
Lecture 6:
Shortest Path Algorithms: (Part I)

Prof. Krishna R. Pattipati
Dept. of Electrical and Computer Engineering

University of Connecticut
Contact: krishna@engr.uconn.edu; (860) 486-2890

© K. R. Pattipati, 2001-2016

Outline

VUGRAPH 2

• Graph terminology

• Computer representation of graphs

 Weight matrix or adjacency matrix

 List of edges

 Linked adjacency list

 Forward star

• Applications of shortest path problem

• A generic shortest path algorithm for single origin-
multiple destinations problem
 Dijkstra’s algorithm . . . label setting methods

o Heap implementation

o Dial’s bucket method

 Label correcting methods

o Bellman-Moore-D’Esopo-Pape algorithm

o Threshold algorithm

Graph terminology

VUGRAPH 3

• Graph G = (V, E)

 V = {v1, v2, . . . , vn} a finite set of vertices, nodes, junctions,
points, 0-cells, 0-simplices

 E = {e1, e2, . . . , em} a finite set of edges, arcs, links, branches,
elements, 1-cells, 1-simplices

 To each edge e, there corresponds two distinct vertices u and
v ⇒ e is incident on u, v

v1

v2

v3

v4

e1

e5

e6

e4

e5

e2

• Directed graph (or digraph) and undirected graph

 If vertex pairs are ordered, i.e., e is directed from vertex u to
vertex v, then the graph is called a diagraph

⇒ Direct edge <u, v>:

⇒ u is an immediate predecessor of v and v is an immediate
successor of u

 If the edges have no direction, then the graph is said to be an
undirected graph

⇒ Vertices are unordered

⇒ Undirected edge: (u, v)

 An undirected graph can be converted into a directed graph by
adding bi-directional edges

 We assume that there exists only one edge between two nodes in
one direction

Graph terminology

VUGRAPH 4

e i
u v

u v

Graph terminology

VUGRAPH 5

• Network
 A graph (directed or undirected) in which a real number is

associated with each edge network = attributed graph

o If have multiple attributes, it is a multi-attributed graph or network

 This number is called the weight of the edge

 No loss in generality

o If a node has a weight, we can define a dummy node such that edge
from dummy node to node has a weight

• Degree of a vertex
 For an undirected graph G:

o d(v) = # of adjacent vertices or # of times v is an end point of edges

o Fact: # of nodes of odd degree in a finite undirected graph is even

o Proof:

1

2
n

i

i

d v m

Graph terminology

VUGRAPH 6

• Walk or a path

 For an undirected graph G:

o (v1, v2, . . . , vk) is a walk in an undirected graph G if (v1, v2), (v2, v3) ,
. . . , (vk–1, vk) are edges on the walk

 The walk is directed if each edge is directed (<>)

 Note that vertices may be repeated in a walk

• Simple path

 (v1, v2, . . . , vk) is a simple path if all vertices are distinct

 Directed simple path if all vertices are distinct and each edge is directed

• Cycle

 A path in an undirected graph is a cycle if k > 1 and v1 = vk and no
edge is repeated

 A path in a directed graph is a cycle if k > 1 and v1 = vk ... simple cycle
if vertices v1, v2, . . . , vk−1 are distinct

 A graph without cycles is acyclic

Graph terminology

VUGRAPH 7

• Connected graphs

 If there is a path from a vertex vi to a vertex vk, then vk is reachable from vi

 A graph G is connected if every vertex vk is reachable from every other
vertex vi, and disconnected otherwise

• Weight (length) of a path

 Given a path p = <v1, v2, . . . , vk>, we can speak of the length of the path or
the weight of the path

 Example: weight of path s → u → t:

