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@ Outline

« Review of duality

» Dual simplex algorithm
» Revised simplex: primal feasibility

work towards

dual feasibility

work towards

= Dual simplex: dual feasibility “———— primal feasibility

* Primal-dual algorithm
= Enforce complementary slackness conditions over subsets of {1,2, ..., n}
= Widely used to solve network flow, assignment & transportation problems

* Interior point methods
= The primal path following algorithm
Affine scaling methods (see notes. Will not be covered)
The potential reduction algorithm
The primal-dual path following algorithm
= Implementation issues

« Comparison of revised simplex and Interior point methods

e Summary
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Review of uality

Ve
* Duality
= SLP and its dual
mingT)_( > max/lTlg
st. Ax=D A » S.t. A unrestricted
x>0 >  ATA<c'

o Asymmetric form of the dual
» Inequality constrained LP and its dual

minc X »max A b
st. Ax>b = »st. A >0
x=0 > A A<c

o Symmetric form of the dual

= For all feasible x in primal and 4 in dual
o /_IT b < QT X = dual feasible solution is always a lower bound on the primal
o Dual unbounded = primal infeasibility
Primal unbounded = dual infeasibility
Primal infeasibility may imply dual infeasibility and vice-versa
When dual and prlmal have finite optimal solution, max of the dual, A’h
= min of the primal, ¢’ x’

o O

O
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@ Complementary Slackness & Sensitivity

o Complementary slackness conditions
(c'-2"A)X =0=x >0=>c=1"a
(or relative cost = 0 or X in basis)

=x =0=c>4"a

(or relative cost > 0 or x; is nonbasic)

= true cost > synthetic cost
= For inequality constrained problem

(4) (Ax-b)=0
— 1 >0= a'x=bh (nonbasicsurplus)
A =0= ax>b (basic surplus)

= Simplex multipliers 4; are the costs of g;, the jth unit vector

. T :
= Cost of any other vector a, 152 Aay =4 8. synthetic cost of vector a,
» of . of
j =—, XJ = —
db, oc;

(@)
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@ Dual Simplex Algorithm

= In the shortest path problem, 4; can be interpreted as the length of the shortest path
from source to node j

o If /lj — ﬂ,l <G> edge (1, j) is not in the shortest path

edge (i, j) is in the shortest path

o A and x" are saddle points of

L(x,A)=c'x-2"Ax+4'b

= min max L(x,4) = max min L(x, 1)

x>0 2 x20

* Dual Simplex Algm:ithm

» Primal revised simplex starts with a primal feasible solution x s.t.
Ax=b, x>0 and work towards (c' =1'A) = ET > 0= dual feasibility

x=b p c'-A"A20
x>0 update x /_Izch_l

=

= Note
o Basic = equality
o Non-basic = strict inequality
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@ From Dual Feasibility to Primal Feasibility

= What if we tried another approach?

From Dual Feasibility — Primal Feasibility
c'—A"A>0 update4A x, =B7'b, x, >0
= The latter approach leads to the Dual Simplex Algorithm
» Key ideas:

o Suppose 4 is dual feasible
= A'A<c'or A'a, <c,Vj
o Suppose our basis B consists of the first m columns

(@ 8 .2,

o From revised simplex and complementary slackness conditions, we know
Ta _ - - T _ ATp-l
Aag=c;l<j<m =1 =¢B

A'a; <c;m+1<j<n (barring degeneracy)

+ What is the corresponding X; =B™'b (is it primal feasible?)

Need not be Primal Feasible!!

= Suppose X <0, we must remove the corresponding column a, from the
basis

o Xy :[rowlof(B‘l)}kp
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@ Dual Step Size Selection

o Since want to maximize the dual, what if I perturb A > 4 s.t.

T
A b=ATb-exy > ATb, 6> 0,= (47 - row (B )b

o S0, 2 =4 —srowI(BY)=(c] —€")B
= Q): How far to go?
= A: Only so far as to maintain dual feasibility
@ -2 A0

T . -
Aa=c,j=lj=1.,m

LIT 8, =C —¢<c (outof the basis)

T T Tp-1 .
Aa=1a-¢6Ba, |]=m+l..n

=7;-¢ay, J=m+l..,n wherez; <c

What does this mean: 41T a <c¢, = strict inequality or column a, left the basis
Q: Which column should we bring into the basis?
A: The one that makes z; - ¢a; =¢; first
What if all ¢; 20 ?
= Can never make C; =Z;—&a,; since Z; <
= Dual unbounded, since A is feasible V¢
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@ Dual Simplex Algorithm Steps

. p-
= Ifanyq, <0, can move until ¢ =—+=—

alj
. . _Zk_Ck__pk_ : ZJ'_CJ'.
=Among these ¢, pick one that reaches ¢; first ¢= =—=min Loy <0

e e J Q)

= Update basisB =B -column a + column a, as in revised simplex and compute x, =B™'b

* Dual simplex algorithm steps:
Step 1: Given a dual feasible solution x, =B™b
if X320 then the solution is optimal
else select an index | such that Xg <0
Step 2: If all ¢ = [row | of (B‘l)]* a; >0 for all non-basic columns a;,
then unbounded dual (or infeasible primal)

