
Lecture 5:
Dual Simplex, Primal – Dual And 
Karmarkar’s Algorithms

Prof. Krishna R. Pattipati
Dept. of Electrical and Computer Engineering

University of Connecticut
Contact: krishna@engr.uconn.edu; (860) 486-2890

© K. R. Pattipati, 2001-2016



Outline

VUGRAPH 2

• Review of duality

• Dual simplex algorithm

 Revised simplex: primal feasibility
work towards

dual feasibility

 Dual simplex: dual feasibility
work towards

primal feasibility

• Primal-dual algorithm

 Enforce complementary slackness conditions over subsets of 1,2, … , 𝑛

 Widely used to solve network flow, assignment & transportation  problems

• Interior point methods

 The primal path following algorithm

 Affine scaling methods (see notes.  Will not be covered)

 The potential reduction algorithm

 The primal-dual path following algorithm

 Implementation issues

• Comparison of revised simplex and Interior point methods

• Summary



Review of uality
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• Duality

 SLP and its dual

o Asymmetric form of the dual

 Inequality constrained LP and its dual

o Symmetric form of the dual

 For all feasible x in primal and λ in dual

o ⇒ dual feasible solution is always a lower bound on the primal

o Dual unbounded ⇒ primal infeasibility

o Primal unbounded ⇒ dual infeasibility

o Primal infeasibility may imply dual infeasibility and vice-versa

o When dual and primal have finite optimal solution, max of the dual, T
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⇔
min

. .

0

T
c x

s t Ax b

x





max

. . unrestricted

T

T T

b

s t

A c





 

⇔
min

. .

0

T
c x

s t Ax b

x





*Tc x

max

. . 0

T

T T

b

s t

A c











T T
b c x 

Ǉ
𝑏



VUGRAPH 4

o Complementary slackness conditions

(or relative cost = 0 or     in basis)

(or relative cost > 0 or 𝑥𝑖
∗ is nonbasic)

⇒ true cost > synthetic cost

 For inequality constrained problem

(nonbasic surplus)

(basic surplus)

 Simplex multipliers λj are the costs of ej, the jth unit vector

 Cost of any other vector     is                            synthetic cost of vector ak
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 In the shortest path problem, λj can be interpreted as the length of the shortest path 
from source to node j

o If                     , edge (i, j) is in the shortest path

o If                     , edge (i, j) is not in the shortest path

o λ* and x* are saddle points of

• Dual Simplex Algorithm

 Primal revised simplex starts with a primal feasible solution x s.t. 

and work towards                                        dual feasibility

 Note

o Basic ⇒ equality

o Non-basic ⇒ strict inequality
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Dual Simplex Algorithm
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From Dual Feasibility to Primal Feasibility
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 What if we tried another approach?

 The latter approach leads to the Dual Simplex Algorithm

 Key ideas:

o Suppose λ is dual feasible

o Suppose our basis B consists of the first m columns

o From revised simplex and complementary slackness conditions, we know

• What is the corresponding                 (is it primal feasible?)

Need not be Primal Feasible!!

 Suppose             we must remove the corresponding column al from the 
basis

o

1
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o Since want to maximize the dual, what if I perturb s. t.

o So,

 Q: How far to go?

 A: Only so far as to maintain dual feasibility

 What does this mean:               ⇒ strict inequality or column al left the basis

 Q: Which column should we bring into the basis?

 A: The one that makes                    first

 What if all           ?

⇒ Can never make                          since

⇒ Dual unbounded, since      is feasible

Dual Step Size Selection
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Dual Simplex Algorithm Steps
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 If any           can move until

⇒Among these ε, pick one that reaches cj first

 Update basis                                            as in revised simplex and compute

• Dual simplex algorithm steps:

Step 1: Given a dual feasible solution

if               then the solution is optimal

else select an index l such that

Step 2: If all                                                for all non-basic columns aj ,

then unbounded dual (or infeasible primal)

else

Step 3: Update λ , basis B, and xB

Go back to Step 1
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Optimality Dual Feasibility & Primal Feasibility

VUGRAPH 9

• Why does it converge?