1 2 2 3 1k kv v v v v vc c c

7su utc c

u

s

v

t

2

4

5

3

1

Computer representation of graphs

VUGRAPH 8

• Four methods

 Weight matrix or adjacency matrix

 List of edges

 Linked adjacency list

 Forward star

• Weight matrix

 n nodes ⇒ n × n matrix C = [c i j]

 c i j ~ weight of edge <i, j>

 No edge ⇒ c i j = ∞ (e.g., 1020)

 c i i = 0

 Undirected network ⇒ C = CT symmetric ⇒ (
𝑛(𝑛−1)

2
) elements/words

 Directed network ⇒ n(n – 1) elements/words

SF

Denver

LA

New
Orleans

Miami

NY

Boston
Chicago

7

8

6

54

32

1

1000

1400

900

250

250

1500

15001200
800

1000

1700

300
1000

• List of edges

 Useful when the graph is sparse

⇒ # of edges 𝑚 ≪ 𝑛(𝑛 − 1)

 Needs three m vectors or a matrix A(m, 3)

b = [8, 5, 4, 6, 4, 3, 7, 6, 6, 3, 2, 5, 6]′

d = [1, 4, 5, 8, 3, 1, 8, 4, 7, 2, 1, 6, 5]′

c = [1700, 1500, 1500, 1400, 1200, 1000, 1000, 1000, 900, 800, 300, 250, 250]′

 Note the weights are in descending order

 You can start b, d or c list in any way you want

 It is convenient to start c as a heap for the shortest path problems ... more
on this later!!

List of edges representation of graphs

VUGRAPH 9

Start node list
(beginning node)

(1)

(2)

()

b

b

b m

End node list
(destination node)

Weight list

(1)

(2)

()

d

d

d m

(1)

(2)

()

c

c

c m

Linked adjacency list representation of graphs

VUGRAPH 10

• Linked adjacency list

• Easy to add or delete edges ⇒ change pointers to links

• Outlists of nodes

• Can also represent inlists of nodes

nil

Link
pointer

Pointer to edges

1 300 nil

2 800

3 1200

4 1500

5 250

6 1000 nil

7 1700 nil

1 1000

5 1500

6 250

4 1000 7 900

8 1400 nil

1

2

3

4

5

6

7

8

Destination node

Weight of edge

Next edge

(3m + n) words = 47 words

• Forward star (out-list)

 Useful when edges don’t have to be added or deleted

 It is not easy to add or delete edges

• Backward star

 Similar to forward star with in-list (incoming edges to a node)

Forward star representation of graphs

VUGRAPH 11

14

1

2

4

6

8

12

13

14

1

2

3

4

5

6

7

8

9

1

2

1

3

5

4

6

4

7

8

5

8

1

Pointer
Node i

End vertex Weight

300

800

1000

1200

1500

1500

250

1000

900

1400

250

1000

1700

Total words:
2m + n + 1 = 26 + 8 + 1 = 35

Shortest path problems

VUGRAPH 12

• We can define several path related problems using the above terminology

 Given any two nodes s and t, find the shortest path (i.e., minimum length path)
from s to t . . . single source - single destination shortest path problem

 Given a node v1 = s, find the shortest distances to all other nodes. . . single source -
multiple destination shortest path problem

 Shortest distance from every node to every other node . . . all pairs shortest path
problem . . . Lecture 7

• We also distinguish between problems where

 Edge weights (arc lengths) are nonnegative

 Edge weights can be negative

• Why do we solve these problems?

• Communication networks

 <vi, vk> in a communication network

 c <vi, vk> = average packet delay to traverse link <vi, vk>

 Shortest path ⇒ minimum cost route over which to send data or minimize delay of
route

 Average delay is a function of link traffic ... in fact, a nonlinear relationship

 However, shortest path problem is an integral part of most routing problems

Reliability networks

VUGRAPH 13

• c <vi, vk> = − ln p <vi, vk>

• p <vi, vk> = probability that a given arc (edge) <vi, vk> is
usable in the network

• Edges are assumed to be independent

• Most reliable path between s and t ⇒ find shortest distance
between nodes s and t with edge weights {− ln p <vi, vk>}

• Note: Reliability of a path

1

1

1
,

1

,

max ,

min ln ,

i i

i i

i i
v v

i i

v v

p v v

p v v

⇒

PERT networks (critical path analysis)

VUGRAPH 14

• Nodes of subtasks, arcs (edges) ~ dependency

• tij = time required to complete j after i is completed

• <i, j> denotes precedence constraint that i must be completed before j
can begin

• Problem: find the most time consuming path

= longest (critical) path …. This is the one you want to monitor!

