual \equiv primal (question 3)

$$\max \underline{\lambda}^{T} \underline{b} \\ s.t. \ \underline{\lambda}^{T} A \leq \underline{c}^{T} \qquad \Rightarrow \qquad \min \ -\underline{\lambda}^{T} \underline{b} = \underline{\lambda}^{T} (-\underline{b}) \\ s.t. \ \underline{\lambda}^{T} (-A) \geq -\underline{c}^{T} \end{cases}$$

• So
$$\min\left(\underline{\bar{\lambda}} - \underline{\hat{\lambda}}\right)^{T} (-\underline{b}) = \min \underline{\hat{\lambda}}^{T} \underline{b} - \underline{\bar{\lambda}}^{T} \underline{b}$$

 $s.t. \left(-A^{T} \underline{\bar{\lambda}} + A^{T} \underline{\hat{\lambda}}\right) \ge -\underline{c}$
 $\underline{\bar{\lambda}}, \ \underline{\hat{\lambda}} \ge \underline{0}$
• Let $\underline{\hat{\lambda}}_{a} = \begin{bmatrix} \underline{\bar{\lambda}} \\ \underline{\hat{\lambda}} \end{bmatrix}; \underline{b}_{a} = \begin{bmatrix} -\underline{b} \\ \underline{b} \end{bmatrix}; A_{a}^{T} = \begin{bmatrix} -A^{T} A^{T} \end{bmatrix}$

Maximum of Dual = Minimum of Primal

• Then

$$\min \underline{\lambda}_{a}^{T} \underline{b}_{a}$$

$$s.t. \ A_{a}^{T} \underline{\lambda}_{a} \ge -\underline{c}$$

$$\underline{\lambda}_{a} \ge \underline{0}$$

$$\max -\underline{c}^{T} \underline{x}$$

$$s.t. \ \underline{x}^{T} A_{a}^{T} \le \underline{b}_{a}^{T}$$

$$x \ge \underline{0}$$

$$\max -\underline{c}^{T} \underline{x}$$

$$s.t. \ \underline{x}^{T} A_{a}^{T} \le \underline{b}_{a}^{T}$$

$$\underline{x} \ge \underline{0}$$

$$\Rightarrow A \underline{x} = \underline{b}$$

$$\underline{x} \ge \underline{0}$$

- Q1: Is maximum of dual = minimum of primal
 - First we prove that maximum of dual ≤ minimum of primal

⇒ this is the so-called **weak duality theorem**

Recall

PrimalDual
$$\min \underline{c}^T \underline{x}$$
 $\max \underline{\lambda}^T \underline{b}$ $s.t. A\underline{x} = \underline{b}$ \Leftrightarrow $\underline{x} \ge \underline{0}$ \Leftrightarrow

T

Weak Duality Theorem

- Weak duality theorem
 - Suppose \underline{x} and $\underline{\lambda}$ are feasible for primal and dual problems, respectively. Then $\underline{\lambda}^T \underline{b} \leq \underline{c}^T \underline{x}$ *Optimal* $\Pr{imal} = c_n^T x_n^* = c_n^T$
 - Proof: $\underline{\lambda}^T \underline{b} = \lambda^T A \underline{x} \leq \underline{c}^T \underline{x}$
 - Since $\underline{x} \ge \underline{0}$, we have $\underline{\lambda}^T A \le \underline{c}^T$

 \Rightarrow Maximum of dual \leq minimum of primal

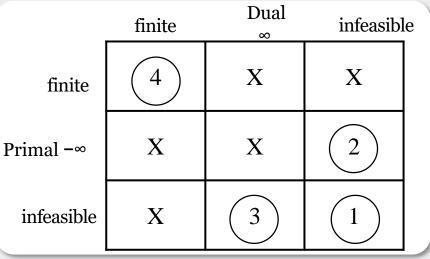
$$Optimal \operatorname{Pr} imal = \underline{c}_{B}^{T} \underline{x}_{B}^{*} = \underline{c}_{B}^{T} B^{-1} \underline{b}$$
$$= \underline{\lambda}^{T} \underline{b} \leq \underline{\lambda}^{*T} \underline{b}$$
$$But, \underline{\lambda}^{T} \underline{b} \leq \underline{c}^{T} \underline{x} \forall feasible \underline{x} and \underline{\lambda}$$
$$so, \underline{\lambda}^{*T} \underline{b} = \underline{c}^{T} \underline{x}^{*} = \underline{c}_{B}^{T} \underline{x}_{B}^{*}$$

(or) cost in the dual is never above the cost in the primal **Dual Cost Primal Cost "**gap"
O

 \Rightarrow Fortunately for LP, gap = $0 \Rightarrow$ max. dual = min. primal \leftarrow

- Suppose \underline{x} and $\underline{\lambda}$ are feasible. If $\underline{\lambda}^T \underline{b} = \underline{c}^T \underline{x}$, then \underline{x} and $\underline{\lambda}$ are optimal
 - Proof:
 - No $\underline{\lambda}$ can give a cost greater than $\underline{c}^T \underline{x}$
 - No <u>x</u> can give a cost smaller than $\underline{\lambda}^T \underline{b} \Rightarrow$ must be optimal and gap = 0
 - An LP terminates in one of three ways
 - 1. Finite optimum, 2. unbounded solution, 3. infeasible solution

Four Primal-Dual Relationships



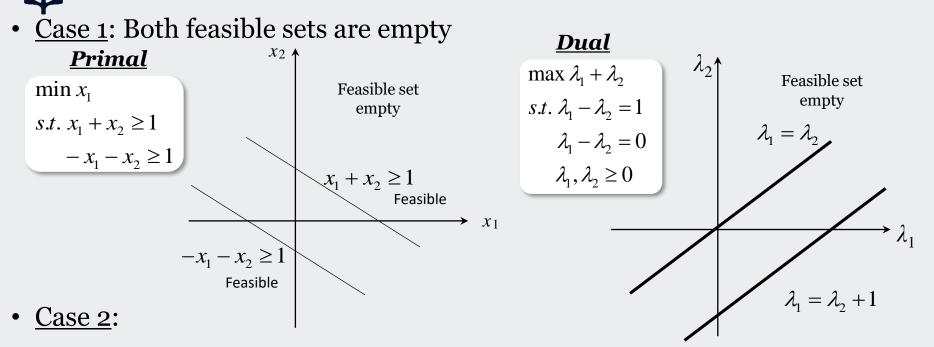
- Primal finite and dual infeasible case
 - Since primal is finite $\underline{c}_N^T \lambda^T N \ge \underline{0} \Rightarrow \underline{\lambda}^T A \le \underline{c}^T$ \Rightarrow A contradiction to the assumption that the dual is infeasible
- Dual finite and primal infeasible case
 - $\Rightarrow \max \underline{\lambda}^T \underline{b} \text{ s.t. } \underline{\lambda}^T A \leq \underline{c}^T \text{ has finite optimum}$
 - Convert into SLP as before

$$\min \ \underline{\lambda}_{a}^{T} \underline{b}_{a}$$
s.t.
$$\underline{\lambda}_{a}^{T} A_{a} - \underline{y}^{T} = -\underline{c}^{T}$$

$$\underline{\lambda}_{a}, \underline{y} \ge \underline{0}$$

• Solution finite \Rightarrow by duality $A\underline{x} = \underline{b}, \underline{x} \ge 0$ is feasible since dual of a dual is a primal