~[z,-¢, -p, 7 ¢, -
g=min, s +—== J:05”<0}:k - P

else

) Q) Q; Ay Qg
Step 3: Update /4, basis B, and Xg

A" AT —growI(B™)
B < B column a +column a_ (or propogate B or LU or QR factors)

Go back to Step 1
UCONN



@ Optimality= Dual Feasibility & Primal Feasibility

* Why does it converge?
= Maintain dual feasibility at each stage
= Choice ofx; <0= dual objective increases

= Cannot terminate at a non-optimum point (because all we require for optimum
is dual and primal feasibility)

* Finite number of extreme points = must terminate in a finite number of steps

« Example: Primal Dual .
min x, +2x Max 44, +04, 21 A "3 10
P st. A, +24, <1 p = Optcost=—
St.X, —2X, +X; 24 A== 3
— 2;{1 + /12 <2 2
2X, +X, =X, 26 2
e A—1, <0
X1 Xy %5, 2 A A >0 R
. . 0.5
 Graphical Solution: * 1
N T 1 M
2 1, =
g 5 4_ 5 T % % 1 1 10
E _31}{6 :H 4S50, S =g A =[L 0], =[5 31 opt cost=7
3 3 i 3 3 3



@ Illustration of Dual Simplex Algorithm

. Example: Primal Dual
max 54, +64
min 3x, +4X, +5X, A +o4
st. 4, +24,<3
st. X +2X, +3X; 25
2, +24, <4
2X +2X, +X; 26
34 +1,<5
x. 20
A, A, 20

Optimal Solution:

A= 4 =1=x=LX,=2 X=0
optimal cost =11

Iteration O:
1): A=4=0=7=0V] (2): p=¢-2,=3p,=C,~2,=4p,=C,~2,=5
X +2X, +3X, =S, =5 1 2 3
- :[—2 -2 —1]
2X +2X, +X;—S, =6 2 1

— B =—1 is the basis (2-¢ fe 4 e s
-5 E=min o <0l=minl= = Z|==
‘ 2 2 1] 2

R

]
Select the most negative one : s,

(row | of B™)a, =—[0 1]{
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@ Dual Simplex Algorithm Steps

(3) Update 4, B and x,

_ _ (s
— column 1 comes into the basis = basm[ 1]

X
or A" = A" —&(row, of (B*))=[0 0]-3[0 -1]=[0 3]
1 1 4 |14
new B = new B =
0 2 0 3

T [ _1 % 3
A =[0 3] . =[0 {]
2

| ><
o
[l
| 1
o
N~ N
1
1
oy Ol
1
[l
| |
w NG
1

Iteration 1:

(1) s, goes out of basis

_1230__ ;230__ s
2 (row, of B )[2 X ‘1}[ 1 Z]L . _J_[ 1 -3 -]

Vo

N
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Dual Simplex Algorithm

(row, of BY)N=[-1 -5 —1]
(123 -1 0
—C= 3
9[02}_221 0 -1

- 7 - 3
:|:0 —1 ) O —§:|:—p

}—[3 4 5 0 0]

&= mln[ I 3]:> column 2 enters the basis

(B A" =A"-e(row, of BY)=[0 {]-1[-1 ]=[1 1]

2 1 o 1 —%
new B = new B =
2 2 -1 1

_1
check: cIB=[4 3]{ . 12}:[1 1]

s P A

X =L X =2,%=0 Done!!!

—1
0

N =N =



@ Another Example of Dual Simplex Algorithm

Primal : Dual :
° Example: x, = number of barrels of light crude max 100, 000[94, +84, +54,]

X, = number of barrels of heavy crude st.0.34,+0.24, +0.34, <56

min 56x, + 50X, 03 044 41021 <5
51.0.3, +0.3x, > 900,000 34,+044,+0.24, <

0.2, +0.4x, > 800,000 st.4 204,204, 20
0.3x, +0.2x, > 500,000 optimal point:(500/3 0 0)
X, >0;%, >0 Cost : $150M

optimal point: (0,3M);Cost : $150M

Iteration O:

(1): h=4=4=0=12=0V] 2):
0.3x, +0.3, — 5, = 900,000 p,=C~-2=56;p,=C,-2,=50
0.2x, +0.4x, —s, =800,000 (row | of B_l)N =[-0.3-0.3]

0.3x, +0.2x, -5, =500,000 e 501 500
% 20,%,20;5,20 g=mini——:¢, <0 :min{ }:
a, 03 03] 3

J
J

= B =-1 is the basis
-900,000
X, =—| —800,000
-500,000
Select the most negative one : s;
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@ Dual Simplex Algorithm Steps

(3): X,

= column 2 comes into the basis = basis| s,

_83
or A" = A" —(row, of (B™))=[0 0 O:—?[—l 0 o]{? 0 o}
03 0 0 10/3 0 0
newB={04 -1 0| newB*=[4/3 -1 0
02 0 -1 2/3 0 -1
10/3 0 0
A"=[50 0 0] 4/3 -1 0 |=[500/3 0 0]
2/3 0 -1

10/3 0 0 |/ 900,000 |3,000,000 X,
Xg=| 4/3 -1 0 /800,000 |=| 400,000 |=|s,
2/3 0 -1{/500,000 100,000 S,

= Optimal = ™ =$150M
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@ Key Idea of Primal-Dual Algorithm

 Idea for Primal-Dual Algorithm
= To set the stage, consider the SLP and its dual

Primal Dual
minc' x max A'b
s.t._A;( =b = s.t. A unrestricted
x>0 ATA<c!