= shortest path with c(vi, vj) = –tij

• Viterbi decoding, discrete dynamic programming, etc.

i

j

• For simplicity, we denote nodes {1, 2, ... , n} and edges <i, j>
 Source = node 1

 Destination = node n, for single destination problem

• Dual of the shortest path problem
 Let us look at the shortest path problem from the viewpoint of the dual

 If we want shortest path to node n only

 If we want to find shortest paths to all nodes from node 1, replace objective
function by:

 CS conditions

o If P is the shortest path then

 λj = λi + cij, if <i, j> ∈ P

 λj ≤ λi + cij, ∀ <i, j> ∉ P

o {λi} are called labels of nodes

Dual of the shortest path problem

VUGRAPH 15

1

max

s.t. 0

 , ,

n

j i ij j i ijc c i j

2 3max{ }n

+4

6

+3

4

43

2 4

53

1

5

2

Example

VUGRAPH 16

2 3 4 5

1

2 1

3 1

3 2

4 2

2 4

4 3

5 3

3 5

5 4

max{ }

s.t. 0

 5

 2

 3

 4

 3

 5

 4

 6

 4

A generic relaxation (dual) procedure

VUGRAPH 17

• Initialize:

 Set λ1 = 0

 λi = ∞ (large #) ∀i = 2, 3, ... , n

 V = {1} ... candidate list

• Step 1:

 If all inequalities are satisfied

o Stop . . . found an optimal solution

 Else

o Remove a node i from the candidate list V

 End if

• Step 2:

 For each outgoing arc <i, j> with j ≠ 1,

o If λj – λi > cij

 Set λj = λi + cij ... labeling step

 Add j to V if it is not already in V

o End if

 Go back to Step 1

• Labels {λi} are monotonically nonincreasing

• λi < ∞ ⇔ node i has entered the candidate list V at least once

• The various implementations differ in the way they select the node from the candidate list V

Dijkstra’s way of picking the node to relax

VUGRAPH 18

• Pick a node with the minimum label

• Needs non-negativity of {cij} and graph connectivity for
convergence!!

• Implementation issues
 use binary heap to efficiently remove node i from V

 Dial’s “bucket” method ... see Bertsekas’s book

• A node enters V only once if cij ≥ 0

• These implementations are called “label setting”
methods or “best-first” scanning methods

arg min{ }j
j

i

BMDP & Threshold Algorithms

VUGRAPH 19

• Bellman-Moore-D’Esopo-Pape (BMDP)

 Maintain a queue of nodes in the candidate list, V

 A node may enter V more than once!!

 Breadth-first scanning or label correcting methods

• Threshold algorithms ... see Bertsekas’s book

 Split queue into two queues Q′ and Q″, where labels of nodes in
Q′ are less than a threshold s

Dijkstra’s algorithm

VUGRAPH 20

• Dijkstra’s algorithm … assume cij > 0

• Step 1: initialization

 set λ1 = 0

 pred(1) = ∅

 λj = c1j for j = 2, ... , n

 pred(j) = 1 if cij < ∞

 set W = {∅}, V = {1}. . . W = {i : λi < ∞, i ∉ V } set of permanently labeled nodes

