Lecture 5:
 Dual Simplex, Primal - Dual And Karmarkar's Algorithms

Prof. Krishna R. Pattipati

Dept. of Electrical and Computer Engineering
University of Connecticut
Contact: krishna@engr.uconn.edu; (860) 486-2890

Outline

- Review of duality
- Dual simplex algorithm
- Revised simplex: primal feasibility $\xrightarrow{\text { work towards }}$ dual feasibility
- Dual simplex: dual feasibility $\xrightarrow{\text { work towards }}$ primal feasibility
- Primal-dual algorithm
- Enforce complementary slackness conditions over subsets of $\{1,2, \ldots, n\}$
- Widely used to solve network flow, assignment \& transportation problems
- Interior point methods
- The primal path following algorithm
- Affine scaling methods (see notes. Will not be covered)
- The potential reduction algorithm
- The primal-dual path following algorithm
- Implementation issues
- Comparison of revised simplex and Interior point methods
- Summary

Review of uality

- Duality
- SLP and its dual

$$
\begin{array}{cl}
\min \underline{c}^{T} \underline{x} & \Leftrightarrow \\
\max \underline{\lambda}^{T} \underline{b} \\
\text { s.t. } A \underline{x}=\underline{b} \longrightarrow & \Leftrightarrow \\
\underline{x} \geq \underline{0} \longrightarrow \underline{\lambda}^{2} & \\
\hline
\end{array}
$$

- Asymmetric form of the dual
- Inequality constrained LP and its dual

$$
\begin{array}{ll}
\min \underline{c}^{T} \underline{x} & \Leftrightarrow \\
\text { s.t. } A \underline{x} \geq \underline{b} & \max \underline{\lambda}^{T} \underline{b} \\
\underline{x} \geq \underline{0} & \\
\hline \text { s.t. } \underline{\lambda} \geq \underline{0} \\
\underline{\lambda}^{T} A \leq \underline{c}^{T}
\end{array}
$$

- Symmetric form of the dual
- For all feasible \underline{x} in primal and $\underline{\lambda}$ in dual
- $\underline{\lambda}^{T} \underline{b} \leq \underline{c}^{T} \underline{x} \Rightarrow$ dual feasible solution is always a lower bound on the primal
- Dual unbounded \Rightarrow primal infeasibility
- Primal unbounded \Rightarrow dual infeasibility
- Primal infeasibility may imply dual infeasibility and vice-versa
- When dual and primal have finite optimal solution, max of the dual, $\underline{\lambda}^{T} \underline{b}$ $=\min$ of the primal, $\underline{c}^{T} \underline{x}^{*}$

Complementary Slackness \& Sensitivity

- Complementary slackness conditions

$$
\begin{aligned}
& \left(\underline{c}^{T}-\underline{\lambda}^{*} A\right) \underline{x}^{*}=0 \Rightarrow x_{i}^{*}>0 \Rightarrow c_{i}=\underline{\lambda}^{T} \underline{a}_{i} \\
& \text { (or relative cost }=0 \text { or } x_{i}^{*} \text { in basis) } \\
& \quad \Rightarrow x_{i}^{*}=0 \Rightarrow c_{i}>\underline{\lambda}^{T} \underline{a}_{i} \\
& \text { (or relative cost }>0 \text { or } x_{i}^{*} \text { is nonbasic) } \\
& \Rightarrow \text { true cost }>\text { synthetic cost }
\end{aligned}
$$

- For inequality constrained problem

$$
\begin{aligned}
\left(\underline{\lambda}^{*}\right)^{T}(A \underline{x}-\underline{b})=0 & \\
\Rightarrow \lambda_{i}^{*}>0 \Rightarrow \quad \underline{a}_{i}^{T} \underline{x}=b_{i} & \text { (nonbasic surplus) } \\
\lambda_{i}^{*}=0 \Rightarrow \quad \underline{a}_{i}^{T} \underline{x}>b_{i} & \text { (basic surplus) }
\end{aligned}
$$

- Simplex multipliers λ_{j} are the costs of \underline{e}_{j}, the j th unit vector
- Cost of any other vector \underline{a}_{k} is $\sum \lambda_{j} a_{j k}=\underline{\lambda}^{T} \underline{a}_{k . .}$ synthetic cost of vector \underline{a}_{k}

$$
\lambda_{j}^{*}=\frac{\partial f}{\partial b_{j}} ; x_{j}^{*}=\frac{\partial f}{\partial c_{j}}
$$

Dual Simplex Algorithm

- In the shortest path problem, λ_{j} can be interpreted as the length of the shortest path from source to node j
- If $\lambda_{j}-\lambda_{i}=c_{i j}$, edge (i, j) is in the shortest path
- If $\lambda_{j}-\lambda_{i}<c_{i j}$, edge (i, j) is not in the shortest path
- $\underline{\lambda}^{*}$ and \underline{x}^{*} are saddle points of

$$
\begin{gathered}
L(\underline{x}, \underline{\lambda})=\underline{c}^{T} \underline{x}-\underline{\lambda}^{T} A \underline{x}+\underline{\lambda}^{T} \underline{b} \\
\Rightarrow \min _{\underline{x} \geq \underline{0}} \max _{\underline{\imath}} L(\underline{x}, \underline{\lambda})=\max _{\underline{\imath}} \min _{\underline{x} \geq \underline{0}} L(\underline{x}, \underline{\lambda})
\end{gathered}
$$

- Dual Simplex Algorithm
- Primal revised simplex starts with a primal feasible solution \underline{x} s.t. $A \underline{x}=\underline{b}, \underline{x}>\underline{0}$ and work towards $\left(\underline{c}^{T}-\underline{\lambda}^{T} A\right)=\underline{p}^{T} \geq \underline{0} \Rightarrow$ dual feasibility

$$
\begin{aligned}
& A \underline{x}=\underline{b} \\
& \underline{x} \geq \underline{0}
\end{aligned} \quad \underline{\text { update } \underline{x}} \quad \begin{aligned}
& \underline{c}^{T}-\underline{\lambda}^{T} A \geq \underline{0} \\
& \underline{\lambda}=\underline{c}_{B}^{T} B^{-1}
\end{aligned}
$$

- Note
- Basic \Rightarrow equality
- Non-basic \Rightarrow strict inequality

From Dual Feasibility to Primal Feasibility

- What if we tried another approach?

From Dual Feasibility $\quad \rightarrow \quad$ Primal Feasibility

$$
c^{T}-\underline{\lambda}^{T} A \geq \underline{0} \quad \underline{\text { update } \lambda} \quad \underline{x}_{B}=B^{-1} \underline{b}, \underline{x}_{B} \geq \underline{0}
$$

- The latter approach leads to the Dual Simplex Algorithm
- Key ideas:
- Suppose $\underline{\lambda}$ is dual feasible

$$
\Rightarrow \underline{\lambda}^{T} A \leq \underline{c}^{T} \text { or } \underline{\lambda}^{T} \underline{a}_{j} \leq c_{j} \forall j
$$

- Suppose our basis B consists of the first m columns

$$
\left(\underline{a}_{1}, \underline{a}_{2}, \ldots, \underline{a}_{n}\right)
$$

- From revised simplex and complementary slackness conditions, we know

$$
\begin{aligned}
& \underline{\lambda}^{T} \underline{a}_{j}=c_{j} ; 1 \leq j \leq m \quad \Rightarrow \quad \underline{\lambda}^{T}=\underline{c}_{B}^{T} B^{-1} \\
& \underline{\lambda}^{T} \underline{a}_{j}<c_{j} ; m+1 \leq j \leq n \quad \text { (barring degeneracy) }
\end{aligned}
$$

- What is the corresponding $\underline{x}_{B}=B^{-1} \underline{b}$ (is it primal feasible?)

Need not be Primal Feasible!!

- Suppose $x_{B l}<0$, we must remove the corresponding column \underline{a}_{l} from the basis

$$
\circ \quad x_{B l}=\left[\operatorname{row} l \text { of }\left(B^{-1}\right)\right] * \underline{b}
$$

Dual Step Size Selection

- Since want to maximize the dual, what if I perturb $\underline{\lambda} \rightarrow \underline{\lambda}$ s.t.

$$
\underline{\lambda}^{T} \underline{b}=\underline{\lambda}^{T} \underline{b}-\varepsilon x_{B l}>\underline{\lambda}^{T} \underline{b}, \varepsilon>0,=\left(\underline{\lambda}^{T}-\varepsilon \operatorname{row} l\left(B^{-1}\right)\right) \underline{b}
$$

- So, $\underline{\lambda}^{T}=\underline{\lambda}^{T}-\varepsilon \operatorname{row} l\left(B^{-1}\right)=\left(\underline{c}_{B}^{T}-\varepsilon \underline{e}_{A}^{T}\right) B^{-1}$
- Q: How far to go?
- A: Only so far as to maintain dual feasibility

$$
\begin{aligned}
& \left(\underline{\underline{c}}^{T}-\underline{\lambda}^{T} A\right) \geq \underline{0}^{T} \\
& \underline{\lambda}^{T} \underline{a}_{j}=c_{j}, j \neq l, j=1, \ldots, m \\
& \underline{\lambda}^{T} \underline{a}_{l}=c_{l}-\varepsilon<c_{l} \quad \text { (out of the basis) } \\
& \underline{\lambda}^{T} \underline{a}_{j}=\underline{\lambda}^{T} \underline{a}_{j}-\varepsilon \underline{e}_{l}^{T} B^{-1} \underline{a}_{j}, j=m+1, \ldots, n \\
& =z_{j}-\varepsilon \alpha_{l j}, j=m+1, \ldots, n \text { where } z_{j}<c_{j}
\end{aligned}
$$

- What does this mean: $\underline{\lambda}^{T} \underline{a}_{l}<c_{l} \Rightarrow$ strict inequality or column \underline{a}_{l} left the basis
- Q: Which column should we bring into the basis?
- A: The one that makes $z_{j}-\varepsilon \alpha_{j j}=c_{j}$ first
- What if all $\alpha_{i j} \geq 0$?
\Rightarrow Can never make $c_{j}=z_{j}-\varepsilon \alpha_{l j}$ since $z_{j}<c_{j}$
\Rightarrow Dual unbounded, since $\underline{\hat{\lambda}}$ is feasible $\forall \varepsilon$

Dual Simplex Algorithm Steps

- If any $\alpha_{i j}<0$, can move until $\varepsilon_{j}=\frac{z_{j}-c_{j}}{\alpha_{i j}}=\frac{-p_{j}}{\alpha_{i j}}$
\Rightarrow Among these ε, pick one that reaches c_{j} first $\varepsilon=\frac{z_{k}-c_{k}}{\alpha_{t k}}=\frac{-p_{k}}{\alpha_{k k}}=\min _{j}\left\{\frac{z_{j}-c_{j}}{\alpha_{i j}}: \alpha_{i j}<0\right\}$
- Update basis $B=B-$ column $\underline{a}_{l}+$ column \underline{a}_{k} as in revised simplex and compute $\underline{x}_{B}=B^{-1} \underline{b}$
- Dual simplex algorithm steps:

Step 1: Given a dual feasible solution $\underline{x}_{B}=B^{-1} \underline{b}$
if $\underline{x}_{B} \geq \underline{0}$ then the solution is optimal
else select an index l such that $x_{B l}<0$
Step 2: If all $\alpha_{l j}=\left[\right.$ row l of $\left.\left(B^{-1}\right)\right] * \underline{a}_{j} \geq 0$ for all non-basic columns \underline{a}_{j}, then unbounded dual (or infeasible primal)

$$
\text { else } \quad \varepsilon=\min _{j}\left\{\frac{z_{j}-c_{j}}{\alpha_{l j}}=\frac{-p_{j}}{\alpha_{l j}}: \alpha_{l j}<0\right\}=\frac{z_{k}-c_{k}}{\alpha_{l k}}=\frac{-p_{k}}{\alpha_{l k}}
$$