Infeasible and unbounded cases



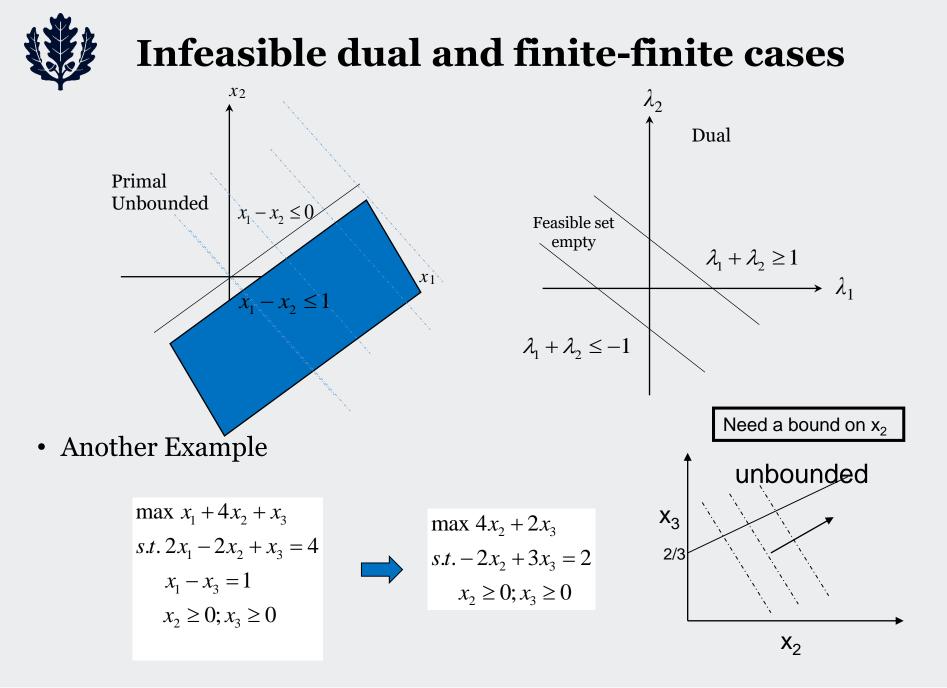
- Minimum in the primal = $-\infty$ (unbounded) \Rightarrow no feasible $\underline{\lambda}$
- If there is a feasible $\underline{\lambda}$, all feasible costs $c^T \underline{x} \ge \lambda^T \underline{b}$
 - \Rightarrow cost cannot go down to $-\infty$

 $\min -(x_1 + x_2)$

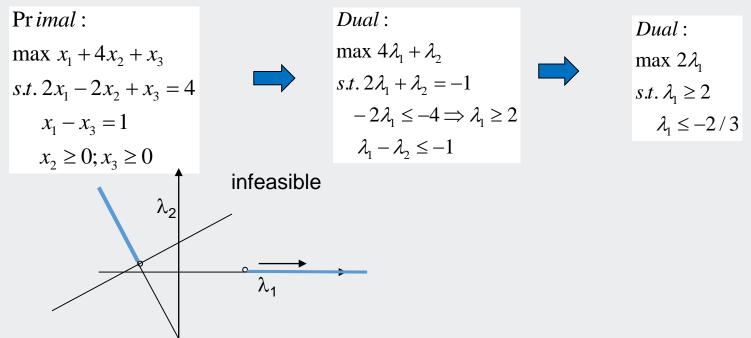
• <u>Example:</u>

Primal:

s.t. $x_1 - x_2 \le 1$ $x_1 - x_2 \le 0$ $x_1, x_2 \ge 0 \Rightarrow \text{ primal unbounded}$ $\underbrace{\text{Dual:}}_{\lambda_1} \quad \text{max } \lambda_1$ $s.t. - \lambda_1 - \lambda_2 \le -1$ $\lambda_1 + \lambda_2 \le -1 \Longrightarrow \text{ dual infeasible}$



Infeasible dual and finite-finite cases



- <u>Case 3</u>: Maximum in the dual = $+\infty \Rightarrow$ there is no feasible <u>x</u>
 - If there is a feasible $\underline{x} \Rightarrow \underline{c}^T \underline{x} \ge \underline{\lambda}^T \underline{b} \ \forall \underline{\lambda}$...a contradiction \Rightarrow infeasible \underline{x}
- <u>Case 4</u>: Finite-finite case • Is finite primal optimal = finite dual optimal • Suppose it is: what does it mean? • Consider SLP and its dual $\begin{array}{c}
 \underline{Primal}\\\\\\min \ \underline{c}^{T} \ \underline{x}\\\\s.t. \ \underline{x} \ge \underline{0}\\\\A \underline{x} \ge \underline{b}\end{array}$ $\begin{array}{c}
 \underline{Dual}\\\\\\max \ \underline{\lambda}^{T} \ \underline{b}\\\\s.t. \ \underline{\lambda}^{T} \ A \le \underline{c}^{T}\end{aligned}$

$$\underline{\lambda}^{T^*}\underline{b} = \underline{\lambda}^T A \underline{x}^* = \underline{c}^T \underline{x}^*$$
$$\Rightarrow \left(\underline{\lambda}^{T^*} A - \underline{c}^T\right) \underline{x}^* = \underline{0}$$

- But, we know $\underline{x}^* \ge \underline{0}$ and $(\underline{c}^T \underline{\lambda}^{T^*}A) \ge \underline{0}$
- The inner product can be zero in only one way:
- \underline{x}^* must be zero in every component where $(\underline{c}^T \underline{\lambda}^{T^*}A)$ is positive and vice versa $\Rightarrow \underline{x}^*$ and $\underline{\lambda}^*$ must enjoy a special relationship
- Complementary slackness condition or orthogonality condition or Karush-Kuhn-Tucker (KKT) conditions
 - For SLP: feasible vectors \underline{x}^* and $\underline{\lambda}^*$ are optimal iff

$$(\underline{c}^{T} - \underline{\lambda}^{T*}A)\underline{x}^{*} = 0$$

• For each *i* =1,2,...,*n*, optimality requires:

1)
$$\underline{x}_{i}^{*} \geq 0 \Longrightarrow \underline{\lambda}^{T^{*}} \underline{a}_{i} = c_{i} \Longrightarrow \text{bfs} \Longrightarrow \underline{c}_{B}^{T} B^{-1} \underline{a}_{i} = \underline{c}_{B}^{T} \underline{e}_{i} = c_{i}$$

2) $\underline{x}_{i}^{*} = 0 \Leftarrow \underline{\lambda}^{T^{*}} \underline{a}_{i} < c_{i} \Longrightarrow \text{nonbasic} \Longrightarrow c_{i} - \underline{c}_{B}^{T} B^{-1} \underline{a}_{i} \ge 0$

• In order to know that we have found an optimal solution \underline{x}^* , we must also know the dual solution $\underline{\lambda}^*$

Orthogonality of reduced costs and \underline{x}^*

• <u>Example</u>:

$$\min 3x_1 + x_2 + 9x_3 + x_4$$

s.t. $\underline{x} \ge \underline{0}$
 $x_1 + 2x_3 + x_4 = 4$
 $x_2 + x_3 - x_4 = 2$

Take basis

$$B = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix} \Longrightarrow \underline{x}_{B} = \begin{bmatrix} x_{2} \\ x_{4} \end{bmatrix} = B^{-1}\underline{b} = \begin{bmatrix} 6 \\ 4 \end{bmatrix}$$
$$\underline{\lambda}^{T} = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 1 \end{bmatrix}$$

Reduced cost vector:

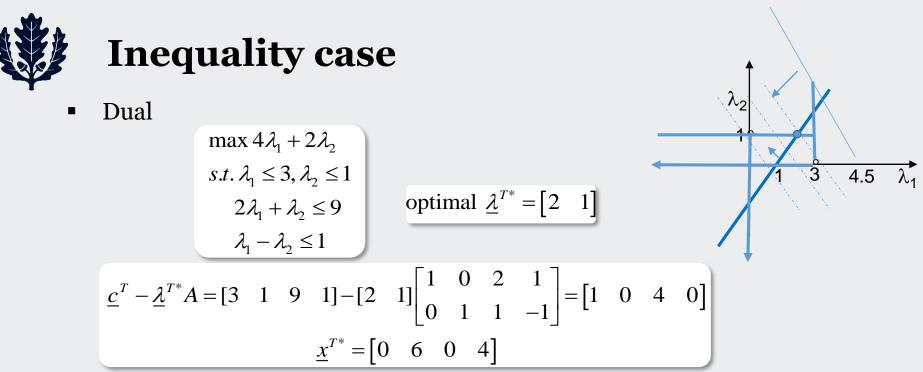
$$p_{1} = 3 - \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 1$$

$$p_{3} = 9 - \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 4 \Rightarrow \text{optimal}$$

$$\Rightarrow \underline{p}^{*T} = \begin{bmatrix} 1 & 0 & 4 & 0 \end{bmatrix}$$

$$\underline{x}^{*T} = \begin{bmatrix} 0 & 6 & 0 & 4 \end{bmatrix}$$

$$\Rightarrow \text{optimal cost} = 10 = \underline{c}^{T} \underline{x}^{*} = \underline{\lambda}^{*T} \underline{b}$$



- \Rightarrow Inner product of reduced costs and \underline{x}^* is zero and $(\underline{\lambda}^*)^T \underline{b} = 10$
- <u>Case 4</u>: What happens if we had inequality constraints and both primal and dual are finite?

- This is **symmetric form of the dual**
- Easy to show the complimentary slackness condition

Complementary Slackness Conditions

Dual

s.t. $\underline{\lambda}^{T}(A-I) \leq [\underline{c}^{T} \quad 0]$

 $\max \underline{\lambda}^T \underline{b}$

• In standard form

<u>Primal</u>

$$\min[\underline{c}^{T} \quad 0]\begin{bmatrix}\underline{x}\\\underline{y}\end{bmatrix}$$

s.t. $A\underline{x} - \underline{y} = \underline{b}$
 $\underline{x}, \underline{y} \ge \underline{0}$

• Apply c. s. conditions of SLP

$$(\underline{c}^{T} - \underline{\lambda}^{T} A)\underline{x} + \underline{\lambda}^{T} \underline{y} = 0 \Longrightarrow (\underline{c}^{T} - \underline{\lambda}^{T} A)\underline{x} + \underline{\lambda}^{T} (A\underline{x} - \underline{b}) = 0$$
$$\Longrightarrow (\underline{c}^{T} - \underline{\lambda}^{T} A)\underline{x} = 0 \text{ and } \underline{\lambda}^{T} (A\underline{x} - \underline{b}) = 0$$

 \circ In words,

1) $x_i > 0 \Rightarrow \underline{\lambda}^T \underline{a}_i = c_i$ (basic) 2) $x_i = 0 \Leftarrow \underline{\lambda}^T \underline{a}_i < c_i$ (nonbasic) 3) $\lambda_i > 0 \Rightarrow \underline{a}^i \underline{x} = b$ (nonbasic surplus) 4) $\lambda_i = 0 \Leftarrow \underline{a}^i \underline{x} > b$ (basic surplus)

where \underline{a}^i is row *i* of *A*

• We will provide physical interpretations later

Pr *imal* :

$$x_1 =$$
 number of barrels of light crude
 $x_2 =$ number of barrels of heavy crude
min $56x_1 + 50x_2$
 $s.t. 0.3x_1 + 0.3x_2 \ge 900,000$
 $0.2x_1 + 0.4x_2 \ge 800,000$
 $0.3x_1 + 0.2x_2 \ge 500,000$
 $x_1 \ge 0; x_2 \ge 0$
optimal point : (0,3*M*)
Cost : \$150*M*

Dual: max 100,000[9 λ_1 + 8 λ_2 + 5 λ_3] s.t. 0.3 λ_1 + 0.2 λ_2 + 0.3 $\lambda_3 \le 56$ 0.3 λ_1 + 0.4 λ_2 + 0.2 $\lambda_3 \le 50$ s.t. $\lambda_1 \ge 0$; $\lambda_2 \ge 0$; $\lambda_3 \ge 0$ optimal point: (500/3 0 0) Cost: \$150M

$$x_{1} = 0 \Rightarrow \frac{500}{3}(0.3) = 50 < c_{1} = 56$$

$$x_{2} > 0 \Rightarrow \frac{500}{3}(0.3) = 50 = c_{2}$$

$$\lambda_{1} > 0 \Rightarrow 0.3*(0) + 0.3*3M = 0.9M$$

$$\lambda_{2} = 0 \Rightarrow 0.2*(0) + 0.4*3M = 1.2M > 0.8M$$

$$\lambda_{3} = 0 \Rightarrow 0.3*(0) + 0.2*3M = 0.6M > 0.5M$$

- Duality Theorem
 - If there is an optimal solution <u>x</u>^{*} for the primal problem, then there is an optimal <u>λ</u>^{*} in the dual and the minimum primal cost <u>c</u>^T<u>x</u>^{*} = the maximum dual cost <u>λ</u>^{T*}<u>b</u>
 - Proof:
 - \underline{x}^* optimal \Rightarrow (*n m*) components are zero and *m* components are nonnegative

$$\underline{x}^* = \begin{bmatrix} \underline{x}_B^* \\ \underline{x}_N^* \end{bmatrix} = \begin{bmatrix} \underline{x}_B^* \\ 0 \end{bmatrix} \text{ and } \underline{x}_B^* = B^{*-1}\underline{b}$$

- We know $\underline{c}^T \underline{x}^* = \underline{c}_B^T B^{*-1} \underline{b}$ and $\underline{p}^T = \underline{c}_N^T \underline{c}_B^T B^{*-1} N^* \ge \underline{0}$
- Pick $\underline{\lambda}^{*T} = \underline{c}_B^T B^{*-1} \Longrightarrow \underline{\lambda}^{*T} \underline{b} = \underline{c}_B^T \underline{x}_B^* = \underline{c}^T \underline{x}^*$
- In addition: $\underline{\lambda}^T A \leq \underline{c}^T$ from $\underline{p}^T \geq \underline{0} \Longrightarrow \underline{\lambda}^*$ is feasible

$$\underline{\lambda}^{T}A = \underline{c}_{B}^{T}B^{*-1}[B^{*} N^{*}] = [\underline{c}_{B}^{T} \underline{c}_{B}^{T}B^{*-1}N^{*}] \leq \underline{c}^{T}$$

 \Rightarrow max. of dual and min. of primal have met

- Since the dual of the dual =primal, the theorem also says that if the dual has a finite optimal solution, so does the primal
- Simplex multipliers at the optimum \underline{x}^* solve the dual LP

Dual variables as synthetic prices

- Interpretation of *simplex multipliers* as synthetic prices of unit vectors in *R^m* (also called shadow prices)
 - $\circ A = [\underline{a}_1, \underline{a}_2, ..., \underline{a}_n]$
 - Cost of vector $i = c_i$ since r.h.s $\underline{b} = \sum_{i=1}^n \underline{a}_i x_i$ and cost $f = \underline{c}^T \underline{x}$ $\underline{e}_i = i^{th}$ unit vector in $R^m \Longrightarrow \underline{a}_i = \sum_{i=1}^m a_{ij} \underline{e}_i$
 - If \underline{a}_i is in basis, it costs c_i units per unit of x_i
 - Suppose basis is first *m* columns and independent