= At optimum:
A" (Ax — b) = 0... satisfied for any feasible x in primal and
(c"—=ATA)x=0... satisfied at optimum
= Suppose we have a feasible 4 for the dual problem
> AscT
= Some of these inequalities will be equalities
= Define the subset P of {1,...,n} by i€P
P :{i A8 :Ci}
If none, setP =&

= For optimality, we need:
x >0if A'a =c =>ieP

|
x, =0if A'a <¢,=i¢P = so,if we can find X st.x =0 fori¢ P, we are done!!
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@ Maintaining Dual and Primal Feasibility

= What does it mean?
o This amounts to searching for x such that

z;pﬁ— x >0,ieP; x=0,igP

icP

= Nonnegative linear combinations of columns in P=b
P = set of admissible columns

= But, this is simply phase I of LP ... restricted primal (RP)
X

minu Z.rn:l Yi= QTX - [QT gT ]{;} - ETX""

X, >20,ieP;x =0, ieP (implicit); y >

= Dual of the restricted primal (DRP) max, b

s.t. . <0;ieP

I/\ ISD

3
H

= Given a feasible A, we can find a feasible solution X to the associated RP
= If optimum solution of RP = 0, then found an optimum:
x from RP & original A are optimum

= Else, update A via 1=4+eu where 4" = vector of simplex multipliers at the
termination of RP
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@ Primal-Dual Algorithm Graphically
 Graphically, the idea is this:

Original | |
Primal

Original |

Dual

Define
RP

DRP

» Key questions

= What is the sign of €?

no
Done!

yes

= What is the largest € I can take? ... must maintain dual feasibility

= Can I detect infeasibility?

* Does the algorithm converge?

« Signof ¢

= 1'b>0 since #=0 is feasible for DRP

= New dual cost:

@TQ =A'b+&u"b=2"b+e(optimum solution of RP(or DRP))> A'h if &£>0

= Must take ¢ > 0 to increase the cost of original dual
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@ Step Size in Primal-Dual Algorithm

 Step size and detection of infeasibility
= What is the effect of ¢ on feasibilitv?
Need /_ITgi =2'a +eu 8 <c Vi=1..,n
If x"a <0= No Problem
Hawever, if 4" a <0Vithen
= we can increase ¢ indefinitely, while maintaining dual feasibility
= dual is unbounded = primal is infeasible
If optimal solution in RP>0 and the optimal dual satisfies #"a <0VigP,
then the original problem is infeasible (or original dual is unbounded)
If original problem has finite optimum

o Atleastsomey a >0forigP
o ¢ should be chosen such that the equality is met by one of the constraints first
lc-A'a .
£= mm{ T——' ©'a >O}
i¢P /_j a —

C_lT *
s _| -,UT§i>O}
wa

The set P changes toP « Pu{k} where k=argmin

igP

The dual cost increases to /lTb =A'b+eub {
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@ Primal-Dual Algorithm Steps

« Primal-Dual Algorithm
Step 1:
Given a feasible A to the dual problem
max A'b
st. A'A<c'
Determine the restricted primal problem:

* Find set P
 Formulate restricted primal: min g'y

St 8% Y =b
X, 20,ieP; x =0,i¢P (implicit); y >0

* Note: b>0, if not, multiply corresponding Eq. by -1
Step 2:
Optimize the restricted primal (phase I of LP)
If optimal solution = 0, then done
Else go to Step 3
Step 3:
Compute 4 & for igP
UCONN



Illustration of Primal-Dual Algorithm

A £
Step 3 (cont’d): If all "4 <0 for i¢P, then primal is infeasible
Else update A A+er
T T
Where  _¢-4a _mmlep{c */1 a s >O}
4, 48
P« Pu{k}
Go back to Step 1
Primal-Dual: min 3%, +4X, +5x, max 54, +64,
StX +2X, +3X%; 25 st. A, +24,<3
2X, +2%, + X, > 6 24 +24, <4
: x. >0 3 +4, <5
Iteration O: ' 2020

Let 2=0, {c-A'a}=[3 4 5]=P=¢

Restricted primal: RP:ming'yst. y=h;y>0
DRP:max 4'b st u<e
u'{a}=[3 4 4]

g=min| = — § = Both 1 & 2 can enter basis
34 4

P={1,.2}; A" =" +&u' =[0 0]+1[1 1]=[1 1]
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@ Property of Primal-Dual Algorithm

Iteration 1:

RP: DRP: max5y +64,
miney st o +2u,<0
1_ 5 5 244+ 241, <0 = =4, =0
st.| _[x+| _|X,+y=b= t <1
2 2 - 6 qugl
1 9 -1 1
A" =[1 1];optimal basis, B = B = _
= A =[1 1];optimal basis {2 2} . 7;