Step 3: Update $\underline{\lambda}$, basis B, and \underline{x}_{B}

$$
\begin{aligned}
& \underline{\lambda}^{T} \leftarrow \underline{\lambda}^{T}-\varepsilon \text { row } l\left(B^{-1}\right) \\
& B \leftarrow B-\text { column } \underline{a}_{l}+\text { column } \underline{a}_{k} \text { (or propogate } B^{-1} \text { or } L U \text { or } Q R \text { factors) }
\end{aligned}
$$

Go back to Step 1

Optimality \Rightarrow Dual Feasibility \& Primal Feasibility

- Why does it converge?
- Maintain dual feasibility at each stage
- Choice of $x_{B l}<0 \Rightarrow$ dual objective increases
- Cannot terminate at a non-optimum point (because all we require for optimum is dual and primal feasibility)
- Finite number of extreme points \Rightarrow must terminate in a finite number of steps
- Example: Primal

$$
\begin{aligned}
& \min x_{1}+2 x_{2} \\
& \text { s.t. } x_{1}-2 x_{2}+x_{3} \geq 4 \\
& \quad 2 x_{1}+x_{2}-x_{3} \geq 6 \\
& \quad x_{1}, x_{2}, x_{3}, \geq 0
\end{aligned}
$$

Dual

$$
\begin{gathered}
\max 4 \lambda_{1}+6 \lambda_{2} \\
\text { s.t. } \lambda_{1}+2 \lambda_{2} \leq 1 \\
-2 \lambda_{1}+\lambda_{2} \leq 2 \\
\lambda_{1}-\lambda_{2} \leq 0 \\
\lambda_{1}, \lambda_{2} \geq 0
\end{gathered}
$$

- Graphical Solution:

$$
\begin{array}{ll}
B=\left[\begin{array}{cc}
1 & 1 \\
2 & -1
\end{array}\right] & B^{-1}=\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{3} \\
\frac{2}{3} & -\frac{1}{3}
\end{array}\right] \\
{\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{3} \\
\frac{2}{3} & -\frac{1}{3}
\end{array}\right]\left[\begin{array}{l}
4 \\
6
\end{array}\right]=\left[\begin{array}{l}
\frac{10}{3} \\
\frac{2}{3}
\end{array}\right]} & x_{1}=\frac{10}{3}, x_{2}=0, x_{3}=\frac{2}{3}
\end{array}
$$

$$
\underline{\lambda}^{T}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{3} & \frac{1}{3} \\
\frac{2}{3} & -\frac{1}{3}
\end{array}\right]=\left[\begin{array}{ll}
\frac{1}{3} & \frac{1}{3}
\end{array}\right] \quad \text { opt cost }=\frac{10}{3}
$$

Illustration of Dual Simplex Algorithm

- Example:

Primal

$$
\begin{array}{ll}
\min & 3 x_{1}+4 x_{2}+5 x_{3} \\
\text { s.t. } & x_{1}+2 x_{2}+3 x_{3} \geq 5 \\
& 2 x_{1}+2 x_{2}+x_{3} \geq 6 \\
& x_{i} \geq 0
\end{array}
$$

Dual

$$
\begin{gathered}
\max 5 \lambda_{1}+6 \lambda_{2} \\
\text { s.t. } \lambda_{1}+2 \lambda_{2} \leq 3 \\
2 \lambda_{1}+2 \lambda_{2} \leq 4 \\
3 \lambda_{1}+\lambda_{2} \leq 5 \\
\lambda_{1}, \lambda_{2} \geq 0
\end{gathered}
$$

Optimal Solution:

$$
\lambda_{1}=1, \lambda_{2}=1 \Rightarrow x_{1}=1, x_{2}=2, x_{3}=0
$$

optimal cost $=11$
Iteration 0:
(1):

$$
\begin{aligned}
& \lambda_{1}=\lambda_{2}=0 \Rightarrow z_{j}=0 \forall j \\
& x_{1}+2 x_{2}+3 x_{3}-s_{1}=5 \\
& 2 x_{1}+2 x_{2}+x_{3}-s_{2}=6 \\
& \quad \Rightarrow B=-I \text { is the basis } \\
& \underline{x}_{B}=-\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{l}
5 \\
6
\end{array}\right]=\left[\begin{array}{l}
-5 \\
-6
\end{array}\right]
\end{aligned}
$$

Select the most negative one : s_{2}
(2): $p_{1}=c_{1}-z_{1}=3 ; p_{2}=c_{2}-z_{2}=4 ; p_{3}=c_{3}-z_{3}=5$
$\left(\operatorname{row} l\right.$ of $\left.B^{-1}\right) \underline{a}_{j}=-\left[\begin{array}{ll}0 & 1\end{array}\right]\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 2 & 1\end{array}\right]=\left[\begin{array}{lll}-2 & -2 & -1\end{array}\right]$
$\varepsilon=\min _{j}\left\{\frac{z_{j}-c_{j}}{\alpha_{l j}}: \alpha_{l j}<0\right\}=\min \left[\begin{array}{lll}\frac{3}{2} & \frac{4}{2} & \frac{5}{1}\end{array}\right]=\frac{3}{2}$

Dual Simplex Algorithm Steps

(3) Update $\underline{\lambda}, B$ and \underline{x}_{B}

$$
\begin{aligned}
& \Rightarrow \text { column } 1 \text { comes into the basis } \Rightarrow \text { basis }\binom{s_{1}}{x_{1}} \\
& \text { or } \underline{\lambda}^{T}=\underline{\lambda}^{T}-\varepsilon\left(\text { row }_{l} \text { of }\left(B^{-1}\right)\right)=\left[\begin{array}{ll}
0 & 0
\end{array}\right]-\frac{3}{2}\left[\begin{array}{ll}
0 & -1
\end{array}\right]=\left[\begin{array}{ll}
0 & \frac{3}{2}
\end{array}\right] \\
& \text { new } B=\left[\begin{array}{ll}
-1 & 1 \\
0 & 2
\end{array}\right] \quad \text { new } B^{-1}=\left[\begin{array}{cc}
-1 & \frac{1}{2} \\
0 & \frac{1}{2}
\end{array}\right] \\
& \underline{\lambda}^{T}=\left[\begin{array}{ll}
0 & 3
\end{array}\right]\left[\begin{array}{cc}
-1 & \frac{1}{2} \\
0 & \frac{1}{2}
\end{array}\right]=\left[\begin{array}{ll}
0 & \frac{3}{2}
\end{array}\right] \\
& \underline{x}_{B}=\left[\begin{array}{ll}
-1 & \frac{1}{2} \\
0 & \frac{1}{2}
\end{array}\right]\left[\begin{array}{c}
{[} \\
6
\end{array}\right]=\left[\begin{array}{c}
-2 \\
3
\end{array}\right] \Rightarrow\left(\begin{array}{l}
s_{1} \\
x_{1}
\end{array}\right]
\end{aligned}
$$

Iteration 1:
(1) s_{1} goes out of basis
(2) $\left(\right.$ row $_{1}$ of $\left.B^{-1}\right) \underbrace{\left[\begin{array}{ccc}2 & 3 & 0 \\ 2 & 1 & -1\end{array}\right]}_{N}=\left[\begin{array}{ll}-1 & \frac{1}{2}\end{array}\right]\left[\begin{array}{ccc}2 & 3 & 0 \\ 2 & 1 & -1\end{array}\right]=\left[\begin{array}{lll}-1 & -\frac{5}{2} & -\frac{1}{2}\end{array}\right]$

Dual Simplex Algorithm

$$
\varepsilon=\min \left[\begin{array}{lll}
\frac{1}{1} & \frac{7}{5} & 3
\end{array}\right] \Rightarrow \text { column } 2 \text { enters the basis }
$$

(3) $\underline{\lambda}^{T}=\underline{\lambda}^{T}-\varepsilon\left(\right.$ row $_{1}$ of $\left.B^{-1}\right)=\left[\begin{array}{ll}0 & \frac{3}{2}\end{array}\right]-1\left[\begin{array}{ll}-1 & \frac{1}{2}\end{array}\right]=\left[\begin{array}{ll}1 & 1\end{array}\right]$
new $B=\left[\begin{array}{ll}2 & 1 \\ 2 & 2\end{array}\right] \quad$ new $B^{-1}=\left[\begin{array}{cc}1 & -\frac{1}{2} \\ -1 & 1\end{array}\right]$ Old $B^{-1}=\left[\begin{array}{cc}-1 & \frac{1}{2} \\ 0 & \frac{1}{2}\end{array}\right]$
check: $c_{B}^{T} B^{-1}=\left[\begin{array}{ll}4 & 3\end{array}\right]\left[\begin{array}{cc}1 & -\frac{1}{2} \\ -1 & 1\end{array}\right]=\left[\begin{array}{ll}1 & 1\end{array}\right]$
$\underline{x}_{B}=B^{-1} \underline{b}=\left[\begin{array}{cc}1 & -\frac{1}{2} \\ -1 & 1\end{array}\right]\left[\begin{array}{l}5 \\ 6\end{array}\right]=\left[\begin{array}{l}2 \\ 1\end{array}\right]=\binom{x_{2}}{x_{1}}$
$x_{1}=1, x_{2}=2, x_{3}=0 \quad$ Done!!!

$$
\begin{aligned}
& \left(\text { row }_{1} \text { of } B^{-1}\right) N=\left[\begin{array}{lll}
-1 & -\frac{5}{2} & -\frac{1}{2}
\end{array}\right] \\
& \underline{\lambda}^{T} A-\underline{c}=\left[\begin{array}{ll}
0 & \frac{3}{2}
\end{array}\right]\left[\begin{array}{ccccc}
1 & 2 & 3 & -1 & 0 \\
2 & 2 & 1 & 0 & -1
\end{array}\right]-\left[\begin{array}{lllll}
3 & 4 & 5 & 0 & 0
\end{array}\right] \\
& =\left[\begin{array}{lllll}
\stackrel{\downarrow}{2} & & & \stackrel{\downarrow}{2} \\
0 & -1 & -\frac{7}{2} & 0 & -\frac{3}{2}
\end{array}\right]=-\underline{p}
\end{aligned}
$$

Another Example of Dual Simplex Algorithm

Primal:

- Example:
$x_{1}=$ number of barrels of light crude
$x_{2}=$ number of barrels of heavy crude $\min 56 x_{1}+50 x_{2}$
s.t. $0.3 x_{1}+0.3 x_{2} \geq 900,000$
$0.2 x_{1}+0.4 x_{2} \geq 800,000$
$0.3 x_{1}+0.2 x_{2} \geq 500,000$
$x_{1} \geq 0 ; x_{2} \geq 0$
optimal point: $(0,3 M) ;$ Cost $: \$ 150 M$

Dual:

$\max 100,000\left[9 \lambda_{1}+8 \lambda_{2}+5 \lambda_{3}\right]$
s.t. $0.3 \lambda_{1}+0.2 \lambda_{2}+0.3 \lambda_{3} \leq 56$
$0.3 \lambda_{1}+0.4 \lambda_{2}+0.2 \lambda_{3} \leq 50$
s.t. $\lambda_{1} \geq 0 ; \lambda_{2} \geq 0 ; \lambda_{3} \geq 0$
optimal point: (500/3 0 0)
Cost: $\$ 150 \mathrm{M}$

Iteration 0:

(1):

$$
\begin{gathered}
\lambda_{1}=\lambda_{2}=\lambda_{3}=0 \Rightarrow z_{j}=0 \forall j \\
0.3 x_{1}+0.3 x_{2}-s_{1}=900,000 \\
0.2 x_{1}+0.4 x_{2}-s_{2}=800,000 \\
0.3 x_{1}+0.2 x_{2}-s_{3}=500,000 \\
x_{1} \geq 0 ; x_{2} \geq 0 ; s_{i} \geq 0 \\
\Rightarrow B=-I \text { is the basis }
\end{gathered}
$$

$$
\underline{x}_{B}=-\left[\begin{array}{l}
-900,000 \\
-800,000 \\
-500,000
\end{array}\right]
$$