What is the cost of
$$\underline{e}_j$$
, the j^{th} unit vector
 $\underline{e}_j = \sum_{i=1}^m \alpha_i \underline{a}_i \Longrightarrow \underline{e}_j = B \underline{\alpha} \Longrightarrow \underline{\alpha} = B^{-1} \underline{e}_j = (B^{-1})_j$; the j^{th} col. of B^{-1}
cost of $\underline{e}_j = \sum_{i=1}^m \alpha_i c_i = \underline{c}_B^T \underline{\alpha} = \underline{c}_B^T (B^{-1})_j = \lambda_j$

- Simplex multiplier λ_j is the synthetic price of unit vector \underline{e}_j
- What are the uses of multipliers?
- Pricing out a vector
 - Consider any vector \underline{a}_k ; Synthetic price of \underline{a}_k
 - True cost of $\underline{a}_k = \underline{c}_k$; synthetic price of $\sum_{i=1}^m a_{ik} \underline{e}_i = \sum_{i=1}^m a_{ik} \underline{\lambda}_i = \underline{\lambda}^T \underline{a}_k$
 - Relative cost= $c_k \underline{\lambda}^T \underline{a}_k = p_k$ pricing out a vector
 - Optimality \Rightarrow synthetic price < actual (true) price for a non-basic column \underline{a}_k

UCONN

 $\lambda^{*T} = \begin{bmatrix} 2 & 1 \end{bmatrix}$

 $\operatorname{cost} \operatorname{of} \begin{bmatrix} 1 \\ -1 \end{bmatrix} = \lambda_1 - \lambda_2 = 1$

Dual variables and sensitivity

- Fundamental data items in LP: $(\underline{c}, A, \underline{b})$
- Changes in <u>c</u>
 - Changes in *non-basic* coefficients
 - Changes in *basic* coefficients
- Changes in <u>b</u>
- Changing the column of a non-basic variable, i.e., change in *A*
- Adding a new variable ⇒ add a coefficient to <u>c</u> and a column in A corresponding to the new variable
 - Change the number of columns in *A* and size of <u>c</u> vector
- Adding a new constraint, i.e., add a coefficient to \underline{b} and a row in A
- What if multiple parameters change?

LICONN

Changes in objective function coefficients

- Allowable changes in non-basic variables (NBV) w/o changing the basis
 - 0 Consider the example again: $p_1=1$ can change c_1 from 3 to 2 w/o changing basis and optimal solution $\Rightarrow c_1 \rightarrow c_1 + \delta_1$ where $\delta_1 \ge -1$ (or) $2 \le c_1 \le \infty$
 - $p_3 = 4$ can change c_3 from 9 to 5 w/o changing basis and the optimal solution 0

 $\Rightarrow c_3 \rightarrow c_3 + \delta_3$ where $\delta_3 \ge -4 \Rightarrow 5 \le c_3 \le \infty$

In general, for non-basic variables 0 $\lambda^T a_i = c_B^T B^{-1} a_i \leq c_i \leq \infty; i \in NBV$

f^{*} does not change <u>x</u>^{*} does not change λ^* does not change

- What if the changes in *NBV* are outside of allowable range?
 - Reduced cost, $p_i < 0$ and the current basis is no longer optimal 0
 - Bring *x_i* into the basis (**good to use primal simplex!**) Ο
- $B^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$ What if the objective function coefficient of a *basic variable* (*BV*) j = 2; l = 1 $\delta_2 \le \min\{1, 4/3\} = 1$ changes (again good to use primal simplex!) $\delta_4 \leq \min\{1, 4/2\} = 1$
 - If c_j is the cost co-efficient of l^{th} basic variable, that is, j=BV(l)0 f^{*} changes then $\underline{c}_B = \underline{c}_B + \delta_i \underline{e}_l$ x^{*} does not change $\Rightarrow (\underline{c}_B + \delta_i \underline{e}_l)^T B^{-1} \underline{a}_i = c_i \quad \forall i \in BV \& (\underline{c}_B + \delta_i \underline{e}_l)^T B^{-1} \underline{a}_i \leq c_i \quad \forall i \in NBV$ $\underline{\lambda}^*$ changes $\Rightarrow \delta_{j}(B^{-1}\underline{a}_{i})_{l} \leq p_{i} \quad \forall i \in NBV \Rightarrow \max_{i \in NBV: (B^{-1}\underline{a}_{i})_{l} < 0} \left(\frac{p_{i}}{(B^{-1}a_{i})_{l}}\right) \leq \delta_{j} \leq \min_{i \in NBV: (B^{-1}\underline{a}_{i})_{l} > 0} \left(\frac{p_{i}}{(B^{-1}a_{i})_{l}}\right) \leq \delta_{j} \leq 0$

 $\min 3x_1 + x_2 + 9x_3 + x_4$

 $x_1 + 2x_3 + x_4 = 4$

 $x_2 + x_3 - x_4 = 2$

 $p^{*T} = \begin{bmatrix} 1 & 0 & 4 & 0 \end{bmatrix}$

s.t. $x \ge 0$

Basic : x_2, x_4 $\underline{\lambda}^{T^*} = \begin{bmatrix} 2 & 1 \end{bmatrix}$

 $B = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$

Changes in objective variable coefficients

Example

Changes in RHS of constraints

- Sensitivity analysis
 - How does optimal cost change as we change \underline{b} by "a small amount"?
 - Recall that $\partial f / \partial b_i = \lambda_i$ = marginal cost
 - $\circ \quad \Delta b_i \,$ ="small" in the sense that the basis does not change
 - \circ So if

0

$$\underline{b} \to \underline{b} + \Delta \underline{b} \Longrightarrow f^* = (\underline{\lambda}^T)^* (\underline{b}) = \underline{c}^T \underline{x}^* \to f^* + \Delta f = (\underline{\lambda}^T)^* (\underline{b} + \Delta \underline{b})$$

$$\Delta f = (\underline{\lambda}^T)^* \Delta \underline{b} \Longrightarrow \lambda_j = \frac{\Delta f}{\Delta b_j} = \frac{\text{(change in solution)}}{\text{(change in constraint data)}}$$

• Another way: changes in \underline{b} causes changes in bfs

$$\Rightarrow \underline{x}_B \to \underline{x}_B + \Delta \underline{x}_B \text{ where } \Delta \underline{x}_B = B^{-1} \Delta \underline{b}$$
$$\Rightarrow \Delta f = \underline{c}_B^T \Delta \underline{x}_B = \underline{c}_B^T B^{-1} \Delta \underline{b} = (\underline{\lambda}^T)^* \Delta \underline{b}$$

If
$$\Delta \underline{b} = \delta \underline{e}_i$$
, that is, $b_i = b_i + \delta$,
 $\Delta \underline{x}_B = \delta B^{-1} \underline{e}_i = \delta (B^{-1})_i, (B^{-1})_i = i^{th}$ column of B^{-1}
 $Need : \underline{x}_B + \delta (B^{-1})_i \ge \underline{0}$
 $\Rightarrow \Delta f = \underline{c}_B^T \Delta \underline{x}_B = \delta \underline{c}_B^T (B^{-1})_i = \delta (\underline{\lambda}^T)^* \underline{e}_i = \delta \lambda_i$