• Step 2: scanning and permanent labeling

 find i ∈ V , where λi = min{λj}, j ∈ V

 set V = V − {i}, W = W ∪ {i}

• Step 3: revision of tentative labels

 ∀ outgoing arc <i, j> with j ≠ 1

o if λj > λi + cij

pred(j) = i

λj = λi + cij

if (j V)

V = V ∪ {j}

end if

o end if

o if (V = ∅) stop ⇒ computation is completed

o else go to step 2

o end if

Illustration of Dijkstra’s Algorithm

VUGRAPH 21

• Iteration 1

 Node removed = 1 ⇒ W = {1}

 Labels: λ1 = 0, λ2 = 5, λ3 = 2, λ4 = ∞, λ5 = ∞

 Node list: V = {2, 3}

• Iteration 2

 since λ3 < λ2, node removed from V = 3 ⇒ W = {1, 3}

 labels: λ1 = 0, λ2 = 5, λ3 = 2, λ4 = ∞, λ5 = 6

 node list: V = {2, 5}

• Iteration 3

 since λ2 < λ5, node removed from V = 2 ⇒ W = {1, 3, 2}

 labels: λ1 = 0, λ2 = 5, λ3 = 2, λ4 = 9, λ5 = 6

 node list: V = {4, 5}

• Iteration 4

 node removed from V = 5 ⇒ W = {1, 3, 2, 5}

 labels: λ1 = 0, λ2 = 5, λ3 = 2, λ4 = 9, λ5 = 6

 node list: V = {4}

• Iteration 5 ... no need to perform iteration 5 since labels of nodes in W will not change

 node removed from V = 4 ⇒ W = {1, 3, 2, 5, 4}

 labels: λ1 = 0, λ2 = 5, λ3 = 2, λ4 = 9, λ5 = 6

 node list: V = {∅}

+4

6

+3

4

43

2 4

53

1

5

2

Interpretations and proof of optimality

VUGRAPH 22

• Removing from V a minimum label node ⇒ W contains nodes with the
smallest labels

• At kth step, we have the set W of k closest nodes to node 1 as well as the
shortest distances {λi}iW from node 1 to each node i of W ⇒ λi ≤ λj if i ∈
W and j ∉W

• At each step, we add the next closest node into the set W

• Once a node enters W, it stays in W forever and labels of
nodes in W do not change ⇒ W can be interpreted as the set of
permanently labeled nodes

• Proof:
 Valid initially because node 1 exits and enters W

 Suppose valid for iteration (k − 1) ⇒ λi ≤ λj if i ∈ W and j ∉ W

 Since cpi ≥ 0, when a node p is removed from V and put in W, then ∀i ∈ W, we have λi

≤ λp + cpi ⇒ node i never enters V if it is already in W

⇒ W = set of permanently labeled nodes

⇒ Any label that changes must be from j ∉W

 At the end of the iteration, we have λj = λp + cpj ≥ λp ≥ λi, ∀i ∈W ⇒ W has nodes with
“small” labels

• (n − 1) iterations

• Each iteration, need to find minimum label ⇒ worst case n operations

• O(n2) operations

• Label revision: O(m) operations, m = # of arcs

• Since m ≤ n2, total computational load O(n2)

• Can do better with heaps and buckets for sparse graphs

• Look at shortest paths

 They form a tree called shortest path tree or skim tree

 Spanning tree: tree containing all the vertices

 If want to find shortest paths from every node to every other node,
invoke the single source algorithm n times

⇒ O(n3) computation time

Computational load and skim tree

VUGRAPH 23

3

5

1

2

4

Heaps

VUGRAPH 24

• A heap is a priority queue

• It allows finding the minimum element of a set and insertion
(enqueuer)/deletion (dequeuer) of elements is easy

• A d-heap is a d-ary tree (i.e., with at most d children),
 Each node contains one item

 Items are arranged in a heap order

⇒ value at each node less than values at its children (if they exist)

• Example: 3-ary tree

2

16 20 9

30 22 18 27 50 60

Parent values ≤ Children values

• Easy to insert an element

 Suppose want to insert 7 into the heap

 Make a new vacant node x to the tree such that x is a leaf

 Storing 7 in x may violate heap order

 Use SIFT-UP procedure to place 7 at its proper place

 Note that if inserted at node 9, it takes only one SIFT-UP. This can be done with the so-called
left-complete d-ary tree.