Select the most negative one : s_{1}

Dual Simplex Algorithm Steps

(3):
\Rightarrow column 2 comes into the basis \Rightarrow basis $\left[\begin{array}{l}x_{2} \\ s_{2} \\ s_{3}\end{array}\right]$
or $\underline{\lambda}^{T}=\underline{\lambda}^{T}-\varepsilon\left(\right.$ row $_{l}$ of $\left.\left(B^{-1}\right)\right)=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]-\frac{500}{3}\left[\begin{array}{lll}-1 & 0 & 0\end{array}\right]=\left[\begin{array}{lll}\frac{500}{3} & 0 & 0\end{array}\right]$
new $B=\left[\begin{array}{ccc}0.3 & 0 & 0 \\ 0.4 & -1 & 0 \\ 0.2 & 0 & -1\end{array}\right]$ new $B^{-1}=\left[\begin{array}{ccc}10 / 3 & 0 & 0 \\ 4 / 3 & -1 & 0 \\ 2 / 3 & 0 & -1\end{array}\right]$
$\underline{\lambda}^{T}=\left[\begin{array}{lll}50 & 0 & 0\end{array}\right]\left[\begin{array}{ccc}10 / 3 & 0 & 0 \\ 4 / 3 & -1 & 0 \\ 2 / 3 & 0 & -1\end{array}\right]=\left[\begin{array}{ccc}500 / 3 & 0 & 0\end{array}\right]$
$\underline{x}_{B}=\left[\begin{array}{ccc}10 / 3 & 0 & 0 \\ 4 / 3 & -1 & 0 \\ 2 / 3 & 0 & -1\end{array}\right]\left[\begin{array}{c}900,000 \\ 800,000 \\ 500,000\end{array}\right]=\left[\begin{array}{c}3,000,000 \\ 400,000 \\ 100,000\end{array}\right] \Rightarrow\left[\begin{array}{l}x_{2} \\ s_{2} \\ s_{3}\end{array}\right]$
\Rightarrow Optimal $\Rightarrow f^{*}=\$ 150 \mathrm{M}$

Key Idea of Primal-Dual Algorithm

- Idea for Primal-Dual Algorithm
- To set the stage, consider the SLP and its dual

Primal

$$
\begin{gathered}
\min \underline{c}^{T} \underline{x} \\
\text { s.t. } A \underline{x}=\underline{b} \\
\underline{x} \geq \underline{0} \\
\hline
\end{gathered}
$$

Dual
$\left.\Leftrightarrow \quad \begin{array}{c}\max \underline{\lambda}^{T} \underline{b} \\ \text { s.t. } \underline{\lambda} \text { unrestricted } \\ \underline{\lambda}^{T} A \leq \underline{c}^{T}\end{array}\right)$

- At optimum:
$\underline{\lambda}^{T}(A \underline{x}-\underline{b})=0 \ldots$ satisfied for any feasible \underline{x} in primal and
$\left(\underline{(}^{T}-\underline{\lambda}^{T} A\right) \underline{x}=0 \ldots$ satisfied at optimum
- Suppose we have a feasible $\underline{\lambda}$ for the dual problem
$\Rightarrow \underline{\lambda}^{T} A \leq \underline{c}^{T}$
\Rightarrow Some of these inequalities will be equalities
\Rightarrow Define the subset P of $\{1, \ldots, n\}$ by $i \in P$

$$
\begin{gathered}
P=\left\{i: \underline{\lambda}^{T} \underline{a}_{i}=c_{i}\right\} \\
=\varnothing
\end{gathered}
$$

- For optimality, we need:
$x_{i}>0$ if $\underline{\lambda}^{T} \underline{a}_{i}=c_{i} \Rightarrow i \in P$
$x_{i}=0$ if $\underline{\lambda}^{T} \underline{a}_{i}<c_{i} \Rightarrow i \notin P \Rightarrow$ so, if we can find x_{i} s.t. $x_{i}=0$ for $i \notin P$, we are done!!

Maintaining Dual and Primal Feasibility

- What does it mean?
- This amounts to searching for \underline{x} such that

$$
\sum_{i \in P} a_{i} x_{i}=\underline{b} \quad x_{i} \geq 0, i \in P ; \quad x_{i}=0, i \notin P
$$

\Rightarrow Nonnegative linear combinations of columns in $P=\underline{b}$
$P=$ set of admissible columns

- But, this is simply phase I of LP ... restricted primal (RP)

$$
\begin{aligned}
& \min _{\underline{x}, \underline{y}} \sum_{i=1}^{m} y_{i}=\underline{e}^{T} \underline{y}=\left[\begin{array}{ll}
\underline{0}^{T} & \underline{e}^{T}
\end{array}\right]\left[\begin{array}{l}
\underline{\underline{x}} \\
\underline{y}
\end{array}\right]=\underline{c}^{T} \underline{x}_{a} \\
& \text { s.t. } \sum_{i \in P} \underline{a}_{i} x_{i}+\underline{y}=\underline{b} \\
& x_{i} \geq 0, i \in P ; x_{i}=0, i \notin P(\text { implicit }) ; \underline{y} \geq \underline{0}
\end{aligned}
$$

- Dual of the restricted primal (DRP) $\max _{\underline{\mu}} \underline{\mu}_{\underline{T}}^{\underline{b}}$

$$
\begin{aligned}
& \text { s.t. } \underline{\mu}^{T} a_{i} \leq 0 ; i \in P \\
& \underline{\mu} \leq \underline{e}
\end{aligned}
$$

- Given a feasible $\underline{\lambda}$, we can find a feasible solution \underline{x} to the associated RP
- If optimum solution of $\mathrm{RP}=0$, then found an optimum:
\underline{x} from RP \& original $\underline{\lambda}$ are optimum
- Else, update $\underline{\lambda}$ via $\underline{\lambda}=\underline{\lambda}+\varepsilon \underline{\mu^{*}}$ where $\underline{\mu}^{*}=$ vector of simplex multipliers at the termination of RP

Primal-Dual Algorithm Graphically

- Graphically, the idea is this:

- Key questions
- What is the sign of ε ?
- What is the largest ε I can take? ... must maintain dual feasibility
- Can I detect infeasibility?
- Does the algorithm converge?
- Sign of ε
- $\underline{\mu}^{* T} \underline{b} \geq 0$ since $\underline{\mu}=\underline{0}$ is feasible for DRP
- New dual cost:
$\underline{\lambda}^{T} \underline{b}=\underline{\lambda}^{T} \underline{b}+\varepsilon \underline{\mu^{*}} \underline{b}=\underline{\lambda}^{T} \underline{b}+\varepsilon($ optimum solution of $\operatorname{RP}($ or DRP $))>\underline{\lambda}^{T} \underline{b}$ if $\varepsilon>0$
- Must take $\varepsilon>0$ to increase the cost of original dual

Step Size in Primal-Dual Algorithm

- Step size and detection of infeasibility
- What is the effect of ε on feasibilitv?

Need $\underline{\lambda}^{T} \underline{a}_{i}=\underline{\lambda}^{T} a_{i}+\varepsilon \underline{\mu^{* T}} \underline{a}_{i} \leq c_{i} \forall i=1, \ldots, n$
If $\underline{\mu}^{\boldsymbol{p}^{T}} \underline{a}_{i}<0 \Rightarrow$ No Problem
However, if $\underline{\mu}^{* T}{ }_{i}<0 \forall i$ then
\Rightarrow we can increase ε indefinitely, while maintaining dual feasibility
\Rightarrow dual is unbounded \Rightarrow primal is infeasible

- If optimal solution in RP>0 and the optimal dual satisfies $\underline{\mu}^{4 \pi} \underline{a}_{i}<0 \forall i \notin P$, then the original problem is infeasible (or original dual is unbounded)
- If original problem has finite optimum
- At least some $\underline{\mu}^{\mu^{T}} \underline{a}_{i}>0$ for $i \notin P$
- ε should be chosen such that the equality is met by one of the constraints first

$$
\varepsilon=\min _{i \notin P}\left\{\frac{c_{i}-\underline{\lambda}^{T} \underline{a}_{i}}{\underline{\mu}^{*_{T}} \underline{a}_{i}}: \underline{\mu}_{T}^{{ }^{* T}} \underline{a}_{i}>0\right\}
$$

- The dual cost increases to $\underline{\lambda}^{T} \underline{b}=\underline{\lambda}^{T} \underline{b}+\varepsilon \underline{\mu^{T}} \underline{b}$
- The set P changes to $P \leftarrow P \cup\{k\}$ where $k=\arg \min _{i \in P}\left\{\frac{c_{i}-\underline{\lambda}^{T} \underline{a_{i}}}{\underline{\mu}^{T} \underline{a}_{i}}: \underline{\mu}^{* T} a_{i}>0\right\}$

Primal-Dual Algorithm Steps

- Primal-Dual Algorithm

Step 1:
Given a feasible $\underline{\lambda}$ to the dual problem

$$
\begin{aligned}
& \max \underline{\lambda}^{T} \underline{b} \\
& \text { s.t. } \underline{\lambda}^{T} A \leq \underline{c}^{T}
\end{aligned}
$$

Determine the restricted primal problem:

- Find set P
- Formulate restricted primal: $\min \underline{e}^{T} \underline{y}$

$$
\begin{array}{ll}
\text { s.t. } & \sum_{i \in P} a_{i} x_{i}+\underline{y}=\underline{b} \\
& x_{i} \geq 0, i \in P ; x_{i}=0, i \notin P(\text { implicit }) ; \underline{y} \geq \underline{0}
\end{array}
$$

- Note: $\underline{b} \geq \underline{0}$, if not, multiply corresponding Eq. by -1

Step 2:
Optimize the restricted primal (phase I of LP)
If optimal solution $=0$, then done
Else go to Step 3
Step 3:
Compute $\underline{\mu}^{{ }^{*} T} \underline{a}_{i}$ for $i \notin P$

Illustration of Primal-Dual Algorithm

Step 3 (cont'd): If all $\underline{\mu}^{* T} \underline{a}_{i}<0$ for $i \notin P$, then primal is infeasible Else update $\underline{\lambda} \leftarrow \underline{\lambda}+\varepsilon \underline{\mu}^{*}$

Where $\varepsilon=\frac{c_{k}-\underline{\lambda}^{T} \underline{a}_{k}}{\underline{\mu}^{\mu^{*}} \underline{a}_{k}}=\min _{i \notin P}\left\{\frac{c_{i}-\underline{\lambda}^{T} \underline{a}_{i}}{\underline{\mu}^{{ }^{* T}} \underline{a}_{i}}: \underline{\mu}^{* T} \underline{a}_{i}>0\right\}$

$$
P \leftarrow P \cup\{k\}
$$

Go back to Step 1
Primal-Dual: $\min 3 x_{1}+4 x_{2}+5 x_{3}$

$$
\begin{aligned}
\text { s.t. } x_{1}+2 x_{2}+3 x_{3} & \geq 5 \\
2 x_{1}+2 x_{2}+x_{3} & \geq 6
\end{aligned}
$$

Iteration 0:

$$
x_{i} \geq 0
$$

Let $\underline{\lambda}=0,\left\{c_{i}-\underline{\lambda}^{T} \underline{a}_{i}\right\}=\left[\begin{array}{lll}3 & 4 & 5\end{array}\right] \Rightarrow P=\phi$

$$
\begin{aligned}
& \max 5 \lambda_{1}+6 \lambda_{2} \\
& \text { s.t. } \lambda_{1}+2 \lambda_{2} \leq 3 \\
& 2 \lambda_{1}+2 \lambda_{2} \leq 4 \\
& 3 \lambda_{1}+\lambda_{2} \leq 5 \\
& \lambda_{1}, \lambda_{2} \geq 0
\end{aligned}
$$