Good to work with dual simplex if <u>b</u> changes: Lecture 5

$$\min 3x_{1} + x_{2} + 9x_{3} + x_{4}$$

s.t. $\underline{x} \ge 0$
 $x_{1} + 2x_{3} + x_{4} = 4$
 $x_{2} + x_{3} - x_{4} = 2$
Basic: x_{2}, x_{4}
 $\underline{x}_{B}^{*T} = \begin{bmatrix} 6 & 4 \end{bmatrix}$
 $\underline{\lambda}^{T*} = \begin{bmatrix} 2 & 1 \end{bmatrix}$
 $\underline{p}^{*T} = \begin{bmatrix} 1 & 0 & 4 & 0 \end{bmatrix}$
 $B = \begin{bmatrix} 0 & 1 \\ 1 & -1 \end{bmatrix}$
 $B^{-1} = \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix}$

$$f^* changes$$

x* changes
\lambda* does not change

How much can you change b_i

- A key question often asked is:
 - How much $\Delta \underline{b}$ can we tolerate w/o changing basis:
 - o Recall

$$\underline{x}_{B} = B^{-1}\underline{b} - B^{-1}N\underline{x}_{N} \ge \underline{0}$$
$$\underline{x}_{N} = \underline{0} \Longrightarrow \underline{x}_{B} = B^{-1}\underline{b}$$

 $\circ \quad \text{Suppose} \quad b_i \to b_i + \delta \Longrightarrow \underline{b} = \underline{b} + \delta \underline{e}_i$

- For feasibility, need $B^{-1}(\underline{b} + \delta \underline{e}_i) \ge \underline{0}$ ○ Let $g = B^{-1}\underline{e}_i \Longrightarrow (B^{-1})_i$ is i^{th} column of B^{-1}
- $\begin{array}{ccc} \circ & \operatorname{Let} & \underline{s} = B & \underline{c}_i \implies (B & j_i \text{ is } i \text{ column of } B \\ \\ \circ & \operatorname{Or} & \underline{x}_B + \delta g \ge \underline{0} \text{ or } x_{B(j)} + \delta g_j \ge \underline{0}, j = 1, 2, ..., m \end{array}$

Equivalently,
$$\max_{\{j:g_j>0\}} \left(-\frac{x_{B(j)}}{g_j}\right) \le \delta \le \min_{\{j:g_j<0\}} \left(-\frac{x_{B(j)}}{g_j}\right)$$

$$\min 3x_1 + x_2 + 9x_3 + x_4$$

s.t. $\underline{x} \ge \underline{0}$
 $x_1 + 2x_3 + x_4 = 4$
 $x_2 + x_3 - x_4 = 2$
$$\underline{\lambda}^T = \begin{bmatrix} 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 2 & 1 \end{bmatrix}$$

$$p_{1} = 3 - \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = 1$$

$$p_{3} = 9 - \begin{bmatrix} 2 & 1 \end{bmatrix} \begin{bmatrix} 2 \\ 1 \end{bmatrix} = 4 \Rightarrow \text{optimal}$$

$$\Rightarrow \underline{p}^{*} = \begin{bmatrix} 1 & 0 & 4 & 0 \end{bmatrix}$$

$$\underline{x}^{*} = \begin{bmatrix} 0 & 6 & 0 & 4 \end{bmatrix}$$

$$\Rightarrow \text{optimal cost} = 10 = \underline{c}^{T} \underline{x}^{*} = \underline{\lambda}^{*T} \underline{b}$$

• Example: a) $b_f \rightarrow b_1 + \delta \Rightarrow$ can find δ when feasibility of \underline{x}_B is violated

$$\underline{g} = B^{-1}\underline{e}_1 = \begin{bmatrix} 1\\1 \end{bmatrix} \Rightarrow \max(-6, -4) \le \delta \Rightarrow -4 \le \delta \Rightarrow 0 \le b_1 \le \infty$$
$$b_2 \to b_2 + \delta, \underline{g} = \begin{bmatrix} 1\\0 \end{bmatrix} \Rightarrow -6 \le \delta \Rightarrow -4 \le b_2 \le \infty$$

Other interesting changes

- Changes to a non-basic column ("pricing out a new column")
 - Cost c_i ; column \underline{a}_i

If $p_i = c_i - \underline{\lambda}^{*T} \underline{a}_i \ge 0$, basis is still the same.

Otherwise, bring variable x_i into the basis.

- Adding a new variable is similar to changing a non-basic column
- What if multiple cost coefficients are changed?
 - For non-basic, reduced costs tell us whether the basis is optimal or not
 - For multiple changes in basic coefficients, use 100% rule

 c_j = original cost coefficient with bounds $c_j - D_j \le c_j \le c_j + I_j; D_j \ge 0; I_j \ge 0$

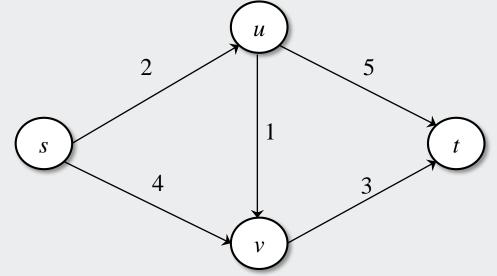
$$r_{j} = \begin{cases} \frac{d_{j}}{I_{j}}; d_{j} \ge 0\\ \frac{-d_{j}}{D_{j}}; d_{j} \le 0 \end{cases}; d_{j} = \text{ change in } c_{j}$$

100% rule: $\sum r_j \le 1 \Rightarrow$ basis does not change. Sufficient condition, but not necessary!

• Similar rule applies to multiple coefficient changes in <u>b</u>

Economic interpretation of dual variables

- Economic interpretation of Lagrange multipliers
 - Consider the shortest path problem again



- *s*, *u*, *v*, *t* are computers, edge lengths are costs of sending a message between them
- Q: What is the cheapest way to send a message from *s* to *t*?
- Want to minimize message cost...AT&T
- Intuitively, $x_{sv} = x_{ut} = 0$ (i.e., no messages are sent from *s* to *v* and from *u* to *t*)
- Shortest path $s \rightarrow u \rightarrow v \rightarrow t \Rightarrow x_{su} = x_{uv} = x_{vt} = 1$
- Shortest path length =2+1+3=6

LP formulation of shortest path problem

- Let x_{sv} be the fraction of messages sent from *s* to *v*
- Problem Formulation

$$\min 2x_{su} + 4x_{sv} + x_{uv} + 5x_{ut} + 3x_{vt}$$

s.t. $x_{su}, x_{sv}, x_{uv}, x_{ut}, x_{vt} \ge 0$
 $x_{su} - x_{uv} - x_{ut} = 0$ (message not lost at u)
 $x_{sv} + x_{uv} - x_{vt} = 0$ (message not lost at v)
 $x_{ut} + x_{vt} = 1$ (message received at t)

- Add all constraints $\Rightarrow x_{su} + x_{sv} = 1$ which it must be!! \Rightarrow only 3 independent constraints (although 4 nodes)
- In matrix notation:

$$A\underline{x} = \begin{bmatrix} 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_{su} \\ x_{sv} \\ x_{uv} \\ x_{ut} \\ x_{vt} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \underline{b}$$

• In general, *n* nodes *n*-1 independent equations

Dual of shortest path problem

- Dual of shortest path
 - \circ $\,$ Can view it as competition to AT&T (say, Sprint) $\,$
 - \circ $\,$ Sprint doesn't say how it gets the message from source to destination
 - Sprint announces the price of a message at each node: λ_s , λ_u , λ_v and λ_t
 - \circ $\,$ Sprint will buy at these prices at any node and sell it back at other nodes
 - ★ λ_s = price of a message at node *s* (buying or selling)
 - $\, \bigstar \, \lambda_t = \text{price of a message at node } t \text{ (buying or selling)}$
 - **Profit:** $\lambda_t \lambda_s$ price difference
 - Assume $\lambda_s = 0$, since we are interested in price difference
 - To stay competitive, Sprint cannot charge more than AT&T: $\Rightarrow \lambda_u - \lambda_s = \lambda_u \le 2$

$$\lambda_{v} \leq 4$$

$$\lambda_{v} - \lambda_{u} \leq 1$$

$$\lambda_{t} - \lambda_{u} \leq 5$$

$$\lambda_{t} - \lambda_{v} \leq 3$$
print problem
$$s.t. \begin{bmatrix} \lambda_{u} & \lambda_{v} & \lambda_{t} \end{bmatrix} \begin{bmatrix} 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \leq \begin{bmatrix} 2 & 4 & 1 & 5 & 3 \end{bmatrix}$$

$$\Rightarrow \underline{\lambda}^{T} A \leq \underline{c}^{T}$$

- Sprint maximizes its income and AT&T minimizes its cost!!
- o Lowest cost on AT&T = highest income of Sprint!!