X, =B7b=[L 2| = X =[L 2 Q]
* Property of primal-dual algorithm

» Every column i<€P in the optimal basis of restricted primal (RP) remains in
set P at the start of next iteration

= Proof:
» Ifa column i is in the optimal basis of RP, (4) & =0

:>LIT§,- =A'a +su & =4a =¢,since ieP
 The algorithm must converge
= No primal basis is repeated
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@ Primal-Dual Algorithm for Shortest Path Problem

= Pivoting on a, will decrease restricted primal cost (since (x)'a >0 )
= There are only a finite number of bases

 Application to shortest path problem... Dijkstra’s algorithm

= 5, U,V, tare computers, edge lengths are costs of sending a message
between them

= Let x,, be the fraction of messages sent from sto v
* Primal

min 2x,, +4x,, +X,, +5%, +3X,
St Xy, Xgr X0 X0 X, =0 0r 1

su? “tsy! Tluv ! “ut!?
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@ Primal-Dual Algorithm for Shortest Path Problem

o
10 -1-1 01x,| [0
Ax=l0 1 1 0 -1{x,|=|0]|=h
00 0 1 1]x| |1
| X
 Dual

= /. = Price of a message at node s (buying or selling) = 0

= /4 = Price of a message at node t (buying or selling)
max A4

st. 4,2
A, <4
A, -4 <1
A -4, <5
A=A <3
* Crude way
» Start with A" =[0 0 O];P=¢
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@ Primal-Dual Algorithm for Shortest Path Problem

= RP has solution y=

_ O O

= Optimal cost=1 10 0 1

Basis=|0 1 O:>£*=1
0 0 1 1

because max x4, S.t. u <1,y <1, p4 <1

Iteration 1 (,'y'a =1 1 0 0 0]forigP

;
gzarg:jmin{ci_T/—1 éli:yTe_li>0}:min[2 4 x x X
igP U gi —

= pick column 1 to enter admissible column set P = P{1}

o Update A= A' =[0 0 0]+2[L 1 1]=[2 2 2]

o Xg =1
o Dual of RP MmaX
st. u, <0
L <1
u <1 —=u =[0 1 1]
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@ Primal-Dual Algorithm for Shortest Path Problem

Iteration 2:
P={2 3 4 5
(#)'a=[L110] forigP

g:min{‘l_z,},‘r’_z}:l: P={L3}

1 1 1
=1 =[2 2 2]+1[0 1 1=[2 3 3]
= X, =1
Iteration3: p_g 4 5 Iteration 4:
max MaXx fh
st u <0 st u, <0

yv—yugojﬁ*:[o 0 1] phy — i, <0= p =0= optimal

My iy <1 = Hy <0

(4)'a=[0 0 1;igP

: {3—0}
= ¢=min{ —
1

= A =[2 3 3]+3[0 0 1=[2 3 6]
=X, =1

3
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@ There is a method to our madness

e Shortest path froms—#s—>u—ov—t
" S>U=2=/,
" S—>V=3=4,
"S>t =6=4

 There is a method to our madness .... Related to Dijkstra’s Algorithm

= 4" at stage i, where j columns (or arcs) are in the admissible set is defined as
follows:

" = 0 for all nodes reachable by paths from source s using arcs in P

" = 1for all other nodes
Iteration 1: Since P is empty ¢ =[1 1 1]
Iteration 2: Since P includes column 1 (arc(s, u)), x'=[011]...
Iteration 3: Since P includes columns 1 and 3 (arcs (s,u), (u,v)), £ =(00 1)
Iteration 4: Since P includes columns 1,3 and 5 (arcs (s,u), (u,v) and (v,t)),
1=(000)

« What about step size ¢?
& = min{cost of arc— (4,

arcsgP

-4

end node of arc start node of arc )}

= Note: Denominator (,g*)Ta is always 1 or 0. Recall unimodularity of A
= So consider arcs with :uend node of arc /ustart node of arc 0 (m this case 1)
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@ Relation to Dijkstra’s Algorithm

» Since ¢~ = 0 for all nodes reachable by s using arcs in P, 4; for these nodes
remains fixed from the time node i enters the feasible set P until the
conclusion of the algorithm

= Note the evolution of 1
[000] —[222] —[233]—[23 6]

 If we let w be the set of nodes reachable through arcs in P, 4; for these
nodes remains constant till the end of the algorithm

« At each iteration, one node is added to w until w becomes the entire set
of nodes s— (s, u) — (s, u,v) — (s, u, v, t)

* Looks like we terminate in (n — 1) steps where n is the number of nodes...
with some streamlining, this is DIJKSTRA’s algorithm...Lecture 6

* 1,, 4, and 4, are the lengths of the shortest paths from start node s
e Interior Point Algorithms

e Three major types
» The primal and primal-dual path following algorithms
= Affine scaling algorithms
= Potential Reduction Algorithms
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Y2 Interior Point Methods

 Path following algorithms

= Discuss not the original Interior point algorithm, but an equivalent (and
more general) formulation based on Barrier functions

SLP Barrier
' n
mlnl(g )_( minx f(x,ﬂ)ng)_(—luZIn Xj
t. AX=Db X o
x=0 S st Ax=b
optimal solution x’ 1>0

optimal solution X (%)