Restricted primal: $R P: \min \underline{e}^{T} \underline{y}$ s.t. $\underline{y}=\underline{b} ; \underline{y} \geq \underline{0}$

$$
\begin{aligned}
& D R P: \max \underline{\mu}^{T} \underline{b} \text { s.t. } \underline{\mu} \leq \underline{e} \quad \Rightarrow \quad \underline{y}=\underline{b}, \underline{\mu}^{T}=\underline{e}^{T} \\
& \underline{\mu}^{T}\left\{\underline{a}_{i}\right\}=\left[\begin{array}{lll}
3 & 4 & 4
\end{array}\right] \\
& \varepsilon=\min \left[\begin{array}{lll}
\frac{3}{3} & \frac{4}{4} & \frac{5}{4}
\end{array}\right] \Rightarrow \quad \text { Both } 1 \& 2 \text { can enter basis } \\
& P=\{1,2\} ; \underline{\lambda}^{T}=\underline{\lambda}^{T}+\varepsilon \underline{\mu}^{T}=\left[\begin{array}{ll}
0 & 0
\end{array}\right]+1\left[\begin{array}{ll}
1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 1
\end{array}\right]
\end{aligned}
$$

Property of Primal-Dual Algorithm

Iteration 1:

RP:
$\min \underline{e}^{T} \underline{y}$
s.t. $\left[\begin{array}{l}1 \\ 2\end{array}\right] x_{1}+\left[\begin{array}{l}2 \\ 2\end{array}\right] x_{2}+\underline{y}=\underline{b}=\left[\begin{array}{l}5 \\ 6\end{array}\right]$

DRP: $\max 5 \mu_{1}+6 \mu_{2}$

$$
\begin{array}{ll}
\text { s.t. } \begin{array}{l}
\mu_{1}+2 \mu_{2} \leq 0 \\
2 \mu_{1}+2 \mu_{2} \leq 0 \quad \\
\mu_{1} \leq 1 \\
\mu_{2} \leq 1
\end{array}
\end{array}
$$

$$
\Rightarrow \underline{\lambda}^{T}=\left[\begin{array}{ll}
1 & 1
\end{array}\right] ; \text { optimal basis, } B=\left[\begin{array}{ll}
1 & 2 \\
2 & 2
\end{array}\right] ; B^{-1}=\left[\begin{array}{cc}
-1 & 1 \\
1 & \frac{-1}{2}
\end{array}\right]
$$

$$
\underline{x}_{B}=B^{-1} \underline{b}=\left[\begin{array}{lll}
1 & 2
\end{array}\right]^{T} \quad \Rightarrow \quad \underline{x}^{T}=\left[\begin{array}{lll}
1 & 2 & 0
\end{array}\right]
$$

- Property of primal-dual algorithm
- Every column $i \in P$ in the optimal basis of restricted primal (RP) remains in set P at the start of next iteration
- Proof:
- If a column i is in the optimal basis of RP, $\left(\mu^{*}\right)^{T} \underline{a}_{i}=0$
$\Rightarrow \underline{\lambda}^{T} \underline{a}_{i}=\underline{\lambda}^{T} \underline{a}_{i}+\varepsilon \underline{\mu}^{*} \underline{a}_{i}=\underline{\lambda}^{T} \underline{a}_{i}=c_{i}$, since $i \in P$
- The algorithm must converge
- No primal basis is repeated

Primal-Dual Algorithm for Shortest Path Problem

- Pivoting on \underline{a}_{k} will decrease restricted primal cost (since $\left.\left(\underline{\mu}^{*}\right)^{T} \underline{a}_{k}>0\right)$
- There are only a finite number of bases
- Application to shortest path problem... Dijkstra's algorithm

- s, u, v, t are computers, edge lengths are costs of sending a message between them
- Let $x_{s v}$ be the fraction of messages sent from s to v
- Primal

$$
\begin{aligned}
& \min 2 x_{s u}+4 x_{s v}+x_{u v}+5 x_{u t}+3 x_{v t} \\
& \text { s.t. } \quad x_{s u}, x_{s v}, x_{u v}, x_{u t}, x_{v t}=0 \text { or } 1
\end{aligned}
$$

$$
A \underline{x}=\left[\begin{array}{ccccc}
1 & 0 & -1 & -1 & 0 \\
0 & 1 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{s u} \\
x_{s v} \\
x_{u v} \\
x_{u t} \\
x_{v u}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\underline{b}
$$

- Dual
- $\lambda_{s}=$ Price of a message at node s (buying or selling) $=0$
- $\lambda_{t}=$ Price of a message at node t (buying or selling)

$$
\begin{array}{ll}
\max & \lambda_{t} \\
\text { s.t. } & \lambda_{u} \leq 2 \\
& \lambda_{v} \leq 4 \\
& \lambda_{v}-\lambda_{u} \leq 1 \\
& \lambda_{t}-\lambda_{u} \leq 5 \\
& \lambda_{t}-\lambda_{v} \leq 3
\end{array}
$$

- Crude way
- Start with $\underline{\lambda}^{T}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right] ; P=\phi$
$\Rightarrow \mathrm{RP}$ has solution $\underline{y}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
\Rightarrow Optimal cost=1

$$
\text { Basis }=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \Rightarrow \underline{\mu}^{*}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
$$

because $\max \mu_{t}$ s.t. $\mu_{u} \leq 1, \mu_{v} \leq 1, \mu_{t} \leq 1$
Iteration 1:

$$
\begin{aligned}
& \left(\underline{\mu}^{*}\right)^{T} \underline{a}_{i}=\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0
\end{array}\right] \text { for } i \notin P \\
& \varepsilon=\arg \min _{i \notin P}\left\{\frac{c_{i}-\underline{\lambda}^{T} \underline{a}_{i}}{\underline{\mu}^{T} \underline{a}_{i}}: \underline{\mu}^{T} \underline{a}_{i}>0\right\}=\min \left[\begin{array}{lllll}
2 & 4 & x & x & x
\end{array}\right]
\end{aligned}
$$

\Rightarrow pick column 1 to enter admissible column set $P \Rightarrow P\{1\}$

- Update $\underline{\lambda} \Rightarrow \underline{\lambda}^{T}=\left[\begin{array}{lll}0 & 0 & 0\end{array}\right]+2\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]=\left[\begin{array}{lll}2 & 2 & 2\end{array}\right]$
- $x_{s u}=1$
- Dual of RP $\max \mu_{t}$

$$
\begin{aligned}
\text { s.t. } \mu_{u} & \leq 0 \\
\mu_{v} & \leq 1 \\
\mu_{t} & \leq 1
\end{aligned} \quad \Rightarrow \underline{\mu}^{*}=\left[\begin{array}{lll}
0 & 1 & 1
\end{array}\right]
$$

Iteration 2:

$$
\begin{aligned}
& \bar{P}=\left\{\begin{array}{llll}
2 & 3 & 4 & 5
\end{array}\right\} \\
& \left(\underline{\mu}^{*}\right)^{T} \underline{a}_{i}=\left[\begin{array}{lll}
1 & 1 & 1
\end{array}\right] \text { for } i \notin P \\
& \varepsilon=\min \left\{\begin{array}{lll}
\frac{4-2}{1}, \frac{1}{1}, \frac{5-2}{1}
\end{array}\right\}=1 \Rightarrow P=\{1,3\} \\
& \Rightarrow \underline{\lambda}^{T}=\left[\begin{array}{lll}
2 & 2 & 2
\end{array}\right]+1\left[\begin{array}{lll}
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
2 & 3 & 3
\end{array}\right] \\
& \Rightarrow x_{u v}=1
\end{aligned}
$$

Iteration 3:

$$
\begin{aligned}
& \bar{P}=\left\{\begin{array}{lll}
2 & 4 & 5
\end{array}\right\} \\
& \max \mu_{t} \\
& \text { s.t. } \mu_{u} \leq 0 \\
& \mu_{v}-\mu_{u} \leq 0 \Rightarrow \underline{\mu}^{*}=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] \\
& \mu_{v}, \mu_{t} \leq 1 \\
& \left(\underline{\mu}^{*}\right)^{T} \underline{a}_{i}=\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right] ; i \notin P \\
& \Rightarrow \varepsilon=\min \left\{\frac{3-0}{1}\right\}=3 \\
& \Rightarrow \underline{\boldsymbol{\lambda}}^{T}=\left[\begin{array}{lll}
2 & 3 & 3
\end{array}\right]+3\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{lll}
2 & 3 & 6
\end{array}\right] \\
& \Rightarrow x_{v t}=1
\end{aligned}
$$

Iteration 4:
$\max \mu_{t}$
s.t. $\mu_{u} \leq 0$
$\mu_{v}-\mu_{u} \leq 0 \Rightarrow \underline{\mu}^{*}=0 \Rightarrow$ optimal
$\mu_{t}-\mu_{v} \leq 0$

There is a method to our madness

- Shortest path from $s-t: s \rightarrow u \rightarrow v \rightarrow t$
- $s \rightarrow u=2=\lambda_{u}$
- $s \rightarrow v=3=\lambda_{v}$
- $s \rightarrow t=6=\lambda_{t}$
- There is a method to our madness Related to Dijkstra's Algorithm
- μ^{*} at stage i, where j columns (or arcs) are in the admissible set is defined as follows:
$\underline{\mu}^{*}=0$ for all nodes reachable by paths from source s using arcs in P
$\mu^{*}=1$ for all other nodes
- Iteration 1: Since P is empty $\underline{\mu}^{*}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$
- Iteration 2: Since P includes column $1(\operatorname{arc}(s, u)), \mu^{*}=\left[\begin{array}{lll}0 & 1 & 1\end{array}\right] \ldots$
- Iteration 3: Since P includes columns 1 and $3(\operatorname{arcs}(s, u),(u, v)), \underline{\mu}^{*}=\left(\begin{array}{lll}0 & 0 & 1\end{array}\right)$
- Iteration 4: Since P includes columns 1,3 and $5(\operatorname{arcs}(s, u),(u, v)$ and $(v, t))$, $\underline{\mu}^{*}=\left(\begin{array}{lll}0 & 0 & 0\end{array}\right)$
- What about step size ε ?

$$
\varepsilon=\min _{\text {arcs } \& P}\left\{\operatorname{cost} \text { of arc }-\left(\lambda_{\text {end node of arc }}-\lambda_{\text {statr node of arc }}\right)\right\}
$$

- Note: Denominator $\left(\mu^{*}\right)^{\mathrm{T}} \underline{a}_{i}$ is always 1 or 0 . Recall unimodularity of A
- So consider arcs with $\mu_{\text {end node of arc }}^{*}-\mu_{\text {statr tode of arc }}^{*}>0$ (in this case 1)

Relation to Dijkstra's Algorithm

- Since $\underline{\mu}^{*}=0$ for all nodes reachable by s using arcs in P, λ_{i} for these nodes remains fixed from the time node i enters the feasible set P until the conclusion of the algorithm
- Note the evolution of $\underline{\lambda}$

$$
\left[\begin{array}{lll}
0 & 0 & 0
\end{array}\right] \rightarrow\left[\begin{array}{lll}
2 & 2 & 2
\end{array}\right] \rightarrow\left[\begin{array}{lll}
2 & 3 & 3
\end{array}\right] \rightarrow\left[\begin{array}{lll}
2 & 3 & 6
\end{array}\right]
$$

- If we let w be the set of nodes reachable through arcs in P, λ_{i} for these nodes remains constant till the end of the algorithm
- At each iteration, one node is added to w until w becomes the entire set of nodes $s \rightarrow(\mathrm{~s}, u) \rightarrow(\mathrm{s}, u, v) \rightarrow(\mathrm{s}, u, v, t)$
- Looks like we terminate in $(n-1)$ steps where n is the number of nodes... with some streamlining, this is DIJKSTRA's algorithm...Lecture 6
- λ_{u}, λ_{v} and λ_{t} are the lengths of the shortest paths from start node s
- Interior Point Algorithms
- Three major types
- The primal and primal-dual path following algorithms
- Affine scaling algorithms
- Potential Reduction Algorithms