UCONN

S

Ο

CS condition in shortest path problem

- Let us formalize these notions with our example
 - $\circ \quad \text{Optimal path } s \to u \to v \to t$

Basis
$$B = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}; \underline{x}_{B} = \begin{bmatrix} x_{1} \\ x_{3} \\ x_{5} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}; B\underline{x}_{B} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \underline{b}$$

$$\underline{\lambda}^{T} = \begin{bmatrix} 2 & 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 3 & 6 \end{bmatrix}$$

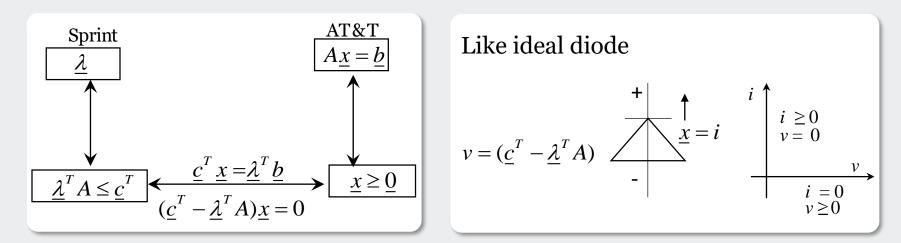
• Sprint prices $\lambda_u = 2$, $\lambda_v = 3$ and $\lambda_t = 6$; profit: $\lambda_t - \lambda_s = 6$

• AT&T path: $s \rightarrow u \rightarrow v \rightarrow t$; cost: 6

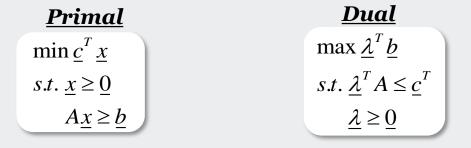
- Duality: minimum cost on AT&T=maximum profit on Sprint
- Optimality:

$$\circ \quad (\underline{c}^{T} - \underline{\lambda}^{T} A) \underline{x} = 0$$

- \circ Edges in the shortest path > 0
- On these edges, $\lambda_u \lambda_s = \lambda_u = 2 = c_{su}$; $\lambda_v \lambda_u = 1 = c_{uv}$; $\lambda_t \lambda_v = 3 = c_{vt}$
- Satisfies complementary slackness condition. Note that λ_u , λ_v , λ_t are the lengths of the shortest paths from *s* to the nodes *u*, *v*, and *t*, respectively
- Dual can be solved by successively relaxing the dual constraints & finding the shortest paths from source to each node recursively...DIJKSTRA's algorithm



• Synthetic price interpretation ... inequality constrained case

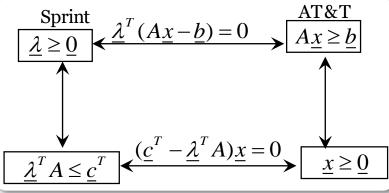


• Optimality:

1.
$$(\underline{c}^{T} - \underline{\lambda}^{T} A) \underline{x} = 0$$

2. $\underline{\lambda}^{T} (A \underline{x} - \underline{b}) = 0$

Minimax theorem



- Top relation equivalent to grounding a node to recover KCL \Rightarrow conservation of current
 - If $\lambda_i > 0$ the node is above ground and KCL applies
 - If $\lambda_j = 0$ node is grounded to draw excess current $(A\underline{x}-\underline{b})_j$
- Saddle point interpretation and minimax theorem
 - Consider standard LP

$$\min \underline{c}^{T} \underline{x}$$

s.t. $A\underline{x} = \underline{b}$
 $\underline{x} \ge \underline{0}$

• This is equivalent to:

$$\min \underline{c}^{T} \underline{x}$$

s.t. $A \underline{x} = \underline{b}$
 $\underline{x} \ge \underline{0}$

$$= \min_{\underline{x} \ \underline{\lambda}} \max \left[\underline{c}^{T} \underline{x} + \underline{\lambda}^{T} (\underline{b} - A \underline{x}) \right]$$

s.t. $\underline{\lambda}$ unrestricted
 $\underline{x} \ge \underline{0}$

 \circ <u> λ </u> ~ vector of Lagrange multipliers enforcing the constraint

o If
$$A\underline{x} \neq \underline{b}, |\underline{\lambda}| \rightarrow \infty$$

Duality and Game Theory

Suppose we can interchange \underline{x} and $\underline{\lambda}$

$$\max_{\underline{\lambda}} \min_{\underline{x}} \left[\left(\underline{c}^{T} - \underline{\lambda}^{T} A \right) \underline{x} + \underline{\lambda}^{T} \underline{b} \right]$$

$$s.t. \qquad \underline{\lambda} \text{ unrestricted}$$

$$\underline{x} \ge \underline{0}$$

$$= \max_{\underline{\lambda}} \underline{\lambda}^{T} \underline{b}$$

$$s.t. \qquad \underline{\lambda} \text{ unrestricted}$$

$$\left(\underline{c}^{T} - \underline{\lambda}^{T} A \right) \ge \underline{0}$$

• Note: Don't get minimum = $-\infty$ if $(\underline{c}^T - \underline{\lambda}^T A) \ge \underline{0} \Longrightarrow \underline{x} = \underline{0}$

• So, duality is equivalent to finding the saddle point $(\underline{x}^*, \underline{\lambda}^*)$ that maximizes $L(\underline{x}, \underline{\lambda}) = \underline{c}^T \underline{x} - \underline{\lambda}^T A \underline{x} + \underline{\lambda}^T \underline{b}$ w.r.t $\underline{\lambda}$ and that minimizes $L(\underline{x}, \underline{\lambda})$ w.r.t \underline{x}

	$\max_{\underline{\lambda}} \min_{\underline{x}} L(\underline{x}, \underline{\lambda})$
=	s.t. $\underline{\lambda}$ unrestricted
	$\underline{x} \ge \underline{0}$
	=

- \circ $\;$ This is called minimax theorem
- Game Theory: Suppose we have two decision makers (players) *y* and *z*
 - \circ y is the row player; y chooses one of m strategies
 - \circ z is the column player; z chooses one of n strategies
 - If the row player chooses strategy *i* and column player chooses strategy *j*, the row player *receives* a reward of a_{ij} and the column player *loses* an amount a_{ij}
 - Such a game is called **a two person zero-sum game**

Minimax Strategies

Example

0

Row Strategy	Column	Player	Strategy	Row Min.	Sadd
	Column 1	Column 2	Column 3		max all rows
Row 1	4	4	10	4	$= m_{all co}$
Row 2	2	3	1	1	Neith
Row 3	6	5	7	5	chan Q: A
Col. Max.	6	5	10		

Saddle point condition: max (row minimum) = min (column maximum) Neither player can unilaterally change strategy and benefit. Q: Are all strategies pure? NO!