 Maintain dual feasibility at each stage

 Choice of               dual objective increases

 Cannot terminate at a non-optimum point (because all we require for optimum 
is dual and primal feasibility)

 Finite number of extreme points ⇒ must terminate in a finite number of steps

• Example:

• Graphical Solution:
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Illustration of Dual Simplex Algorithm
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• Example:

Optimal Solution:

Iteration 0:

(1):                                                           (2):

Select the most negative one : s2
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Dual Simplex Algorithm Steps
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(3) Update

Iteration 1: 

(1)  s1 goes out of basis

(2)

, and BB x
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Dual Simplex Algorithm
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Another Example of Dual Simplex Algorithm

VUGRAPH 13

• Example:

Iteration 0:

(1):                                                           (2):

Select the most negative one : s1
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Dual Simplex Algorithm Steps
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(3):  
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Key Idea of Primal-Dual Algorithm
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• Idea for Primal-Dual Algorithm

 To set the stage, consider the SLP and its dual

 At optimum:

satisfied for any feasible x in primal and

satisfied at optimum

 Suppose we have a feasible λ for the dual problem

⇒

⇒ Some of these inequalities will be equalities

⇒ Define the subset P of {1,…,n} by

If none, set  

 For optimality, we need:

⇒ so, if we can find                              , we are done!!
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Maintaining Dual and Primal Feasibility
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 What does it mean?

o This amounts to searching for x such that

⇒ Nonnegative linear combinations of columns in P=b

P = set of admissible columns

 But, this is simply phase I of LP … restricted primal (RP)

 Dual of the restricted primal (DRP)

 Given a feasible λ , we can find a feasible solution x to the associated RP

 If optimum solution of RP = 0, then found an optimum:

x from RP & original λ are optimum

 Else, update λ via                  where      = vector of simplex multipliers at the  
termination of RP
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Primal-Dual Algorithm Graphically
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• Graphically, the idea is this:

• Key questions

 What is the sign of ε?

 What is the largest ε I can take? … must maintain dual feasibility

 Can I detect infeasibility?

 Does the algorithm converge?

• Sign of ε

 since           is feasible for DRP

 New dual cost:

 Must take ε > 0 to increase the cost of original dual

Original 
Primal

DRP
Define

RP
Original 

Dual
Opt>0

*    yes

no

Done!

* 0T b  0 

* (optimum solution of RP (or DRP)) if 0
T

T T T Tb b b b b           
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• Step size and detection of infeasibility

 What is the effect of ε on feasibility?

Need 

If No Problem

However, if then

⇒ we can increase ε indefinitely, while maintaining dual feasibility

⇒ dual is unbounded ⇒ primal is infeasible

 If optimal solution in RP>0 and the optimal dual satisfies 

then the original problem is infeasible (or original dual is unbounded)

 If original problem has finite optimum

o At least some

o ε should be chosen such that the equality is met by one of the constraints first

 The dual cost increases to

 The set P changes to                   where  

* 1,...,
T

T T

i i i ia a a c i n      
* 0T

ia  
* 0T

ia i  

* 0 ,T

ia i P   

* 0 forT

ia i P  

*

*
min : 0

T

Ti i

iTi P
i

c a
a

a


 



  
  

  
*

T
T Tb b b   

Step Size in Primal-Dual Algorithm

{ }P P k  *

*
arg min : 0

T

Ti i

iTi P
i

c a
k a

a






  
  

  



VUGRAPH 19

• Primal-Dual Algorithm 

Step 1:

Given a feasible λ to the dual problem

Determine the restricted primal problem:

• Find set P

• Formulate restricted primal:

• Note: , if not, multiply corresponding Eq. by –1

Step 2:

Optimize the restricted primal (phase I of LP)