Inserting an element to a d-heap

VUGRAPH 25

DO while parent exceeds child’s value
Move parent to vacant node
Replace parent node by vacant node value

End DO

2

1 6 2 0 9

30 22 18 27 50 60

2

1 6 2 0 9

7 22 18 27 50 60

2

7 2 0 9

16 22 18 27 50 60

30x 7

30

Deleting an element from a d-heap

VUGRAPH 26

• Easy to delete an element

 Suppose we want to delete 7

 Find a node y with no children

 Remove item from the node (say, value is j = 30) and delete node y from the tree

 If value j = 7 done!!

 Otherwise remove 7 from the node and attempt to replace it by j

 If (j < 7) use SIFT-UP process

 Otherwise use SIFT-DOWN process

 SIFT-DOWN

 When deleting an element, choose y that was most recently added ∼ like stack (LIFO)

If value of parent exceeds the value of a child
Choose a child with minimum value
Store child in parent & parent in child

End if

2

1 6 2 0 9

30 22 18 27 50 60

2

2 0 9

16 22 18 27 50 60

2

7 2 0 9

16 22 18 27 50 60
30

30

Use SIFT-DOWN

Complexity of insert and delete operations in a d-heap

VUGRAPH 27

• Complexity of insert and delete operations in a d-heap

 Time for SIFT-UP depends on the depth of node at which SIFT-UP starts ⇒ insert = O(logd n)

 Time for SIFT-DOWN ∝ total number of child nodes made vacant during SIFT-DOWN

⇒ delete = O(d logd n)

 Time for minimum of the set of elements: O(1)

 If there are more inserts than deletes (as in shortest path for the set V), use d as large as
possible, i.e., use

 Need no explicit pointers, if we number nodes in a breadth-first order

o Parent of 𝑥 =
𝑥−1

𝑑

o Children of node x = (d(x − 1) + 2, . . . , min(d(x + 1), n)

o e.g.,

2 , # of edges, = # of nodes
m

d m n
n

x = 4, d = 3 ⇒ parent = 1; children = none

x = 5, d = 3 ⇒ parent = 2; children = none

x = 3, d = 3 ⇒ parent = 1; children = 8, 9, 10 2

1

3 4

5 6 7 8 9 10
Index 1 2 3 4 5 6 7 8 9 10

Key 2 16 20 9 30 22 18 27 50 60

• Q: How to make heaps?
• One of two ways:

 Use insert n times ⇒ O(nlogdn)

 Create an arbitrary d-ary tree and execute SIFT-DOWN

• To learn more about heaps, read:
 J.W.J. Williams, “Algorithm232: Heapsort,” CACM, 7, 1964, pp. 347-348

 D.B. Johnson, “Priority queues with update and finding minimum spanning trees,”
Inform. Proc. Letters, 4, 1, 1975, pp. 53-57

 D.B. Johnson, “Efficient algorithms for shortest paths in sparse networks,” JACM,
vol. 24, pp. 1-13

 R. Tarjan, Data Structures and Network Algorithms, SIAM, 1983

 E. Horowitz and S. Sahni, Computer Algorithms, CSP, 1978

• Application to shortest path
 Let out(i) = set of edges directed away from i

 n = # of nodes, m = # of edges

 Node list V is in the form of a heap

How to make d-heaps?