» Key: x"(1) — x" as the Barrier parameter u — 0
» 3 many variations of Barrier function formulations... we will discuss them
later or see references
 Consider the general NLP
min, f (3_()
stAx=0D>

= Suppose x is feasible, then ¥ = x + a d, d ~ search direction
= Pick as.t. AX=Db (new point is feasible) and f(x) < f(X)
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@ Newton’s Method for NLP

* What does Newton’s method do for this problem?
= Feasibility = Ax = Ax+aAd =0= Ad =0
= Newton’s method fits a quadratic to f (x) at the current point and takes a = 1

f(z+g):f(z)+ng+%gTHg, where g =Vf(x);H = V2f (x)

Newton’s method solves a quadratic problem to find d
(= a weighted least squares problem)

= Consider _ ) PR
min, 3||H?*d-H?g
min,g'd+3d"Hd 2
- = st. Ad=0
st. Ad =0 T

1 .
H ? symmetric square root

Define Lagrangian function:

L(d,A)=g'd+id'Hd—2"Ad; A~ Lagrange multiplier

Karush-Kuhn-Tucker necessary conditions of optimality:
:>8—L:O:>g+Hg—AT41:Q
od 2
= o 0=-Ad=0
o4
UCONN



@ KKT Conditions for the Barrier Problem

= Special NLP = Barrier formulation of LP:
g=Vf(x)=c-uD eandH =V*f(x) = uD"*
where
D =Diag(x;); j =1,2,...,n
e=[L 1 1 - 1T

» Karush-Kuhn-Tucker conditions for special NLP are:
puD?d+(c-uD7e-A"A)=0
Ad = 0

= So,

d="2D*c-uDe- A ) O

y7i
= Using Ad = 0 in (1), we get

A=(AD*A")"AD*(c-uD"e) (2)
or A=(AD*A")"A(D*c - uDe) 3)

d =[1 - D*AT (AD?A")* Al(De- = D%)  (4)
)7
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@ Path Following Algorithm

= So, 4 is the solution of weighted least square (WLS) problem:
. _ 2
min |Dc— uD e~ A 2],
 Barrier function (Path following) Algorithm:

= Choose a strictly feasible solution and constant x>0
= Let the tolerance parameter be ¢ and a parameter associated with the update

of ubeo
fork =0,1,....,K .,
let D = Diag(x;) Knax 50
: b 7 ) 9 _ c ~Ya-1/6

Compute the solution 4 to (AD“A )4 = AD“(c— uDe)...WLS solution

let p=c—-A"4
; -D*(p—uD7e)  (D’p-uDe)
B M H

— X
[l

x+d
If X' p<e& —stop: x is near-optimal solution... complementary slackness condition

else u « (1—%);;

N

end if
end
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@ Finding a Feasible Point

X'k
—

/

[lustration of Path Following Algorithms

* Remarks:
 Finding a feasible point
Method 1
= Select any x,>0 and define &y =b— Ax, with HXHZ =1
= &, =||o— Ax,||, and solve:

MiNse o initial -, 1]l
st. [ A X]H:g £~ Ax,

y_ Q_AXO
20 = b—Ax, I,
>0

iy

UCONN
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@ Finding Feasible Point using M Method - 1

= The solution: & = 0 or when ¢ starts becoming negative — stop
= Suggest x, = [|b]|e

Method 2: ... big M method

Primal Dual
min ¢’ x max A'b
st.Ax=Db s.t. A unrestricted
ch_) iTASQT:iTA‘FET:gT

= Assume A, b and ¢ are integers with absolute values bounded by U
(Can always do this by scaling numbers by 10%, t ~ 3 — 6)

» Then,

Zn:xj =e'x<n(mU)" (very loose bound)
=1

= Let b = b(n + 2)/n(MU)"; x, < x.(n + 2)/n(mU)"
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@ Finding Feasible Point using M Method - 2

 Finding a feasible point - Method 2 (cont’d...)

Primal Dual
minc'x + Mx_, max A"b +A_..(n+2)
st.Ax + (b —Ae)x ,=b StATA+ A e +p =C
B X+ X+ X, = N2 AT (D —Ae)+ Ay, + Py =M
iZZQO;x > 0 o £ Pz =0

p11 p21---; pn+1, pn+2 20

= Ifwelet p,=4|lc| +M?
(X Xn+1 Xn+2 )0 :(g 1 1) and
(2 Zpa P Pox Pu2)=(0 —s, CH+me M+, u,)are feasible solutions

= Since the method uses Newton’s directions, expect quadratic convergence
near minimum
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@ Major Computational Step: WLS

UCONN

Major computational step: Weighted Least-squares subproblem
(AD*A")A = AD*(c—-uD"e)

o Generally A is sparse
o We will discuss the computational aspects of Least-squares subproblem later

The algorithm (theoretically) requires 0 (y/nL) iterations with overall
complexity O(n3L) where

L =) [Iog‘aij‘+1]+1

m
i=0 j=1

>

In practice, the method typically takes 20 — 50 iterations even for very
large problems (> 20,000 variables). Simplex, on the other hand, takes
increasingly large numbers of iterations with the problem size n