Interior Point Methods

- Path following algorithms
- Discuss not the original Interior point algorithm, but an equivalent (and more general) formulation based on Barrier functions
$\underline{S L P}$
Barrier

$$
\begin{gathered}
\min _{\underline{x}} \underline{c}^{T} \underline{x} \\
\text { s.t. } A \underline{x}=\underline{b} \\
\quad \underline{x} \geq \underline{0}
\end{gathered}
$$

optimal solution \underline{x}^{*}

$$
\begin{aligned}
& \min _{\underline{x}} f(\underline{x}, \mu)=\underline{c}^{T} \underline{x}-\mu \sum_{j=1}^{n} \ln x_{j} \\
& \Leftrightarrow \quad \text { s.t. } A \underline{x}=\underline{b} \\
& \quad \mu>0 \\
& \\
& \\
& \text { optimal solution } \underline{x}^{*}(\mu)
\end{aligned}
$$

- Key: $\underline{x}^{*}(\mu) \rightarrow \underline{x}^{*}$ as the Barrier parameter $\mu \rightarrow 0$
- \exists many variations of Barrier function formulations... we will discuss them later or see references
- Consider the general NLP

$$
\begin{aligned}
& \min _{\underline{x}} f(\underline{x}) \\
& \text { s.t. } A \underline{x}=\underline{b}
\end{aligned}
$$

- Suppose \underline{x} is feasible, then $\underline{\bar{x}}=\underline{x}+\alpha \underline{d}, \underline{d} \sim$ search direction
- Pick α s.t. $A \underline{x}=\underline{b}$ (new point is feasible) and $f(\underline{x})<f(\underline{\bar{x}})$

Newton's Method for NLP

- What does Newton's method do for this problem?
- Feasibility $\Rightarrow A \underline{\bar{x}}=A \underline{x}+\alpha A \underline{d}=0 \Rightarrow A \underline{d}=0$
- Newton's method fits a quadratic to $f(\underline{x})$ at the current point and takes $\alpha=1$

$$
f(\underline{x}+\underline{d})=f(\underline{x})+\underline{g}^{T} \underline{d}+\frac{1}{2} \underline{d}^{T} H \underline{d}, \text { where } \underline{g}=\nabla f(\underline{x}) ; H=\nabla^{2} f(\underline{x})
$$

- Newton's method solves a quadratic problem to find \underline{d} (\Rightarrow a weighted least squares problem)
- Consider

$$
\begin{aligned}
& \min _{\underline{d}} \underline{g}^{T} \underline{d}+\frac{1}{2} \underline{d}^{T} H \underline{d} \\
& \text { s.t. } A \underline{d}=\underline{0}
\end{aligned}
$$

$$
\Rightarrow \quad \begin{aligned}
& \min _{\underline{d}} \underline{\frac{1}{2}}\left\|H^{\frac{1}{2}} \underline{d}-H^{\frac{1}{2}} \underline{g}\right\|_{2}^{2} \\
& \text { s.t. } \quad A \underline{d}=\underline{0} \\
& \quad H^{\frac{1}{2}} \text { symmetric square root }
\end{aligned}
$$

- Define Lagrangian function:

$$
L(\underline{d}, \underline{\lambda})=\underline{g}^{T} \underline{d}+\frac{1}{2} \underline{d}^{T} H \underline{d}-\underline{\lambda}^{T} A \underline{d} ; \underline{\lambda} \sim \text { Lagrange multiplier }
$$

- Karush-Kuhn-Tucker necessary conditions of optimality:

$$
\begin{aligned}
& \Rightarrow \frac{\partial L}{\partial \underline{d}}=0 \Rightarrow \underline{g}+H \underline{d}-A^{T} \underline{\lambda}=\underline{0} \\
& \Rightarrow \frac{\partial L}{\partial \underline{\lambda}}=0 \Rightarrow-A \underline{d}=\underline{0}
\end{aligned}
$$

KKT Conditions for the Barrier Problem

- Special NLP = Barrier formulation of LP:

$$
\underline{g}=\nabla f(\underline{x})=\underline{c}-\mu D^{-1} \underline{e} \text { and } H=\nabla^{2} f(\underline{x})=\mu D^{-2}
$$

where

$$
\begin{aligned}
& D=\operatorname{Diag}\left(x_{j}\right) ; j=1,2, \ldots, n \\
& \underline{e}=\left[\begin{array}{lllll}
1 & 1 & 1 & \cdots & 1
\end{array}\right]^{T}
\end{aligned}
$$

- Karush-Kuhn-Tucker conditions for special NLP are:

$$
\begin{aligned}
& \mu D^{-2} \underline{d}+\left(\underline{c}-\mu D^{-1} \underline{e}-A^{T} \underline{\lambda}\right)=\underline{0} \\
& A \underline{d}=\underline{0}
\end{aligned}
$$

- So,

$$
\begin{equation*}
\underline{d}=\frac{-1}{\mu} D^{2}\left(\underline{c}-\mu D^{-1} \underline{e}-A^{T} \underline{\lambda}\right) \tag{1}
\end{equation*}
$$

- Using $A \underline{d}=\underline{0}$ in (1), we get

$$
\begin{align*}
& \underline{\lambda}=\left(A D^{2} A^{T}\right)^{-1} A D^{2}\left(\underline{c}-\mu D^{-1} \underline{e}\right) \tag{2}\\
& \text { or } \underline{\lambda}=\left(A D^{2} A^{T}\right)^{-1} A\left(D^{2} \underline{c}-\mu D \underline{e}\right) \tag{3}\\
& \underline{d}=\left[I-D^{2} A^{T}\left(A D^{2} A^{T}\right)^{-1} A\right]\left(D \underline{e}-\frac{1}{\mu} D^{2} \underline{c}\right) \tag{4}
\end{align*}
$$

Path Following Algorithm

- So, $\underline{\lambda}$ is the solution of weighted least square (WLS) problem:

$$
\min _{\underline{\imath}}\left\|D\left[\underline{c}-\mu D^{-1} \underline{e}-A^{T} \underline{\lambda}\right]\right\|_{2}^{2}
$$

- Barrier function (Path following) Algorithm:
- Choose a strictly feasible solution and constant $\mu>0$
- Let the tolerance parameter be ε and a parameter associated with the update of μ be σ

$$
\begin{aligned}
& \text { for } k=0,1, \ldots, k_{\max } \\
& \begin{array}{l}
\text { let } D=\operatorname{Diag}\left(x_{j}\right) \\
\quad \text { Compute the solution } \underline{\lambda} \text { to }\left(A D^{2} A^{T}\right) \underline{\lambda}=A D^{2}\left(\underline{c}-\mu D^{-1} \underline{e}\right) \ldots \text { WLS solution } \\
\text { let } \underline{p}=\underline{c}-A^{T} \underline{\lambda} \\
\underline{d}=\frac{-D^{2}\left(\underline{p}-\mu D^{-1} \underline{e}\right)}{\mu}=-\frac{\left(D^{2} \underline{p}-\mu D \underline{e}\right)}{\mu} \\
\quad \underline{x}=\underline{x}+\underline{d} \\
\text { if } \underline{x}^{T} \underline{p}<\varepsilon \rightarrow \text { stop }: \underline{x} \text { is near-optimal solution... complementary slackness condition } \\
\text { else } \mu \leftarrow\left(1-\frac{\sigma}{\sqrt{n}}\right) \mu \\
\text { end if } \\
\text { end }
\end{array} \text { }
\end{aligned}
$$

Finding a Feasible Point

Illustration of Path Following Algorithms

- Remarks:
- Finding a feasible point

Method 1

- Select any $\underline{x}_{0}>\underline{0}$ and define $\xi_{0} \underline{y}=\underline{b}-A \underline{x}_{0}$ with $\|\underline{y}\|_{2}=1$
$\Rightarrow \xi_{0}=\left\|\underline{b}-A \underline{x}_{0}\right\|_{2}$ and solve:

$$
\begin{aligned}
& \min _{\underline{x}, \xi} \xi \\
& \text { s.t. }\left[\begin{array}{ll}
A & \underline{y}
\end{array}\right]\left[\begin{array}{l}
\underline{x} \\
\xi
\end{array}\right]=\underline{b} \quad \\
& \quad \underline{x} \geq \underline{0}
\end{aligned} \quad \begin{aligned}
& \text { Initial : } \underline{x}_{0}=\|\underline{b}\|_{2} \underline{e} \\
& \xi=\left\|\underline{b}-A \underline{x}_{0}\right\|_{2} \\
& \underline{y}=\frac{\underline{b}-A \underline{x}_{0}}{\left\|\underline{b}-A \underline{x}_{0}\right\|_{2}}
\end{aligned}
$$

Finding Feasible Point using M Method - 1

- The solution: $\xi=0$ or when ξ starts becoming negative \rightarrow stop
- Suggest $\underline{x}_{0}=\|\underline{b}\| \underline{e}$

Method 2: ... big M method

Primal

Dual

- Assume A, \underline{b} and \underline{c} are integers with absolute values bounded by U (Can always do this by scaling numbers by $10^{t}, t \sim 3-6$)
- Then,

$$
\sum_{j=1}^{n} x_{j}=\underline{e}^{T} \underline{x} \leq n(m U)^{m} \quad(\text { very loose bound })
$$

- Let $\underline{\bar{b}}=\underline{b}(n+2) / n(m U)^{m} ; x_{i} \leftarrow x_{i}(n+2) / n(m U)^{m}$

Finding Feasible Point using M Method - 2

- Finding a feasible point - Method 2 (cont'd...)

Primal

$$
\begin{aligned}
& \min \underline{\underline{c}}^{T} x+M x_{n+1} \\
& \text { s.t. } A \underline{x}+(\underline{\bar{b}}-A \underline{e}) x_{n+1}=\overline{\bar{b}} \\
& \underline{e}^{T} \underline{x}+x_{n+1}+x_{n+2}=n+2 \\
& \underline{x} \geq \underline{0} \\
& x_{n+1} \geq 0 ; x_{n+2} \geq 0
\end{aligned}
$$

Dual

$$
\begin{aligned}
& \max \underline{\lambda}^{T} \underline{\bar{b}}+\lambda_{m+1}(n+2) \\
& \text { s.t. } \underline{\lambda}^{T} A+\lambda_{m+1} \underline{e}^{T}+\underline{p}^{T}=\underline{c}^{T} \\
& \underline{\lambda}^{T}(\underline{\bar{b}}-A \underline{e})+\lambda_{m+1}+p_{n+1}=M \\
& \lambda_{m+1}+p_{n+2}=0 \\
& p_{1}, p_{2}, \ldots, p_{n+1}, p_{n+2} \geq 0
\end{aligned}
$$

- If we let $\mu_{0}=4 \sqrt{\|\underline{c}\|^{2}+M^{2}}$
$\left(\begin{array}{lll}\underline{x} & x_{n+1} & x_{n+2}\end{array}\right)_{0}=\left(\begin{array}{lll}\underline{e} & 1 & 1\end{array}\right)$ and
$\left(\begin{array}{lllll}\underline{\lambda} & \lambda_{m+1} & \underline{p} & p_{n+1} & p_{n+2}\end{array}\right)=\left(\begin{array}{lllll}\underline{0} & -\mu_{0} & \underline{c}+\mu_{0} \underline{e} & M+\mu_{0} & \mu_{0}\end{array}\right)$ are feasible solutions
- Since the method uses Newton's directions, expect quadratic convergence near minimum

Major Computational Step: WLS

- Major computational step: Weighted Least-squares subproblem

$$
\left(A D^{2} A^{T}\right) \underline{\lambda}=A D^{2}\left(\underline{c}-\mu D^{-1} \underline{e}\right)
$$