If optimal solution = 0, then done

Else go to Step 3

Step 3:

Compute 
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Primal-Dual Algorithm Steps
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If all                            , then primal is infeasible

Else update

Where

Go back to Step 1

Primal-Dual:

Iteration 0:

Let

Restricted primal:
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Illustration of Primal-Dual Algorithm
Step 3 (cont’d):
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Iteration 1:

RP: DRP:

• Property of primal-dual algorithm

 Every column         in the optimal basis of restricted primal (RP) remains in 
set P at the start of next iteration

 Proof:

• If a column i is in the optimal basis of RP,

• The algorithm must converge

 No primal basis is repeated
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 Pivoting on     will decrease restricted primal cost (since                  )

 There are only a finite number of bases

• Application to shortest path problem…  Dijkstra’s algorithm

 s, u, v, t are computers, edge lengths are costs of sending a message 
between them

 Let xsv be the fraction of messages sent from s to v

• Primal
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Primal-Dual Algorithm for Shortest Path Problem
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• Dual

 = Price of a message at node s (buying or selling) = 0

 = Price of a message at node t (buying or selling)

• Crude way

 Start with 
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Primal-Dual Algorithm for Shortest Path Problem
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⇒ RP has solution

⇒ Optimal cost=1

because 

Iteration 1: 

⇒ pick column 1 to enter admissible column set P ⇒ P{1}

o Update 

o xsu=1

o Dual of RP
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Primal-Dual Algorithm for Shortest Path Problem
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Iteration 2:

Iteration 3:                                                                    Iteration 4:  
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Primal-Dual Algorithm for Shortest Path Problem



There is a method to our madness
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• Shortest path from s – t: s → u → v → t

 s → u = 2 = λu

 s → v = 3 = λv

 s → t = 6 = λt

• There is a method to our madness  …. Related to Dijkstra’s Algorithm

 μ* at stage i, where j columns (or arcs) are in the admissible set is defined as 
follows:

μ* = 0 for all nodes reachable by paths from source s using arcs in P

μ* = 1 for all other nodes

 Iteration 1: Since P is empty μ*=[1 1 1]

 Iteration 2: Since P includes column 1 (arc(s, u)), μ*=[0 1 1]…

 Iteration 3: Since P includes columns 1 and 3 (arcs (s,u), (u,v)), μ*=(0 0 1)

 Iteration 4: Since P includes columns 1,3 and 5 (arcs (s,u), (u,v) and (v,t)),
μ*=(0 0 0)

• What about step size ε?

 Note: Denominator (μ*)T ai is always 1 or 0. Recall unimodularity of A 

 So consider arcs with 

end node of arc start node of arc
arcs
min{cost of arc ( )}

P
  


  

* *

end node of arc start node of arc 0 (in this case 1)  



Relation to Dijkstra’s Algorithm
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• Since μ* = 0 for all nodes reachable by s using arcs in P, λi for these nodes 
remains fixed from the time node i enters the feasible set P until the 
conclusion of the algorithm

 Note the evolution of λ

[0 0 0] →[2 2 2] →[2 3 3] →[2 3 6]

• If we let w be the set of nodes reachable through arcs in P, λi for these 
nodes remains constant till the end of the algorithm

• At each iteration, one node is added to w until w becomes the entire set 
of nodes s→ (s, u) → (s, u,v ) → (s, u, v, t) 

• Looks like we terminate in (n – 1) steps where n is the number of nodes… 
with some streamlining, this is DIJKSTRA’s algorithm…Lecture 6

• λu , λv and λt are the lengths of the shortest paths from start node s

• Interior Point Algorithms

• Three major types

 The primal and primal-dual path following algorithms

 Affine scaling algorithms

 Potential Reduction Algorithms



Interior Point Methods
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• Path following algorithms

 Discuss not the original Interior point algorithm, but an equivalent (and 
more general) formulation based on Barrier functions

 Key: x*(μ) → x* as the Barrier parameter μ → 0

 many variations of Barrier function formulations… we will discuss them 
later or see references

• Consider the general NLP

 Suppose x is feasible, then                        , d ~ search direction

 Pick α s.t.                 (new point is feasible) and  
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Newton’s Method for NLP
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• What does Newton’s method do for this problem?