Initialize p = 2°O and o = ito %. In practice, we need to experiment with
the parameters



@ Other Potential Functions

= Other potential functions:
f(x, @)=rin(c"x-q)-> Inx
j

where r=n++/n and
d = a lower-bound on the optimal cost

» Problem with Barrier function approach:
o Update of u
o Selection of initial 4 and parameter o

e Dual Affine scaling:
= Typically, the affine scaling methods are used on the dual problem

Primal Dual Modified Dual
min, c'x max, A'b max, A'b

st. Ax=b < st Ali<c < st Ald+p=c
x=0 p>0
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@ Dual problem and scaled reduced costs

= Suppose we have a strictly feasible 1 and the corresponding reduced cost
vector (slack vector) is p

o Define

p=P7p
where
P = Diag| p,, Py, Py ]
= So, the dual problem is:
max A'b
s.t. ATA+Pp =c
p >0

» From the equality constraint:

p =P*(c-A"})
=P?1AT A= (Pc- E))
= Assuming full column rank of A or row rank of A

= linearly independent constraints in primal
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@ LP for Scaled Reduced Costs

AP2ATA = AP (P ic— )
= A=(AP?AT) " AP(Pc—p) =M (Pc— p)
note that 1 € R(AP*)=R(M)

= Eliminating A from the dual problem we have:

max, b"M(P~c—-p) = f(p) min,, b"M«
st. H(p—P™c) =0 = st. Hx=0
p=0 where @ = p—P'c
and where
H=1-P*A"M, asymmetric projection matrix
= H?*=H

» In addition, we have
AP'H = 0 = columns of H e N (AP‘l)
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@ Direction to Update Dual Variables

= Note that wewant ¢aeN(H)=a<R(P'A")
= But R(P'A") =R(MT")
= The gradient of f(p) w.r.t. the scaled reduced costs p is
~ §,=-M"beR(MT)=R(PA")
= Results: The gradient w.r.t. the scaled reduced costs, p, already lies in the
range space of P ~'A"... making the projection unnegessary
In terms of the original unscaled reduced costs, the projected gradient is:

g, =Pg, =—A" (APZAT )‘1b

The corresponding feasible direction with respect to 4 is:

d, =-MM"§, =(AP?AT) b

_ AT
. 9, =-Ad,

= If 9 20= dual problem is unbounded = primal is infeasible (assumingb # 0 )
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@ Dual Affine Scaling Algorithm Steps -1

= Otherwise, we replace Aby A<« A+ad,

where a=fa S ~0.95

max;

Note that primal solution X is:
) ) —
x=-P?g, =P A (APZAT) b
since it satisfies Ax =D

Dual Affine Scaling Algorithm:
= Start with a strictly feasible 4, stopping criterion ¢ and £

Zold :/_ITQ
fork=0,1,...K.,
p=c-A"4

P= Diag[p, p, - P,]
Compute the solutiond, to

(AP2AT)g, b
9, = -A'd,
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@ Dual Affine Scaling Algorithm Steps - 2

if g,>0
Stop — unbounded dual solution= primal is infeasible
else

azﬁmin{_—p‘:gpi <O,i=1,2,---,n}

if ‘Znew — Ly ‘ <s
max (1, 1Z416 \)

-2

stop — found an optimal solution x =—P g

—Pp
else
ZoId <~ Znew
end if
end If

end do
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@ Initial Feasible Solution for Dual Affine Scaling Algorithm

» Finding an initial strictly feasible solution for the dual affine scaling algorithm

<, J
Jo=| o 2 |
- (Asz

o Wanttofinda pst.p=—ge
o Select initial &, as

2 ——2mm{( ~ATA) : |—12,---,m}
o Solve an (m+1) variable LP:  max , . ATh—pé
s.t. A'l-¢fe<c

P
o Select 4= 7/ 4D .y =10
So
o The initial (4,, &) are feasible for the problem
o Note:
% If £<0 atiteration k = found a feasible 4
% If the algorithm is such that optimal ¢ < e= dual is infeasible

= primal is unbounded
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@ Primal Affine Scaling

« Primal affine scaling

*

= Starting with X, 2> X > > X > X, > X
= %, =X+d,3|Dd|<B; B<2/3 D, =Diag(x,)
= d,is the solution of minc'd
st.Ad =0 recall Ax=b = Ad, =0
[Dd][< 5
* Lagrangian: L(d,A,4)=c'd-A"Ad+%(d'D,*d - 5%)
= uD’d+c-A"A=0 =d=-1D}(c-A"})

7]

Ad=0
QTDK_ZQZIBZ

3?(9—AT4)T D(c—-A"A) = p*

D (c-A"2),
= U=

B
- D3 (c— A" 1
=4 =(ADA)ADC: do=—f HDK((C__ AM_))H
kA= —712

UCONN



@ Primal Affine Scaling Algorithm Steps
« Affine Scaling Algorithms

Start with x, > 0
fork=0,12,---K.,

D, = Diag(x,)
(AD;AT)Z, = ADZC
p=Cc-A"4

If p, >0 and e' D, p, <&, stop — found optimal solution

else if —D/p, >0 = primal is unbounded (cost = o)

else
~ D; p,
S O
end if
end

o Initialize via big-M method
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@ Potential Reduction Algorithm