- Generally A is sparse
- We will discuss the computational aspects of Least-squares subproblem later
- The algorithm (theoretically) requires $O(\sqrt{n} L)$ iterations with overall complexity $O\left(n^{3} L\right)$ where

$$
L=\sum_{i=0}^{m} \sum_{j=1}^{n}\left[\log \left|a_{i j}\right|+1\right]+1
$$

- In practice, the method typically takes 20 - 50 iterations even for very large problems (> 20,000 variables). Simplex, on the other hand, takes increasingly large numbers of iterations with the problem size n
- Initialize $\mu=2^{O(L)}$ and $\sigma \approx \frac{1}{4}$ to $\frac{1}{6}$. In practice, we need to experiment with the parameters

Other Potential Functions

- Other potential functions:

$$
\begin{aligned}
& f(\underline{x}, q)=r \ln \left(\underline{c}^{T} \underline{x}-q\right)-\sum_{j} \ln x_{j} \\
& \text { where } r=n+\sqrt{n} \text { and } \\
& q=\text { a lower-bound on the optimal cost }
\end{aligned}
$$

- Problem with Barrier function approach:
- Update of μ
- Selection of initial μ and parameter σ
- Dual Affine scaling:
- Typically, the affine scaling methods are used on the dual problem

Dual problem and scaled reduced costs

- Suppose we have a strictly feasible $\underline{\tilde{\lambda}}$ and the corresponding reduced cost vector (slack vector) is $\underline{\tilde{p}}$
- Define

$$
\underline{\hat{p}}=P^{-1} \underline{p}
$$

where

$$
P=\operatorname{Diag}\left[\tilde{p}_{1}, \tilde{p}_{2}, \ldots, \tilde{p}_{n}\right]
$$

- So, the dual problem is:

$$
\begin{aligned}
& \max \underline{\lambda}^{T} \underline{b} \\
& \text { s.t. } A^{T} \underline{\lambda}+P \underline{\hat{p}}=\underline{c} \\
& \underline{\hat{p}} \geq \underline{0}
\end{aligned}
$$

- From the equality constraint:

$$
\begin{aligned}
& \underline{\hat{p}}=P^{-1}\left(\underline{c}-A^{T} \underline{\lambda}\right) \\
& \Rightarrow P^{-1} A^{T} \underline{\lambda}=\left(P^{-1} \underline{c}-\hat{\hat{p}}\right)
\end{aligned}
$$

- Assuming full column rank of A^{T} or row rank of A
\Rightarrow linearly independent constraints in primal

LP for Scaled Reduced Costs

$$
\begin{aligned}
& A P^{-2} A^{T} \underline{\lambda}=A P^{-1}\left(P^{-1} \underline{c}-\underline{\hat{p}}\right) \\
& \Rightarrow \underline{\lambda}=\left(A P^{-2} A^{T}\right)^{-1} A P^{-1}\left(P^{-1} \underline{c}-\underline{\hat{p}}\right)=M\left(P^{-1} \underline{c}-\underline{\hat{p}}\right) \\
& \text { note that } \underline{\lambda} \in R\left(A P^{-1}\right)=R(M)
\end{aligned}
$$

- Eliminating $\underline{\lambda}$ from the dual problem we have:

$$
\begin{array}{lll}
\max _{\underline{\underline{p}}} \underline{b}^{T} M\left(P^{-1} \underline{c}-\underline{\hat{p}}\right)=f(\underline{\hat{p}}) & & \min _{\underline{\hat{p}}} \underline{b}^{T} M \underline{\alpha} \\
\text { s.t. } H\left(\underline{\hat{p}}-P^{-1} \underline{c}\right)=\underline{0} & \Leftrightarrow & \text { s.t. } H \underline{\alpha}=\underline{0} \\
& \underline{\hat{p}} \geq \underline{0} & \\
& \text { where } \underline{\alpha}=\underline{\hat{p}}-P^{-1} \underline{c}
\end{array}
$$

and where

$$
\begin{aligned}
& H=I-P^{-1} A^{T} M, \text { a symmetric projection matrix } \\
& \Rightarrow H^{2}=H
\end{aligned}
$$

- In addition, we have

$$
A P^{-1} H=0 \Rightarrow \text { columns of } H \in N\left(A P^{-1}\right)
$$

Direction to Update Dual Variables

- Note that we want $\underline{\alpha} \in N(H) \Rightarrow \underline{\alpha} \in R\left(P^{-1} A^{T}\right)$
- But $R\left(P^{-1} A^{T}\right)=R\left(M^{T}\right)$
- The gradient of $f(\underline{\hat{p}})$ w.r.t. the scaled reduced costs \hat{p} is

$$
\underline{\underline{g}}_{p}=-M^{T} \underline{b} \in R\left(M^{T}\right)=R\left(P^{-1} A^{T}\right)
$$

\Rightarrow Results: The gradient w.r.t. the scaled reduced costs, $\hat{\underline{p}}$, already lies in the range space of $P^{-1} A^{T}$... making the projection unnecessary

- In terms of the original unscaled reduced costs, the projected gradient is:

$$
\underline{g}_{p}=P \underline{\underline{g}}_{p}=-A^{T}\left(A P^{-2} A^{T}\right)^{-1} \underline{b}
$$

- The corresponding feasible direction with respect to $\underline{\lambda}$ is:

$$
\begin{aligned}
& \underline{d}_{\lambda}=-M M^{T} \underline{\underline{g}}_{p}=\left(A P^{-2} A^{T}\right)^{-1} \underline{b} \\
& \underline{g}_{p}=-A^{T} \underline{d}_{\lambda}
\end{aligned}
$$

- If $\underline{g}_{p} \geq \underline{0} \Rightarrow$ dual problem is unbounded \Rightarrow primal is infeasible (assuming $\underline{b} \neq \underline{0}$)

Dual Affine Scaling Algorithm Steps - 1

- Otherwise, we replace $\underline{\lambda}$ by $\underline{\lambda} \leftarrow \underline{\lambda}+\alpha \underline{\alpha}_{\lambda}$
where $\quad \alpha=\beta \alpha_{\text {max }} \quad \beta \approx 0.95$

$$
\alpha_{\max }=\min \left\{\frac{-p_{i}}{g_{p_{i}}}: g_{p_{i}}<0, i=1,2, \ldots, n\right\}
$$

- Note that primal solution \underline{x} is:

$$
\begin{aligned}
& \underline{x}=-P^{-2} \underline{g}_{p}=P^{-2} A^{T}\left(A P^{-2} A^{T}\right)^{-1} \underline{b} \\
& \text { since it satisfies } A \underline{x}=\underline{b}
\end{aligned}
$$

- Dual Affine Scaling Algorithm:
- Start with a strictly feasible $\underline{\lambda}$, stopping criterion ε and β

$$
\begin{aligned}
& z_{\text {old }}=\underline{\lambda}^{T} \underline{b} \\
& \text { for } k=0,1, \ldots k_{\max } \\
& p=\underline{c}-A^{T} \underline{\lambda} \\
& \\
& P=\operatorname{Diag}\left[\begin{array}{lll}
p_{1} & p_{2} & \cdots \\
p_{n}
\end{array}\right] \\
& \text { Compute the solution } \underline{d}_{\lambda} \text { to } \\
& \\
& \quad\left(A P^{-2} A^{T}\right) \underline{d}_{\lambda}=\underline{b} \\
& \underline{g}_{p}=-A^{T} \underline{d}_{\lambda} \\
& \hline
\end{aligned}
$$

Dual Affine Scaling Algorithm Steps - 2

$$
\begin{aligned}
& \text { if } \quad \underline{g}_{p} \geq \underline{0} \\
& \quad \text { Stop } \rightarrow \text { unbounded dual solution } \Rightarrow \text { primal is infeasible } \\
& \text { else } \\
& \alpha=\beta \min \left\{\frac{-p_{i}}{g_{p_{i}}}: g_{p_{i}}<0, i=1,2, \cdots, n\right\} \\
& \underline{\lambda} \leftarrow \underline{\lambda}+\alpha \underline{d}_{\lambda}\left(\Rightarrow \underline{p} \leftarrow \underline{p}+\alpha \underline{g}_{p} \text { next step }\right) \\
& z_{\text {new }}=\underline{\lambda}^{T} \underline{b} \\
& \text { if } \frac{\left|z_{\text {new }}-z_{\text {old }}\right|}{\max \left(1,\left|z_{\text {old }}\right|\right)}<\varepsilon \\
& \quad \text { stop } \rightarrow \text { found an optimal solution } \underline{x}=-P^{-2} \underline{g}_{p} \\
& \text { else } \\
& \quad z_{\text {old }} \leftarrow z_{\text {new }} \\
& \text { end if } \\
& \text { end if }
\end{aligned}
$$

Initial Feasible Solution for Dual Affine Scaling Algorithm

- Finding an initial strictly feasible solution for the dual affine scaling algorithm

$$
\underline{\lambda}_{0}=\left(\frac{\|\underline{c}\|_{2}}{\left\|A^{T} \underline{b}\right\|_{2}}\right) \underline{b}
$$

- Want to find a \underline{p} s.t. $\underline{p}=-\xi \underline{e}$
- Select initial ξ_{0} as

$$
\xi_{0}=-2 \min \left\{\left(\underline{c}-A^{T} \underline{\lambda}\right)_{i}: i=1,2, \cdots, m\right\}
$$

- Solve an $(m+1)$ variable LP: $\quad \max _{\underline{\lambda}, \xi} \quad \underline{\lambda}^{T} \underline{b}-\mu \xi$
s.t. $\quad A^{T} \underline{\lambda}-\xi \underline{e} \leq \underline{c}$
- Select $\quad \mu=\gamma \frac{\underline{\lambda}_{0}^{T} \underline{b}}{\xi_{0}} ; \quad \gamma=10^{5}$
- The initial $\left(\underline{\lambda}_{0}, \xi_{0}\right)$ are feasible for the problem
- Note:
* If $\xi<0$ at iteration $k \Rightarrow$ found a feasible $\underline{\lambda}$
* If the algorithm is such that optimal $\xi<\varepsilon \Rightarrow$ dual is infeasible \Rightarrow primal is unbounded

Primal Affine Scaling

- Primal affine scaling
- Starting with $\underline{x}_{0} \rightarrow \underline{x}_{1} \rightarrow \cdots \rightarrow \underline{x}_{k} \rightarrow \underline{x}_{k+1} \rightarrow \cdots \underline{x}^{*}$
- $\underline{x}_{k+1}=\underline{x}_{k}+\underline{d}_{k} \ni\left\|D_{k}^{-1} \underline{d}_{k}\right\| \leq \beta ; \beta<2 / 3 ; \quad D_{k}=\operatorname{Diag}\left(\underline{x}_{k}\right)$
- \underline{d}_{k} is the solution of $\min \underline{c}^{T} \underline{d}$

$$
\begin{array}{ll}
\text { s.t. } A \underline{d}=\underline{0} \\
\left\|D_{k}^{-1} \underline{d}\right\| \leq \beta
\end{array} \quad \text { recall } A \underline{x}=\underline{b} \Rightarrow A \underline{d}_{k}=\underline{0}
$$

- Lagrangian: $L(\underline{d}, \underline{\lambda}, \mu)=\underline{c}^{T} \underline{d}-\underline{\lambda}^{T} A \underline{d}+\frac{\mu}{2}\left(\underline{d}^{T} D_{k}^{-2} \underline{d}-\beta^{2}\right)$

$$
\begin{gathered}
\Rightarrow \mu D_{k}^{-2} \underline{d}+\underline{c}-A^{T} \underline{\lambda}=\underline{0} \quad \Rightarrow \underline{d}=-\frac{1}{\mu} D_{k}^{2}\left(\underline{c}-A^{T} \underline{\lambda}\right) \\
\\
A \underline{d}=\underline{0} \\
\Rightarrow \underline{d}^{T} D_{k}^{-2} \underline{d}=\beta^{2} \\
\Rightarrow \mu=\frac{1}{\mu^{2}}\left(\underline{c}-A^{T} \underline{\lambda}\right)^{T} D_{k}^{2}\left(\underline{c}-A^{T} \underline{\lambda}\right)=\beta^{2} \\
\Rightarrow
\end{gathered}
$$

$$
\Rightarrow \lambda_{k}=\left(A D_{k}^{2} A^{T}\right)^{-1} A D_{k}^{2} \underline{c} ; \quad \underline{d}_{k}=-\beta \frac{D_{k}^{2}\left(\underline{c}-A^{T} \underline{\lambda}\right)}{\left\|D_{k}\left(\underline{c}-A^{T} \underline{\lambda}\right)\right\|_{2}}
$$