 Feasibility

 Newton’s method fits a quadratic to f (x) at the current point and takes α = 1

 Newton’s method solves a quadratic problem to find d

(⇒ a weighted least squares problem)

 Consider

 Define Lagrangian function:

 Karush-Kuhn-Tucker  necessary conditions of optimality: 
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KKT Conditions for the Barrier Problem
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 Special NLP = Barrier formulation of LP:

 Karush-Kuhn-Tucker conditions for special NLP are:

 So,

 Using               in (1), we get

1 2 2( )  and ( )
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Path Following Algorithm
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 So, λ is the solution of weighted least square (WLS) problem:

• Barrier function (Path following) Algorithm:

 Choose a strictly feasible solution and constant μ > 0

 Let the tolerance parameter be ε and a parameter associated with the update 
of μ be σ

2
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2
min [ ]TD c D e A
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Finding a Feasible Point
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• Remarks:
• Finding a feasible point

Method 1
 Select any              and define0 0x  00

2
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Illustration of Path Following Algorithms
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Finding Feasible Point using M Method - 1
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 The solution: ξ = 0 or when ξ starts becoming negative → stop

 Suggest 𝑥0 = 𝑏 𝑒

Method 2: … big M method

 Assume A, b and c are integers with absolute values bounded by U
(Can always do this by scaling numbers by 10t, t ∼ 3 − 6)

 Then,

 Let
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• Finding a feasible point - Method 2 (cont’d…)

 If we let

 Since the method uses Newton’s directions, expect quadratic convergence 
near minimum
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Finding Feasible Point using M Method - 2



Major Computational Step: WLS
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 Major computational step: Weighted Least-squares subproblem

o Generally A is sparse

o We will discuss the computational aspects of Least-squares subproblem later

 The algorithm (theoretically) requires 𝑂( 𝑛𝐿) iterations with overall 
complexity 𝑂(𝑛3𝐿) where

 In practice, the method typically takes 20 − 50 iterations even for very
large problems (> 20,000 variables). Simplex, on the other hand, takes
increasingly large numbers of iterations with the problem size n

 Initialize µ = 2O(L) and σ ≈
1

4
to

1

6
. In practice, we need to experiment with

the parameters
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Other Potential Functions
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 Other potential functions:

 Problem with Barrier function approach:

o Update of µ

o Selection of initial μ and parameter σ

• Dual Affine scaling:

 Typically, the affine scaling methods are used on the dual problem

Primal Dual Modified Dual

( ,  ) ln( ) ln
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Dual problem and scaled reduced costs
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 Suppose we have a strictly feasible ሚ𝜆 and the corresponding reduced cost 
vector (slack vector) is

o Define 

 So, the dual problem is:

 From the equality constraint:

 Assuming full column rank of AT or row rank of A

⇒ linearly independent constraints in primal
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 Eliminating λ from the dual problem we have:

 In addition, we have

LP for Scaled Reduced Costs
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Direction to Update Dual Variables
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 Note that we want

 But

 The gradient of 𝑓( Ƹ𝑝) w.r.t. the scaled reduced costs Ƹ𝑝 is

⇒ Results: The gradient w.r.t. the scaled reduced costs, Ƹ𝑝, already lies in the   

range space of P −1AT ... making the projection unnecessary 
 In terms of the original unscaled reduced costs, the projected gradient is:

 The corresponding feasible direction with respect to λ is: 

⇒
 If                  dual problem is unbounded ⇒ primal is infeasible (assuming          )
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Dual Affine Scaling Algorithm Steps - 1