 Potential Reduction Algorithm

Primal Dual
min ¢’ x max A"
ap ==
st. Ax=Db st. A'A+p' =c'
x>0 p'>0

* Modified Barrier Function f(x, p)= gin(p'x)-Y.Inx, - Inp,
Note: CTX—&TQ: (ET _{_&TA)X_iTAX: ETX =1 j=1

Duality gap if x is primal feasible and (4, p) are dual feasible
Idea: Starting with X >0 and p >0 _find a direction 4« such that

mdi”ijTQ .
Solution:
st. Ad=0
IDd|<p<1 d, =-/D, ”u”
__9 2 - .
Vv, f = o p.-De=¢ g:Dk(gk—AT(ADkZAT)lAngk)
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@ Potential Reduction Algorithm Steps

= Start with x >0, Po>0, 4, <1, 7<1q

fork=0,12,...k,,,
Ifglgk < ¢ stop, found optimal solution.

Else D, = Diag(x,)

N 4
G = Pc-Dce
pi X, ‘

u=D, (| ~ A (ADZAT) ADf)g; d, =—pD, ”“;”
u

If |u||=» = perform primal step

Zk+l = Zk + gk

P = P«

A =4 See page 415
Else X, =X of Bertsimas &

T Tsitsiklis

end if
end if
end
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@ Primal-dual Path following Algorithms

 Primal-dual path following algorithms

Barrier formulation of primal

n
min ¢'x— x> Inx;
-1

S.t.

« Optimality Conditions

AX=Db
AlA+p=c
c-uD'e-A"2=0
=c—uDe-c+p=0

— ue =Dp=DPe
P =Diag(p)

L= 4

>z
|

Barrier formulation of dual

max ATh+u) Inp,
4P j=1

J
st. ATA+P = ¢

O

v I><
|D I

I |
=~ T
|D | (=)
| 1o

o |

[e)

« Nonlinear equation because of Dpe = ue (complementary slackness
condition when x=0)

UCONN

This is a nonlinear equation! We

will revisit this issue later




@ Primal-dual Path following Algorithms

e Solve via Newton’s Method

e Solution:

UCONN

where

A
0
R

E, =D, Pkf1
R =EA" (AEZA")" AE,
Vi = Dk_lEk(UkQ_ D.R.e)

0 o017[d, AX, —b
Al jld, = A4 +p-C
0 DJd,] _DkPkg:,ukg_
(Ad, =0
Ad,+d, =0

Basis of infeasible
primal-dual method
with x; > 0, p, > O,
and A,

Basis of feasible
primal-dual method




@ Primal-dual Path following Algorithm Steps

= [nitialize
X, >0, Po>0, 4, (<)

UCONN

fork=0,12,...K,
If p x <e, stop

else (compute Newton directions)

X Py
He =——
n
D, = Diag(x,)
R, = Diag(p,)

compute d,,d, and d
find step lengths via

B, = min{l,a min (‘di)}

(i:d,;<0)

By = min{l,a min (d_zk)}

(i:d; <0)
X1 =X+ 5,4,
A =4 + By,
Pia = P+ 844,

end



@ Relationships among Path following Algorithms

 Relationships:
. d =—D2(|-AT(AD2AT)'1AD2)Q

Zaffine

d

e  —primal path - following

~(1-D?A" (AD?AT) A)(pe -2 D7)

u

* When u = o, the corresponding direction is called centering direction
because in this case x(u) is the analytic center of the feasible set.

~centering ~

d_ = (l —D’A" (AD?A")” A) De
=d +id

=centering 4 =affine

= Qprimal path - following

_ q
~ potential — d +—-d

—centering p' x —affine

= Both potential and path following algorithms have polynomial complexity.
There is no such result for affine scaling.
= centering directions are responsible for polynomiality of path
following and potential reduction algorithms.
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@ Implementation Issues

 Least-squares subproblem: Implementation Issues
= Generally A is sparse

= Major computational step at each iteration
AP —2ATd = b --- Affine scaling
AD?AT), = AD?(c —uD~'e)= AD(Dc —ug) ---Barrier function method

Similar equations in path following and potential reduction algorithms.
= Key: Need to solve a symmetric positive definite system Xy =0

 Solution Approaches:

* Direct methods:
a) Cholesky factorization: £=SS", S=A,_ ..
b) LDLT factorization: ¥ =LDL": L = unitA
c) QR factorization of P “1ATor DAT

» Methods to speed up factorization

» During each iteration only D or P ~! changes, while A remains unaltered
o Nonzero structure of X is static throughout

o So, during the first iteration, keep track of the list of numerical operations
performed

lower
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@ Factorization Methods

= Perform factorization only if the diagonal scaling matrix has changed

significantly
o Consider X= AP—2AT
o Replace P by P where B Fol £ ﬁ <5
P =1 i
P. otherwise
oo0o~0.1

o) Deﬁl’le AF)" — F_)iinew . F_)iiold
@) Then ZneW :20Id + Z APaaT a = ith Column OfA

{i:AP, =0} -
o So, use rank-one modification methods (ECE6435, Lecture 8)