Primal Affine Scaling Algorithm Steps

- Affine Scaling Algorithms

$$
\begin{aligned}
& \text { Start with } \underline{x}_{0}>\underline{0} \\
& \text { for } k=0,1,2, \cdots k_{\max } \\
& D_{k}=\operatorname{Diag}\left(\underline{x}_{k}\right) \\
& \left(A D_{k}^{2} A^{T}\right) \underline{\lambda}_{k}=A D_{k}^{2} \underline{c} \\
& \underline{p}_{k}=\underline{c}-A^{T} \underline{\lambda}_{k} \\
& \text { If } \underline{p}_{k} \geq \underline{0} \text { and } \underline{e}^{T} D_{k} p_{k}<\varepsilon \text {, stop } \rightarrow \text { found optimal solution } \\
& \text { else if } \left.-D_{k}^{2} \underline{p}_{k} \geq \underline{0} \Rightarrow \text { primal is unbounded (cost }=-\infty\right) \\
& \text { else } \\
& \qquad \underline{x}_{k+1}=\underline{x}_{k}-\beta \frac{D_{k}^{2} \underline{p}_{k}}{\left\|D_{k}^{2} \underline{p}_{k}\right\|_{2}} \\
& \text { end if } \\
& \text { end }
\end{aligned}
$$

- Initialize via big-M method

Potential Reduction Algorithm

- Potential Reduction Algorithm

Primal
Dual $\min \underline{\underline{T}}^{T} \underline{x} \quad \max _{\underline{1}, \underline{p}} \underline{\lambda}^{T} \underline{b}$
s.t. $A \underline{x}=\underline{b}$
$\underline{x} \geq \underline{0}$

$$
\begin{aligned}
& \text { s.t. } \underline{\lambda}^{T} A+\underline{p}^{T}=\underline{c}^{T} \\
& \underline{p}^{T} \geq \underline{0}
\end{aligned}
$$

- Modified Barrier Function $f(\underline{x}, \underline{p})=q \ln \left(\underline{p}^{T} \underline{x}\right)-\sum_{j=1}^{n} \ln x_{j}-\sum_{j=1}^{n} \ln p_{j}$

Note: $\underline{c}^{T} \underline{x}-\underline{\lambda}^{T} \underline{b}=\left(\underline{p}^{T}+\underline{\lambda}^{T} A\right) \underline{x}-\underline{\lambda}^{T} A \underline{x}=\underline{p}^{T} \underline{x}$
Duality gap if \underline{x} is primal feasible and $(\underline{\lambda}, \underline{p})$ are dual feasible
Idea: Starting with $\underline{x}_{k}>0$ and $\underline{p}_{k} \geq \underline{0}$, find a direction \underline{d}_{k} such that

$$
\begin{aligned}
& \min _{\underline{d}} \nabla \underline{f}_{\underline{k}}^{T} \underline{d} \\
& \text { s.t. } A \underline{d}=0 \\
& \left\|D_{k}^{-1} d\right\| \leq \beta<1 \\
& \nabla_{\underline{\underline{x}}} \underline{f}_{k}=\frac{q}{\underline{p}_{k}^{T} \underline{p}_{k}} \underline{p}_{k}-D_{k}^{-1} \underline{e}=\underline{\hat{c}}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
& \underline{d}_{k}=-\beta D_{k} \frac{\underline{u}}{\|\underline{\|}\|} \\
& \underline{u}=D_{k}\left(\hat{\underline{c}}_{k}-A^{T}\left(A D_{k}^{2} A^{T}\right)^{-1} A D_{k}^{2} \hat{\mathcal{G}}_{k}\right)
\end{aligned}
$$

Potential Reduction Algorithm Steps

- Start with $\underline{x}_{0}>0, \underline{p}_{0}>0, \underline{\lambda}_{0}, \beta<1, \gamma<1, q$

$$
\begin{aligned}
& \text { for } k=0,1,2, \ldots k_{\max } \\
& \text { If } \underline{p}_{k}^{T} \underline{x}_{k}<\varepsilon \text { stop, found optimal solution. } \\
& \text { Else } \quad \begin{aligned}
& D_{k}= \operatorname{Diag}\left(\underline{x}_{k}\right) \\
& \hat{\underline{c}}_{k}= \frac{q}{p_{k}^{T} \underline{x}_{k}} \underline{p}_{k}-D_{k}^{-1} \underline{e} \\
& \underline{u}=D_{k}\left(I-A^{T}\left(A D_{k}^{2} A^{T}\right)^{-1} A D_{k}^{2}\right) \hat{c}_{k} ; \quad \underline{d}_{k}=-\beta D_{k} \underline{u} \\
&\|\underline{u}\|
\end{aligned} \\
& \text { If }\|\underline{u}\| \geq \gamma \Rightarrow \text { perform primal step } \\
& \underline{x}_{k+1}=\underline{x}_{k}+\underline{d}_{k} \\
& \underline{p}_{k+1}=\underline{p}_{k} \\
& \underline{\lambda}_{k+1}=\underline{\lambda}_{k} \\
& \text { Else } \quad \underline{x}_{k+1}=\underline{x}_{k} \\
& \underline{p}_{k+1}=\frac{p_{k}^{T} x_{k}}{q} D_{k}^{-1}\left(\underline{u}_{k}+\underline{e}\right) \\
& \underline{\lambda}_{k+1}=\underline{\lambda}_{k}+\left(A D_{k}^{2} A^{T}\right)^{-1} A D_{k}\left(D_{k} \underline{p}_{k}-\frac{p_{k}^{T} \underline{p}_{k}}{q} \underline{e}\right)
\end{aligned}
$$

end if
end if
end

Primal-dual Path following Algorithms

- Primal-dual path following algorithms

Barrier formulation of primal

$$
\begin{aligned}
& \min \underline{c}^{T} \underline{x}-\mu \sum_{j=1}^{n} \ln x_{j} \\
& \text { s.t. } A \underline{x}=\underline{b}
\end{aligned}
$$

Barrier formulation of dual

$$
\begin{aligned}
& \max _{\underline{\lambda}, \underline{p}} \underline{\lambda}^{T} \underline{b}+\mu \sum_{j=1}^{n} \ln p_{j} \\
& \text { s.t. } \underline{\lambda}^{T} A+\underline{p}^{T}=\underline{c}^{T}
\end{aligned}
$$

- Optimality Conditions

$$
\left.\begin{array}{l}
A \underline{x}=\underline{b} \\
A^{T} \underline{\lambda}+\underline{p}=\underline{c} \\
\underline{c}-\mu D^{-1} e-A^{T} \underline{\lambda}=\underline{0} \\
\Rightarrow \underline{c}-\mu D^{-1} e-\underline{c}+\underline{p}=\underline{0} \\
\Rightarrow \mu \underline{e}=D \underline{p}=D P \underline{e} \\
P=\operatorname{Diag}(\underline{p})
\end{array}\right\}\left\{\begin{array}{l}
A \underline{x}-\underline{b}=\underline{0} \\
A^{T} \underline{\lambda}+\underline{p}-\underline{c}=\underline{0} \\
D P \underline{e}-\mu \underline{e}=\underline{0}
\end{array}\right.
$$

- Nonlinear equation because of $\operatorname{Dp\underline {e}}=\mu \underline{e}$ (complementary slackness condition when $\mu=0$) will revisit this issue later

Primal-dual Path following Algorithms

- Solve via Newton's Method

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
A & 0 & 0 \\
0 & A^{T} & I \\
P_{k} & 0 & D_{k}
\end{array}\right]\left[\begin{array}{l}
\underline{d}_{x} \\
\underline{d}_{\lambda} \\
\underline{d}_{p}
\end{array}\right]=-\left[\begin{array}{c}
A \underline{x}_{k}-\underline{b} \\
A^{T} \underline{\lambda}_{k}+\underline{p}_{k}-\underline{c} \\
D_{k} P_{k} \underline{e}-\mu_{k} \underline{e}
\end{array}\right]} \\
& \Rightarrow\left\{\begin{array}{l}
A \underline{d}_{x}=\underline{0} \\
A^{T} \underline{d}_{\lambda}+\underline{d}_{p}=\underline{0} \\
P_{k} \underline{d}_{x}+D_{k} \underline{d}_{p}=\mu_{k} \underline{e}-D_{k} P_{k} \underline{e}
\end{array}\right.
\end{aligned}
$$

Basis of infeasible primal-dual method with $\underline{x}_{\mathrm{k}}>\underline{\mathbf{0}}, \underline{p}_{\mathrm{k}}>\underline{\mathbf{0}}$, and $\underline{\lambda}_{k}$

Basis of feasible primal-dual method

- Solution:

$$
\begin{aligned}
& \underline{d}_{x}=E_{k}\left(I-R_{k}\right) \underline{v}_{k} \\
& \underline{d}_{\lambda}=-\left(A E_{k}^{2} A^{\mathrm{T}}\right)^{-1} A E_{k} \underline{v}_{k} \\
& \underline{d}_{p}=E_{k}^{-1} P_{k} \underline{v}_{k}
\end{aligned}
$$

where

$$
\begin{aligned}
& E_{k}=D_{k} P_{k}^{-1} \\
& R_{k}=E_{k} A^{T}\left(A E_{k}^{2} A^{T}\right)^{-1} A E_{k} \\
& \underline{v}_{k}=D_{k}^{-1} E_{k}\left(\mu_{k} \underline{e}-D_{k} P_{k} \underline{e}\right)
\end{aligned}
$$

$$
\text { use } \mu_{k}=\frac{\underline{x}_{k}^{T} \underline{p}_{k}}{n}
$$

Primal-dual Path following Algorithm Steps

- Initialize $\underline{x}_{0}>0, \underline{p}_{0}>0, \underline{\lambda}_{0},(\alpha<1)$

$$
\begin{aligned}
& \text { for } k=0,1,2, \ldots k_{\max } \\
& \text { If } \underline{p}_{k}^{T} \underline{x}_{k}<\varepsilon, \text { stop } \\
& \text { else (compute Newton directions) } \\
& \qquad \mu_{k}=\frac{\underline{x}_{k}^{T} \underline{p}_{k}}{n} \\
& D_{k}=\operatorname{Diag}\left(\underline{x}_{k}\right) \\
& P_{k}=\operatorname{Diag}\left(\underline{p}_{k}\right) \\
& \quad \text { compute } \underline{d}_{x}, \underline{d}_{\lambda} \text { and } \underline{d}_{p} \\
& \text { find step lengths via } \\
& \beta_{p}=\min \left\{1, \alpha \min _{\left(i: x_{x i}<0\right)}\left(\frac{-x_{k i}}{d_{x i}}\right)\right\} \\
& \beta_{d}=\min \left\{1, \alpha \min _{\left(i: d_{p i}<0\right)}\left(\frac{-p_{k i}}{d_{p i}}\right)\right\} \\
& \underline{x}_{k+1}=\underline{x}_{k}+\beta_{p} \underline{d}_{k} \\
& \underline{\lambda}_{k+1}=\underline{\lambda}_{k}+\beta_{d} \underline{d}_{\lambda} \\
& \underline{p}_{k+1}=\underline{p}_{k}+\beta_{d} \underline{d}_{p} \\
& \text { end }
\end{aligned}
$$

Relationships among Path following Algorithms

- Relationships:
- $\underline{d}_{\text {affine }}=-D^{2}\left(I-A^{T}\left(A D^{2} A^{T}\right)^{-1} A D^{2}\right) \underline{\underline{c}}$
- $\underline{d}_{\text {primal path - followings }}=\left(I-D^{2} A^{T}\left(A D^{2} A^{T}\right)^{-1} A\right)\left(D \underline{e}-\frac{1}{\mu} D^{2} \underline{c}\right)$
- When $\mu=\infty$, the corresponding direction is called centering direction because in this case $\underline{x}(\mu)$ is the analytic center of the feasible set.

$$
\begin{aligned}
& \underline{d}_{\text {centering }}=\left(I-D^{2} A^{T}\left(A D^{2} A^{T}\right)^{-1} A\right) D \underline{e} \\
& \Rightarrow \underline{d}_{\text {primal path-following }}=\underline{d}_{\text {centering }}+\frac{1}{\mu} \underline{d}_{\text {affine }} \\
& \underline{d}_{\text {potertial }}=\underline{d}_{\text {centering }}+\frac{q}{p^{T} \underline{x}} \underline{d}_{\text {affine }}
\end{aligned}
$$

- Both potential and path following algorithms have polynomial complexity. There is no such result for affine scaling.
\Rightarrow centering directions are responsible for polynomiality of path following and potential reduction algorithms.