VUGRAPH 28

log ()

0

(1)
()

d n

i
i

n i
O n

d

Heap implementation of Dijkstra’s Algorithm

VUGRAPH 29

• ∀i = 2, ... , n

 parent(i) = null

 λi = ∞

• end ∀

• λ1 = 0

• parent(1) = null

• V = {1}

• i = 1

• while i ≠ null do

 for (i, j) ∈ out(i) and j ≠ 1

o if (λj > λi + cij)

 λj = λi + cij

 parent(j) = i

 if (j V)

insert j into V

 else

SIFT-UP j

 end if

o end if

 end for

 i = delete min{V} ... finds the next minimum on the list by deleting the current minimum

• end do

Complexity of d-heap version of Dijkstra

VUGRAPH 30

• O(mlogdn)

• Optimum d, d = 2 +
𝑚

𝑛

• Considerable savings if m ≈ O(n) ⇒ d ≈ 4

0

1

0

3 2 1

1

2 3 4

1

3 2

4

2 3

1

3 2 3

4

2 3 6

4

7

2

3 3 4

3

2 6 7

3

3 4

2

6 7

3

3 4 4

2

6 7 5

3

4 4

6

7 5

4

4

7

5

Heap

4

1

2
5

7
3

3

1

2

2

3

2

5

1

2

1

6

6

Dial’s “bucket” method

VUGRAPH 31

• cij are assumed to be nonnegative integers

• No loss in generality: one can always scale real cij to get integers to a
specified accuracy

• The possible label values range from 0 to (n − 1)C where

• So, for each possible label value, maintain a bucket and the
corresponding nodes with that label value

• Can use doubly-linked lists to maintain the set of nodes in a given
bucket
 List 1: <bucket b, # of nodes, first node in the bucket>

 List 2: <node #, node label, next node, previous node>

• Need to maintain only (C +1) buckets because when we are currently
searching bucket b, then all buckets beyond (b + C) are empty λi ≤ b and
cij ≤ C ⇒ λj = λi + cij ≤ b + C

,
max ij

i j
C c

Illustration of Dial’s Bucket Method

VUGRAPH 32

• Refined versions . . . see references in Bertsekas’s book
 Alternate scanning strategies ... label correcting methods

• Recall that Dijkstra’s algorithm uses a best-first scanning

• What if we use breadth-first scanning?
 Scan the one least recently labelled or the first in the queue

 Idea behind the method was discovered by Moore (1959) and Bellman (1958)

 Improvements by D’Esopo and Pape (1980)

iteration V node labels
buckets V → W

node0 1 2 3 4

1 {1} (0,∞, ∞, ∞, ∞, ∞, ∞) 1 - - - - 1

2 {2, 3, 4} (0,3,2,1, ∞, ∞, ∞) 1 4 3 2 - 4

3 {2, 3, 6, 7} (0,3,2,1, ∞, 3,4) 1 4 3 2, 6 7 3

4 {2, 6, 7} (0,3,2,1, ∞, 3,4) 1 4 3 2, 6 7 2

5 {6, 7, 5} (0,3,2,1, 4,3,4) 1 4 3 2, 6 7, 5 6

6 {7, 5} (0,3,2,1, 4,3,4) 1 4 3 2, 6 7, 5 7

7 {5} (0,3,2,1, 4,3,4) 1 4 3 2, 6 7, 5 5

{∅} (0,3,2,1, 4,3,4) 1 4 3 2, 6 7, 5

Bellman-Moore-D’Esopo-Pape (BMDP) algorithm

VUGRAPH 33

• ∀i = 2, ... , n

 parent(i) = null

 λi = ∞

• end ∀

• λ1 = 0

• parent(1) = null

• queue = [1]

• while queue ≠ null do

 i = queue[1]

 queue = queue [2 · · ·] initially queue = [∅]

 for (i, j) ∈ out(i)

o if (λi + cij < λj)

 λj = λi + cij

 parent(j) = i

 if (j ∉ queue)

queue = queue ∪ j

 end if

o end if

 end for

• end do

BMDP variations

VUGRAPH 34

• Unlike Dijkstra, a node may enter and leave the queue several times and may be scanned several
times

• Suppose a node that is in the queue (i.e., a labeled node) gets relabeled (i.e., its λ is modified)
before it is scanned

• Where should we place it?