VUGRAPH 40

 Otherwise, we replace λ by

 Note that primal solution x is:

• Dual Affine Scaling Algorithm: 

 Start with a strictly feasible λ, stopping criterion ε and β
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Dual Affine Scaling Algorithm Steps - 2
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Initial Feasible Solution for Dual Affine Scaling Algorithm

VUGRAPH 42

 Finding an initial strictly feasible solution for the dual affine scaling algorithm

o Want to find a 

o Select initial      as 

o Solve an (m+1) variable LP:

o Select

o The initial               are feasible for the problem

o Note :

 If  ξ < 0 at iteration k ⇒ found a feasible λ

 If the algorithm is such that optimal 𝜉 < 𝜀⇒ dual is infeasible

⇒ primal is unbounded
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Primal Affine Scaling
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• Primal affine scaling

 Starting with
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• Affine Scaling Algorithms

• Initialize via big-M method

Primal Affine Scaling Algorithm Steps

VUGRAPH 44

0

2 2

2

2

1 2

m x

2

a

Start with 0

for 

  Diag( )

( )

If 0 and ,  stop found optimal solution

else if  0  primal is unbounded (cost

 0,1,2

)

,··

e

·

lse 

en

 

d i

k k

T

k k k

T

k k

T

k k k

k k

k k

k k

k k

x

D x

AD A AD c

p c A

p e D p

D p

D p
x x

D

k

p

k















 

  

  

 



 

f

end 



• Potential Reduction Algorithm

• Modified Barrier Function

Note:

Duality gap if x is primal feasible and (λ, p) are dual feasible   

Idea:  Starting with                             , find a direction       such that   

Solution: 

Potential Reduction Algorithm
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Potential Reduction Algorithm Steps
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• Primal-dual path following algorithms

• Optimality Conditions

• Nonlinear equation because of Dpe = μe (complementary slackness 
condition when μ=0)

Primal-dual Path following Algorithms
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Barrier formulation of primal Barrier formulation of dual  
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This is a nonlinear equation!  We 
will revisit this issue later



• Solve via Newton’s Method

• Solution: 
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Primal-dual Path following Algorithms
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Primal-dual Path following Algorithm Steps
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• Relationships:

•

•

• When μ = ∞, the corresponding direction is called centering direction 
because in this case x(μ) is the analytic center of the feasible set.

 Both potential and path following algorithms have polynomial complexity. 
There is no such result for affine scaling.
⇒ centering directions are responsible for polynomiality of path 
following and potential reduction algorithms.

Relationships among Path following Algorithms
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Implementation Issues
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• Least-squares subproblem: Implementation Issues
 Generally A is sparse

 Major computational step at each iteration

AP −2ATd = b ··· Affine scaling 

AD2ATλ = AD2(c −μD−1e)= AD(Dc −μe) ···Barrier function method

Similar equations in path following and potential reduction algorithms.

 Key: Need to solve a symmetric positive definite system 

• Solution Approaches:

• Direct methods:

a) Cholesky factorization:

b) LDLT factorization:

c) QR factorization of P −1AT or DAT

• Methods to speed up factorization

 During each iteration only D or P −1 changes, while A remains unaltered

o Nonzero structure of  Σ  is static throughout 

o So, during the first iteration, keep track of the list of numerical operations 
performed

y b 

,T

lowerSS S   

; unit T

lowerLDL L   



Factorization Methods
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 Perform factorization only if the diagonal scaling matrix has changed 
significantly

o Consider Σ= AP−2AT

o Replace 𝑃 by 𝑃 where

o δ ∼ 0.1

o Define

o Then

o So, use rank-one modification methods (ECE6435, Lecture 8)

 Perform pivoting to reduce fill-ins ⇒ having nonzero elements in factors 
where there are zero elements in Σ

o Recall that 

o Unfortunately, finding the optimal permutation matrix to reduce fill-in is NP-
complete

o However, ∃ heuristics

 Minimum degree

 Minimum local fill-in
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Incomplete Cholesky Algorithm
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 Combine with an iterative method, if 
we have a few dense columns in A
that will make impracticably dense Σ
(recall the outer product 
representation)