» Perform pivoting to reduce fill-ins = having nonzero elements in factors
where there are zero elements in

o Recall that (PZP')Py =Pb

o Unfortunately, finding the optimal permutation matrix to reduce fill-in is NP-
complete

o However, 3 heuristics
% Minimum degree
% Minimum local fill-in
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@ Incomplete Cholesky Algorithm

Incomplete Cholesky Algorithm

= Combine with an iterative method, if fork=1....m do
we have a few dense columns in A o
that will make impracticably dense X L = /2
(recall the outer product
representation)

= Hybrid factorization and conjugate
gradient method called a
preconditioned conjugate gradient
method works well end if

= Idea: At iteration k, split columns of end do

A into two parts [S S] where columns
of A, are sparse (i.e., have density <

Skk

fori=k+1---,mdo
ifz #0

— ZSik

i = e

for j=k+1,...,mdo

A(=0.3)) fori=j,...,mdo
o Form A,P72AL if z, * 0
o Find incomplete Cholesky factor L
such that ZS = ASP_ZA:I; = LLT Zsij - zsij B Iikljk
o Basically the idea is to step through end if

the Cholesky decomposition, but 4d
setting I;; = 0 if the corresponding ena ao
Z, =0 end do

end do
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@ Conjugate Gradient Algorithm
* Now consider the original problem zy - ATP2?Ay =b
Lz(L) Uy=L"
=Qu="f

where Q=L"2(L")"; u=Ly; f=L"D
« Solve Qu =fvia conjugate gradient algorithm ... ECE6435

Conjugate Gradient Algorithm: o @ o andk <k do
u = f...initial solution o=0Qd
¢ =||f,...norm of RHS a= ng -step length
r =f —Qu...initial residual U=U+ad---new solution

(negative gradient of (l u'Qu-u'f )) r=r—aw---new residual, r = f —Qu
p=|r || .square norm of initial residual B = Ti -parameter to update direction
d = r...initial direction d =r+ £d---new direction
= -l

k=Kk+

Computational load ... O(m? + 10m) end do

Need to store only four vectors: u, r, d and w
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V2 Mehrotra’s Correction

Recall Dpe = ue is a nonlinear equation

DPe =y e
D=D, +AD,;P =P, +AP,
(Dk +AD|<)(P|< +AR)e = e

Rd,+ Dkgp = e—DRe-AD AR e=e-DRe-d, ng
d, od, =Hadamard Product = [d,d , d,d , ........ d.d,,]

Mehrotra's Correction; Solve for directions twice
1. Predictor step: First solve by setting d, =d , =0in RHS

2. Corrector step: Solve it again by plugging the values from step 1 in RHS

= Factorization makes this easy to implement

= Speeds up convergence
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@ Simplex versus Interior Point Methods

« Comparison of simplex and dual affine scaling methods

= Three types of test problems

« NETLIB test problems

= 31 test problems

The library and test problem can be accessed via electronic mail:

netlib@anl-mcs (ARPANET/CSNET) or research! netlib (UNIX network)

# of variables n ranged from 51 to 5533
# of constraints m ranged from 27 to 1151
# of non-zero elements in A ranged from 102 to 16276

= Comparisons on IBM 3090
Simplex Affine Scaling
Iterations (6,7157) (19,55)
Ratio of time per iteration (0.093, 0.356) 1
Total cpu time range (secs) (0.01, 217.67) (0.05, 31.70)
Ratio of cpu time (Simplex/Affine) (0.2,10.7) 1
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@ Simplex versus Interior Point Methods

e Multi-commodity Network Flow problem
= Specialized LP algorithms exist that are better than simplex
3 a program to generate random multi-commodity network flow problem

called MNETGN

11 problems were generated
# of variables n € (2606,8800)

# of constraints m € (1406,4135)
Non-zero elements in A ranged from 5212 to 22140

Simplex Specialized Simplex
MINQOS 4.0 MCNEF 85 Affine Scaling
Total # of iterations (940, 21915) (931, 16624) (28, 35)
Ratios of time per iteration (0.010, 0.069) (0.0018, 0.0404) 1

(w.r.t. Affine Scaling)

Total CPU time (secs)

(12.73, 1885.34)

(7.42, 260.44)

(6.51, 309.50)

Ratios of CPU times w.r.t.

Affine Scaling

(1.96, 11.56)

(0.59, 4.15)

1
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@ Simplex versus Interior Point Methods

« Timber Harvest Scheduling problems
= 11 timber harvest scheduling problems using a program called FOR-PLAN
= # of variables ranged from 744 to 19991
= # of constraints ranged from 55 to 316
= Non-zero elements in A ranged from 6021 to 176346

Simplex Affine Scaling
(MINOS 4.0)
Default Pricing
Total # of iterations (534, 11364) (38,71)
Ratio of time per iteration (0.0141, 0.2947) 1
Total CPU time (secs) (2.74,123.62) (0.85, 43.80)
Ratios of CPU times (1.52,5.12) 1
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@ Summary and References

« Promising approach for large real-world LP problems

* Summary
= Reviewed duality
» Dual simplex and primal-dual algorithm
= Interior point methods
o Path following (primal, primal-dual)
o Affine scaling
o Potential reduction
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