 Leave it where it was, when it first entered the queue

 Place it at the head of the queue if the node has already been entered, examined and removed
from the queue

 If the node has never entered the queue before (i.e., it was labelled for the first time), put it at
the end of the queue

• This is a hybrid scanning method, and was found to work very well in practice [Dial et al. (1979),
and Pape (1980)]

• Unlike Dijkstra, the algorithm is guaranteed to terminate even in the presence of
negative edge weights, as long as there is no cycle with an overall negative weight

• If have a cycle of negative weight, you will continue to be in the cycle and distance
monotonically decreases ⇒ primal is unbounded and dual is infeasible

• Each pass requires O(m) computation

• There can be at most (n − 1) passes if the network does not have cycles of negative length

⇒ Worst-case computational load O(mn)

⇒ In practice, they perform much better

• Detection of negative cycles

 If at the end of n passes, queue is not empty ⇒ ∃ a cycle of negative length and can terminate

Illustration of BMDP Algorithm

VUGRAPH 35

• Dijkstra won’t work for negative edge weight problems!!

• Example

• Iteration 4: node 4 goes out ⇒ queue empty ⇒ done!!

1

-2

43

3 4

21

-1

Problem

queue = [1]

1

(∞)

3

3 4

21

Iteration 1

queue = [2, 3]

1

3

21

-1

Iteration 2

queue = [3]

1

-2
3 4

21

-1

Iteration 3

queue = [4]

Remarks

VUGRAPH 36

• Performs very well in practice

• Can devise examples where a node may enter and exit the
candidate list an exponential number of times

• See:
 Kershenbaum, A., “A note on Finding Shortest Path Trees,”

Networks, vol. 11, pp. 399-400, 1981

• For variants, see:
 Bertsekas’s book

 S. Pallotino, “Shortest path methods: complexity, interrelationships,
and new propositions,” Networks, vol. 14, pp. 257-267, 1984

 G.S. Gallo and S. Pallotino, “Shortest path algorithms,” Annals of
Operations Research, vol. 7, pp. 3-79, 1988

Threshold algorithms

VUGRAPH 37

• Know that for graphs with positive arc weights, Dijkstra’s algorithm ensures that no
node is removed more than once

• Q: is it possible to emulate the minimum label selection policy of Dijkstra with a much
smaller computational effort?

• One answer: split V into two queues Q′ and Q″

 Q′ = nodes with small labels ⇒ nodes with labels ≤ s

 Q″ = remaining

• At each iteration

 Remove a node from Q′ and apply generic shortest path algorithm

 Any node to be added is added to Q″

• When Q′ is exhausted, repartition V into Q′ and Q″ with a new threshold

• Key: how to adjust thresholds?

 s = current minimum label ⇒ Dijkstra

 s > maximum label ⇒ BMDP algorithm

 Selection of s is an art

 See:

o F. Glover, D. Klingman, and N. Phillips, “A new polynomial bounded shortest path algorithm,”
Operations Research, vol. 33, pp. 65-73, 1985

o F. Glover, D. Klingman, N. Phillips, and R.F. Schneider, “New polynomial shortest path algorithms and
their computational attributes,” Management Science, vol. 31, pp. 1106-1128, 1985

Summary

VUGRAPH 38

• Graph terminology

• Computer representation of graphs

• A generic shortest path algorithm for single origin-multiple
destinations problem

• Dijkstra’s algorithm ... label setting methods
 Heap implementation

 Dial’s bucket method

• Label correcting methods
 Bellman-Moore-D’Esopo-Pape algorithm

 Threshold algorithm

• Next: all pairs shortest path and distributed shorest path
algorithms ... Lecture 7