⇒ Hybrid factorization and conjugate   
gradient method called a  
preconditioned conjugate gradient 
method works well

 Idea: At iteration k, split columns of 
A into two parts [𝑆 ҧ𝑆] where columns 
of As are sparse (i.e., have density < 
λ(≈ 0.3))

o Form 𝐴𝑠𝑃
−2𝐴𝑠

𝑇

o Find incomplete Cholesky factor L
such that 𝑍𝑠 = 𝐴𝑠𝑃

−2𝐴𝑠
𝑇 = 𝐿𝐿T

o Basically the idea is to step through 
the Cholesky decomposition, but 
setting lij = 0 if the corresponding
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Conjugate Gradient Algorithm
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• Now consider the original problem

• Solve  Qu = f via conjugate gradient algorithm … ECE6435 

• Conjugate Gradient Algorithm:
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Computational load ... O(m2 + 10m) 

Need to store only four vectors: u, r, d and w



Mehrotra’s Correction
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 step: First solve by setting 0 in RHS

2. Corrector step: Solve it again by plugging the values from step 1 in RHS

x pd d 

Recall Dpe = μe is a nonlinear equation

 Factorization makes this easy to implement

 Speeds up convergence



Simplex versus Interior Point Methods
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• Comparison of simplex and dual affine scaling methods

 Three types of test problems

• NETLIB test problems

 31 test problems

 The library and test problem can be accessed via electronic mail: 
netlib@anl-mcs (ARPANET/CSNET) or research! netlib (UNIX network)

 # of variables n ranged from 51 to 5533

 # of constraints m ranged from 27 to 1151

 # of non-zero elements in A ranged from 102 to 16276

 Comparisons on IBM 3090

Simplex Affine Scaling

Iterations (6,7157) (19,55)

Ratio of time per iteration (0.093, 0.356) 1

Total cpu time range (secs) (0.01, 217.67) (0.05, 31.70)

Ratio of cpu time  (Simplex/Affine) (0.2, 10.7) 1



Simplex versus Interior Point Methods
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• Multi-commodity Network Flow problem

 Specialized LP algorithms exist that are better than simplex

 ∃ a program to generate random multi-commodity network flow problem 
called MNETGN

 11 problems were generated

 # of variables n ∈ (2606,8800)

 # of constraints m ∈ (1406,4135)

 Non-zero elements in A ranged from 5212 to 22140

Simplex Specialized Simplex

MINOS 4.0 MCNF 85 Affine Scaling

Total # of iterations (940, 21915) (931, 16624) (28, 35)

Ratios of time per iteration

(w.r.t. Affine Scaling)
(0.010, 0.069) (0.0018, 0.0404) 1

Total CPU time (secs) (12.73, 1885.34) (7.42, 260.44) (6.51, 309.50)

Ratios of CPU times w.r.t.

Affine Scaling
(1.96, 11.56) (0.59, 4.15) 1
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• Timber Harvest Scheduling problems

 11 timber harvest scheduling problems using a program called FOR-PLAN

 # of variables ranged from 744 to 19991

 # of constraints ranged from 55 to 316

 Non-zero elements in A ranged from 6021 to 176346

Simplex

(MINOS 4.0)

Default Pricing

Affine Scaling

Total # of iterations (534, 11364) (38,71)

Ratio of time per iteration (0.0141, 0.2947) 1

Total CPU time (secs) (2.74, 123.62) (0.85, 43.80)

Ratios of CPU times (1.52, 5.12) 1
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• Promising approach for large real-world LP problems

• Summary

 Reviewed duality

 Dual simplex and primal-dual algorithm

 Interior point methods

o Path following (primal, primal-dual)

o Affine scaling 

o Potential reduction
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