Implementation Issues

- Least-squares subproblem: Implementation Issues
- Generally A is sparse
- Major computational step at each iteration $A P^{-2} A^{T} \underline{d}=\underline{b} \cdots$ Affine scaling $A D^{2} A^{T} \underline{\lambda}=A D^{2}\left(\underline{c}-\mu D^{-1} \underline{e}\right)=A D(D \underline{c}-\mu \underline{e}) \cdots$ Barrier function method Similar equations in path following and potential reduction algorithms.
- Key: Need to solve a symmetric positive definite system $\Sigma \underline{y}=\underline{b}$
- Solution Approaches:
- Direct methods:
a) Cholesky factorization: $\Sigma=S S^{T}, S=\Delta_{\text {lower }}$
b) $\boldsymbol{L D} \boldsymbol{L}^{T}$ factorization: $\Sigma=L D L^{T} ; L=$ unit $\Delta_{\text {lower }}$
c) $\boldsymbol{Q R}$ factorization of $P^{-1} A^{T}$ or $D A^{T}$
- Methods to speed up factorization
- During each iteration only D or P^{-1} changes, while A remains unaltered
- Nonzero structure of Σ is static throughout
- So, during the first iteration, keep track of the list of numerical operations performed

Factorization Methods

- Perform factorization only if the diagonal scaling matrix has changed significantly
- Consider $\Sigma=A P^{-2} A^{T}$
- Replace P by \bar{P} where

$$
\bar{P}_{i i}^{\text {new }}=\left\{\begin{array}{lc}
\bar{P}_{i i}^{\text {old }} & \text { if } \frac{\left|P_{i i} \bar{P}_{i i l}^{\text {old }}\right|}{\left|\bar{P}_{i i}^{\text {ol }}\right|}<\delta \\
P_{i i} & \text { otherwise }
\end{array}\right\}
$$

○ $\delta \sim 0.1$

- Define $\Delta P_{i i}=\bar{P}_{i i}^{\text {new }}-\bar{P}_{i i}^{\text {old }}$
- Then $\quad \Sigma^{\text {new }}=\Sigma^{\text {old }}+\sum_{\left\{i: \Delta P_{i i} \neq 0\right\}} \Delta P_{i i} a_{i} \underline{a}_{i}^{T} \quad \underline{a}_{i}=i^{\text {th }}$ column of A
- So, use rank-one modification methods (ECE6435, Lecture 8)
- Perform pivoting to reduce fill-ins \Rightarrow having nonzero elements in factors where there are zero elements in Σ
- Recall that $\left(P \Sigma P^{T}\right) P \underline{y}=P \underline{b}$
- Unfortunately, finding the optimal permutation matrix to reduce fill-in is NPcomplete
- However, \exists heuristics
* Minimum degree
* Minimum local fill-in

Incomplete Cholesky Algorithm

Incomplete Cholesky Algorithm

- Combine with an iterative method, if we have a few dense columns in A that will make impracticably dense Σ (recall the outer product representation)
\Rightarrow Hybrid factorization and conjugate gradient method called a preconditioned conjugate gradient method works well
- Idea: At iteration k, split columns of A into two parts [$S \bar{S}$] where columns of A_{s} are sparse (i.e., have density < $\lambda(\approx 0.3)$)
- Form $A_{s} P^{-2} A_{s}^{T}$
- Find incomplete Cholesky factor L such that $Z_{s}=A_{s} P^{-2} A_{s}^{T}=L L^{T}$
- Basically the idea is to step through the Cholesky decomposition, but setting $l_{i j}=0$ if the corresponding $\Sigma_{s_{k k}}=0$

Conjugate Gradient Algorithm

- Now consider the original problem $\Sigma \underline{y}=A^{T} P^{-2} A \underline{y}=\underline{b}$

$$
\begin{aligned}
& L^{-1} \Sigma\left(L^{-1}\right)^{T} L^{T} \underline{y}=L^{-1} \underline{b} \\
& \Rightarrow Q \underline{u}=\underline{f}
\end{aligned}
$$

$$
\text { where } Q=L^{-1} \Sigma\left(L^{-1}\right)^{T} ; \underline{u}=L^{T} \underline{y} ; \underline{f}=L^{-1} \underline{b}
$$

- Solve $Q \underline{u}=f$ via conjugate gradient algorithm ... ECE6435
- Conjugate Gradient Algorithm:
$\underline{u}=\underline{f} \ldots$ initial solution
$c=\|f\|_{2} \ldots$ norm of RHS
$\underline{r}=f-Q \underline{u} \ldots$. initial residual
(negative gradient of $\left(\frac{1}{2} \underline{u}^{T} Q \underline{u}-\underline{u}^{T} f\right)$)
$p=\|r\|_{2}^{2} \ldots$ square norm of initial residual
$\underline{d}=\underline{r} \ldots$ initial direction
$k=0$

$$
\text { while } \begin{aligned}
& \frac{\sqrt{p}}{c} \geq \varepsilon \text { and } k \leq k_{\max } \text { do } \\
& \underline{\omega}=Q \underline{d} \\
& \alpha=\frac{\underline{r}}{d^{\underline{r}} Q} \cdots \text { step length } \\
& \underline{u}=\underline{u}+\alpha \underline{d} \cdots \text { new solution } \\
& \underline{r}=\underline{r}-\alpha \underline{w} \cdots \text { new residual, } \underline{r}=f-Q \underline{u} \\
& \beta=\frac{\|r\|^{2}}{p} \cdots \text { parameter to update direction } \\
& \underline{d}=\underline{r}+\beta \underline{d} \cdots \text { new direction } \\
& p=\|\underline{r}\|_{2}^{2} \\
& k=k+1
\end{aligned}
$$

Computational load ... $O\left(m^{2}+10 m\right)$
Need to store only four vectors: $\underline{u}, \underline{r} \underline{d}$ and \underline{w}

Mehrotra's Correction

Recall $D p \underline{e}=\mu e$ is a nonlinear equation
$D P \underline{e}=\mu_{k} \underline{e}$
$D=D_{k}+\Delta D_{k} ; P=P_{k}+\Delta P_{k}$
$\left(D_{k}+\Delta D_{k}\right)\left(P_{k}+\Delta P_{k}\right) \underline{e}=\mu_{k} \underline{e}$
$P_{k} \underline{d}_{x}+D_{k} \underline{d}_{p}=\mu_{k} \underline{e}-D_{k} P_{k} \underline{e}-\Delta D_{k} \Delta P_{k} \underline{e}=\mu_{k} \underline{e}-D_{k} P_{k} \underline{e}-\underline{d}_{x} \circ \underline{d}_{p}$
$\underline{d}_{x} \circ \underline{d}_{p}=$ Hadamard Product $=\left[d_{x 1} d_{p 1} d_{x 2} d_{p 2} \ldots \ldots . . d_{x n} d_{p n}\right]$

Mehrotra's Correction: Solve for directions twice

1. Predictor step: First solve by setting $\underline{d}_{x}=\underline{d}_{p}=0$ in RHS
2. Corrector step: Solve it again by plugging the values from step 1 in RHS

- Factorization makes this easy to implement
- Speeds up convergence

Simplex versus Interior Point Methods

- Comparison of simplex and dual affine scaling methods
- Three types of test problems
- NETLIB test problems
- 31 test problems
- The library and test problem can be accessed via electronic mail: netlib@anl-mcs (ARPANET/CSNET) or research! netlib (UNIX network)
- \# of variables n ranged from 51 to 5533
- \# of constraints m ranged from 27 to 1151
- \# of non-zero elements in A ranged from 102 to 16276
- Comparisons on IBM 3090

	Simplex	Affine Scaling
Iterations	$(6,7157)$	$(19,55)$
Ratio of time per iteration	$(0.093,0.356)$	1
Total cpu time range (secs)	$(0.01,217.67)$	$(0.05,31.70)$
Ratio of cpu time (Simplex/Affine)	$(0.2,10.7)$	1

Simplex versus Interior Point Methods

- Multi-commodity Network Flow problem
- Specialized LP algorithms exist that are better than simplex
- \exists a program to generate random multi-commodity network flow problem called MNETGN
- 11 problems were generated
- \# of variables $n \in(2606,8800)$
- \# of constraints $m \in(1406,4135)$
- Non-zero elements in A ranged from 5212 to 22140

	Simplex	Specialized Simplex	
	$\underline{\text { MINOS 4.0 }}$	$\underline{\text { MCNF 85 }}$	$\underline{\text { Affine Scaling }}$
Total \# of iterations	$(940,21915)$	$(931,16624)$	$(28,35)$
Ratios of time per iteration (w.r.t. Affine Scaling)	$(0.010,0.069)$	$(0.0018,0.0404)$	1
Total CPU time (secs)	$(12.73,1885.34)$	$(7.42,260.44)$	$(6.51,309.50)$
Ratios of CPU times w.r.t. Affine Scaling	$(1.96,11.56)$	$(0.59,4.15)$	1

Simplex versus Interior Point Methods

- Timber Harvest Scheduling problems
- 11 timber harvest scheduling problems using a program called FOR-PLAN
- \# of variables ranged from 744 to 19991
- \# of constraints ranged from 55 to 316
- Non-zero elements in A ranged from 6021 to 176346

	Simplex (MINOS 4.0) Default Pricing	Affine Scaling
Total \# of iterations	$(534,11364)$	$(38,71)$
Ratio of time per iteration	$(0.0141,0.2947)$	1
Total CPU time (secs)	$(2.74,123.62)$	$(0.85,43.80)$
Ratios of CPU times	$(1.52,5.12)$	1

Summary and References

- Promising approach for large real-world LP problems
- Summary
- Reviewed duality
- Dual simplex and primal-dual algorithm
- Interior point methods
- Path following (primal, primal-dual)
- Affine scaling
- Potential reduction
- References

1) D. Goldfarb and M. J. Todd, "Linear Programming," ch. II in (Eds.) G. L. Nemhauser, A. H. G. Rinnoy Kan and M. J. Todd, Optimization, vol. I., North-Holland, pp. 73-170.
2) I. Adler, M. G. C. Resende, G. Vega and N. Karmarkar, "An implementation of Karmarkar's Algorithm for Linear Programming," Mathematical Programming, vol. 44, 1989, pp. 297-335.
3) I. Adler, N. Karmarkar, M. G. C. Resende, and G. Vega, "Data Structures and Programming Techniques for the Implementation of Karmarkar's Algorithm," ORSA Journal on Computing, Vol. 1, No. 2, 1989.
4) G. Golub and C. Van Loan, Matrix Computations, John Hopkins University Press, 1989.
5) D. Bertsimas and J. N. Tsitsiklis, Introduction to Linear Optimization, Athena Scientific, 1997.