- **Mixed (Randomized) Strategy:** Suppose we have two football coaches *y* and *z*
 - \circ *z* is the offensive (column) coach and *y* is the defensive (row) coach
 - \circ *z* chooses between run and pass
 - *y* chooses defense against run or pass
 - To fix ideas, suppose if y defends against a run and z chooses to run he gains 1 yard. On the other hand if z chooses to pass, he gets 7 yards
 - If y defends against a pass and z chooses to run, he gets 5 yards. On the other hand, if z chooses to pass, he loses 5 yards

Minimax Randomized strategies

 $A = \begin{bmatrix} z \\ Run & Pass \\ 1 & 7 \\ 5 & -5 \end{bmatrix}$ Defend against run Defend against pass y

- Pay-off matrix for y = -pay-off matrix for z
- \circ y and z must employ mixed randomized strategies
- \circ If *z* always runs, he cannot make it (the opponent can learn and defend against run!)
- Suppose λ_1 is the probability that *z* will run, $(1 \lambda_1)$ is the probability of pass
- Expected gain $\lambda_1 + 7 7\lambda_1 = 7 6\lambda_1$ if y defends against run

 $5\lambda_1 - 5 + 5\lambda_1 = 10\lambda_1 - 5$ if y defends against pass

- o y would minimize z's gain. z will maximize the minimum gain
- Note: $7 6\lambda_1$ decreases with λ_1 , while $10 \lambda_1 5$ increases
- Optimum when $7 6\lambda_1 = 10 \lambda_1 5 \Rightarrow \lambda_1 = 12/16 = 3/4$
 - \Rightarrow offense should run 3/4 of the time
 - \Rightarrow expected gain: 7- (18/4) = 2.5 yards
- What about y?
 - y will minimize the maximum
 - Expected gain of z $x_1 + 5 5x_1 = 5 4x_1$ if z chooses to run

 $7x_1 - 5 + 5x_1 = 12x_1 - 5$ if *z* chooses to pass

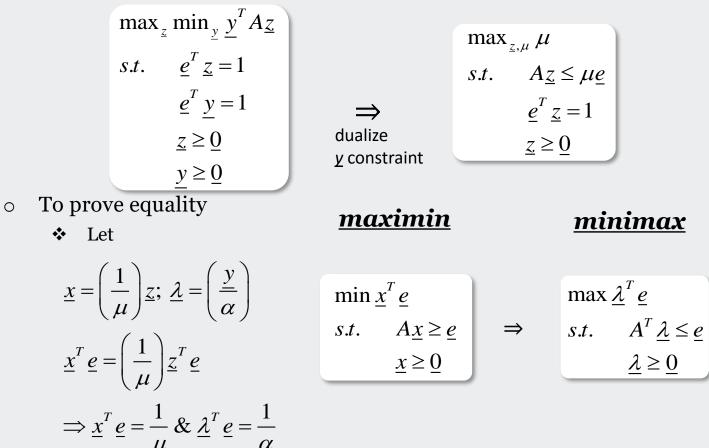
Minimax Theorem and Duality

- Minimize maximum gain $\Rightarrow x_1 = 5/8$
- Expected gain of z: 7 (18/4) = 2.5 yards
- Neither player can do better by making a change
- A simple derivation of minimax theorem of game theory

• Two players y and zy $\begin{bmatrix} \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$ Pay-off to $f = y^T A z$ 0 Consider the minimax problem $\min_{y} \max_{z} y^{T} A \underline{z}$ Ο $\min_{\underline{y},\alpha} \alpha$ s.t. $\underline{z}^T \underline{e} = 1$ s.t. $A^T \underline{y} \leq \alpha \underline{e}$ Recall Ο $y^T \underline{e} = 1$ $y^T \underline{e} = 1$ \Rightarrow $\max_{\underline{z}} \underline{y}^T A \underline{z}$ dualize $s.t. \quad \underline{z}^T \underline{e} = 1$ $\underline{z} \ge \underline{0}$ $\Rightarrow \qquad \min \alpha$ $s.t. \quad \underline{e}\alpha \ge A^T \underline{y}$ $\underline{z} \ge \underline{0}$ $y \ge \underline{0}$ <u>z</u> constraint $y \ge \underline{0}$

Proof of Minimax theorem

• Alternatively, consider maximin problem



- From duality theorem maximin \equiv minimax
- You can always add a constant to all elements of *A* so that μ and $\alpha > 0$.

Stone, Paper, Scissors Problem

Reward structure for row player: *Stone* \succ *Scissors*; *Scissors* \succ *Paper*; *Paper* \succ *Stone*

Row Strategy	Column	Player	Strategy	Row Min.
	Stone	Paper	Scissors	
Stone	0	-1	1	-1
Paper	1	0	-1	-1
Scissors	-1	1	0	-1
Col. Max.	1	1	1	

y game:Maximin
max
$$\lambda_1 + \lambda_2 + \lambda_3$$

s.t. $\lambda_1 + 2\lambda_2 \le 1$
 $\lambda_2 + 2\lambda_3 \le 1 \Longrightarrow \lambda_i = \frac{1}{3}; \alpha = 1$
 $\lambda_3 + 2\lambda_1 \le 1$
 $\lambda \ge 0$

Add 1 to each element of matrix A

Row Strategy	Column	Player	Strategy	Row Min.	
	Stone	Paper	Scissors		
Stone	1	0	2	0	
Paper	2	1	0	0	
Scissors	0	2	1	0	
Col. Max.	2	2	2		

z game:Minimax
min
$$x_1 + x_2 + x_3$$

s.t. $x_1 + 2x_3 \ge 1$
 $2x_1 + x_2 \ge 1 \Longrightarrow x_i = \frac{1}{3}; \mu = 1$
 $2x_2 + x_3 \ge 1$
 $x \ge 0$

Reward of original game = 0

Other interesting game problems

Two person non-constant sum games: Example: Prisoner's dilemma

Prisoner 1	Prisoner 2	
	Confess	Don't confess
Confess	(-5,-5)	(0,-20)
Don't confess	(-20,0)	(-1,-1)

Equilibrium strategy: (-5, -5)

Non-cooperative Game Theory

UCONN

- Nash equilibrium, Bayesian games,...
- Cooperative game theory with N decision makers
 - Now, you can form coalitions
 - Characteristic function of a coalition v(S), $S \subseteq N = \{1, 2, 3, ..., N\}$
 - Core of a game: Undominated reward imputations
 - Sahpley value: How should rewards be allocated equitably?
- Incentives, Auctions and Mechanism Design

Good book: Y. Narahari, *Game Theory and Mechanism Design*, World Scientific, 2014.

Finding the core is equivalent to solving a system of linear inequalities

Duality and Decomposition

Strategies for solving large-scale mathematical programming problems

• Separable Problems

$$\min_{\underline{x}_1, \dots, \underline{x}_r} \sum_{i=1}^r f_i(\underline{x}_i)$$

s.t. $\underline{x}_i \in \Omega_i; i = 1, \dots, r$

◆ Due to separability, can solve *r* decoupled problems

for
$$i = 1, ..., r$$

 $\min_{\underline{x}_i} f_i(\underline{x}_i)$
s.t. $\underline{x}_i \in \Omega_i$
end

• Dantzig-Wolf decomposition . . . price-directed decomposition $\min \underline{c}^T \underline{x}$

s.t.
$$A\underline{x} \ge \underline{b}$$

 $\overline{A}\underline{x} \ge \underline{b}$
 $\underline{x} \ge \underline{0}$

- ✤ To illustrate the method consider
- Let $\underline{\overline{X}} = \{ \underline{x} : \underline{x} \ge \underline{0}, A\underline{x} \ge \underline{b} \}$

Further, let $\{\underline{x}_1, ..., \underline{x}_p\}$ be the extreme points of this set. Then:

Application of Duality

 \bullet This LP can be rewritten using

Let
$$\underline{x} = \sum_{j=1}^{p} \alpha_j x_j; \sum_{j=1}^{p} \alpha_j = 1$$

then the above LP is equivalent to:

$$\min_{\underline{\alpha} \ge \underline{0}} \underline{c}^{T} \left(\sum_{j=1}^{p} \alpha_{j} x_{j} \right)$$

i.t.
$$\sum_{j=1}^{p} \alpha_{j} = 1$$
$$\overline{A} \left(\sum_{j=1}^{p} \alpha_{j} x_{j} \right) \ge \overline{\underline{b}}$$

• At optimum, we need $\underline{\lambda} \ge \underline{0}$ and

1

$$\underline{c}^{T} \underline{x}_{j} - \lambda_{0} - \underline{\lambda}^{T} \overline{A} \underline{x}_{j} \ge \underline{0}; \ j = 1, ..., p$$

 $\clubsuit \quad \text{So need}$

$$\min_{1 \le j \le p} \left(\underline{c}^T - \underline{\lambda}^T \overline{A} \right) \underline{x}_j - \lambda_0 \ge \underline{0}$$

✤ or

$$\min_{\underline{x}\in\overline{\underline{x}}}\left(\underline{c}^{T}-\underline{\lambda}^{T}\overline{A}\right)\underline{x}-\lambda_{0}\geq\underline{0}$$

✤ Note that if

$$\overline{A} = \begin{bmatrix} A_1 & \dots & \dots & \vdots \\ \vdots & A_2 & \vdots & \vdots \\ \vdots & \dots & \ddots & \vdots \\ \vdots & \dots & \dots & A_r \end{bmatrix}$$

Recall that this is related to Column generation method

- * The minimization problem decouples into r sub-problems
- ✤ Coordinator sets the prices and subordinates solve subproblems using specified prices
- o Activity-directed decomposition......Bender's method

$$\min_{\underline{x} \ge \underline{0}, \underline{y} \in Y} \underline{c}^T \underline{x} + f\left(\underline{y}\right)$$

s.t. $A\underline{x} + F\left(\underline{y}\right) \ge \underline{b}$

The minimization can be written as a nested minimization (also called projection)

$$\min_{\underline{y}\in Y} \left[f\left(\underline{y}\right) + \min_{\underline{x}\geq \underline{0}} \left\{ \underline{c}^T \underline{x} \quad s.t. \quad A\underline{x}\geq \underline{b} - F\left(\underline{y}\right) \right\} \right]$$

• So we need to solve the LP: $\min_{x\geq 0} \underline{c}^T \underline{x}$

s.t.
$$A\underline{x} \ge \underline{b} - F(\underline{y})$$

• The dual is
$$\max_{\lambda \ge 0} \underline{\lambda}^T \left(\underline{b} - F(\underline{y}) \right)$$

s.t. $\underline{\lambda}^T A \le \underline{c}^T$

Application of Duality

- So the original problem is equivalent to Ο $\min_{\boldsymbol{y} \in \boldsymbol{Y}} \left| f\left(\underline{\boldsymbol{y}}\right) + \max_{\boldsymbol{\lambda} \ge 0} \left\{ \underline{\boldsymbol{\lambda}}^{T}\left(\underline{\boldsymbol{b}} - F\left(\underline{\boldsymbol{y}}\right)\right) \quad s.t. \; \underline{\boldsymbol{\lambda}}^{T} \boldsymbol{A} \le \underline{\boldsymbol{c}}^{T} \right\} \right]$
- Since 0

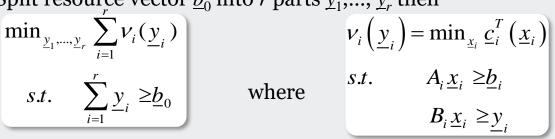
$$\max_{\underline{\lambda} \ge \underline{0}} \left\{ \underline{\lambda}^{T} \left(\underline{b} - F \left(\underline{y} \right) \right) \quad s.t. \, \underline{\lambda}^{T} A \le \underline{c}^{T} \right\} = \max_{1 \le j \le p} \underline{\lambda}_{j}^{T} \left(\underline{b} - F \left(\underline{y} \right) \right)$$

- Where $\{\underline{\lambda}_i\}$ are the extreme points of the set: Ο $\left\{ \underline{\lambda} : \underline{\lambda} \ge \underline{0} \text{ and } \underline{\lambda}^T A \le \underline{c}^T \right\}$ $\min_{y \in Y} \left[f\left(\underline{y}\right) + y_0 \right]$ $\Rightarrow s.t. \quad y_0 \ge \underline{\lambda}_j^T \left(\underline{b} - F\left(\underline{y} \right) \right)$ Algorithm procedure
- 0
 - Start with a trial (\hat{y}, \hat{y}_0) *
 - Solve the LP to get $\underline{\lambda}$ (and \underline{x} = multipliers)... optimum value of z^*
 - If $\hat{y}_0 \ge z^* \Longrightarrow$ done
 - **\therefore** Else set $\hat{y}_0 = z^*$, optimize over \underline{y} to get new \hat{y}
- Need convexity of f(y) and the feasible set of Y for convergence 0
- The above procedure goes under the name of Bender's decomposition or activity 0 directed decomposition
- **Resource-directed decomposition**
 - Consider the same problem as in Dantzig-Wolf decomposition Ο

Application of Duality

$$\min_{\underline{x}_{1},...,\underline{x}_{r}} \sum_{i=1}^{r} \underline{c}_{i}^{T} \underline{x}_{i}$$
$$\Rightarrow s.t. \quad A_{i} \underline{x}_{i} \ge \underline{b}_{i}$$
$$\sum_{i=1}^{r} B_{i} \underline{x}_{i} \ge \underline{b}_{0}$$

• Split resource vector \underline{b}_0 into *r* parts $\underline{y}_1, \dots, \underline{y}_r$ then



- Updating y_i is a little more complex here
- Need to find a feasible direction that guarantees a decrease in cost or use subgradient method
- Non-linear version of decomposition methods... ECE 6437

• Consider
$$\min_{\underline{x}} \sum_{i=1}^{r} f_i(\underline{x}_i)$$

s.t. $\sum_{i=1}^{r} g_i(\underline{x}_i) \leq \underline{b}$

• The problem can be viewed as a two-level scheme

- Coordinator-level: Maximize with respect to $\underline{\lambda} \max_{\underline{\lambda} \ge \underline{0}} \left| \underline{\lambda}^T \underline{b} + \sum_{i=1}^r \min_{\underline{x}_i} \left\{ f_i(\underline{x}_i) \underline{\lambda}^T g_i(\underline{x}_i) \right\} \right|$
- ◆ Subordinate level: solve *r* sub-problems

- Summary
 - Duality
 - \circ SLP \Rightarrow asymmetric dual
 - \circ Inequality constraints \Rightarrow symmetric dual
 - Unconstrained variable \Rightarrow equality constraint in dual
 - Properties
 - Minimum of primal \equiv maximum of dual
 - Dual of dual \equiv primal
 - Interpretations as shadow prices
 - Useful in sensitivity analysis (see chapter 5 of Bertsimas and Tsitsiklis)
 - Applications of duality to solve large-scale mathematical programming problemsmore to come from lecture 6 onwards