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• Graph terminology

• Computer representation of graphs

 Weight matrix or adjacency matrix

 List of edges

 Linked adjacency list

 Forward star

• Applications of shortest path problem

• A generic shortest path algorithm for single origin-
multiple destinations problem
 Dijkstra’s algorithm . . . label setting methods

o Heap implementation

o Dial’s bucket method

 Label correcting methods

o Bellman-Moore-D’Esopo-Pape algorithm

o Threshold algorithm



Graph terminology
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• Graph G = (V, E)

 V = {v1, v2, . . . , vn} a finite set of vertices, nodes, junctions, 
points, 0-cells, 0-simplices

 E = {e1, e2, . . . , em} a finite set of edges, arcs, links, branches, 
elements, 1-cells, 1-simplices

 To each edge e, there corresponds two distinct vertices u and 
v ⇒ e is incident on u, v
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v4
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e5

e6

e4

e5

e2



• Directed graph (or digraph) and undirected graph

 If vertex pairs are ordered, i.e., e is directed from vertex u to 
vertex v, then the graph is called a diagraph

⇒ Direct edge <u, v>:

⇒ u is an immediate predecessor of v and v is an immediate 
successor of u

 If the edges have no direction, then the graph is said to be an 
undirected graph

⇒ Vertices are unordered

⇒ Undirected edge: (u, v)

 An undirected graph can be converted into a directed graph by 
adding bi-directional edges

 We assume that there exists only one edge between two nodes in 
one direction

Graph terminology
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Graph terminology

VUGRAPH 5

• Network
 A graph (directed or undirected) in which a real number is 

associated with each edge   network = attributed graph

o If have multiple attributes, it is a multi-attributed graph or network

 This number is called the weight of the edge

 No loss in generality

o If a node has a weight, we can define a dummy node such that edge 
from dummy node to node has a weight

• Degree of a vertex
 For an undirected graph G:

o d(v) = # of adjacent vertices or # of times v is an end point of edges

o Fact: # of nodes of odd degree in a finite undirected graph is even

o Proof:
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Graph terminology
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• Walk or a path

 For an undirected graph G:

o (v1, v2, . . . , vk) is a walk in an undirected graph G if (v1, v2), (v2, v3) ,
. . . , (vk–1, vk)  are edges on the walk

 The walk is directed if each edge is directed (<>)

 Note that vertices may be repeated in a walk

• Simple path

 (v1, v2, . . . , vk) is a simple path if all vertices are distinct

 Directed simple path if all vertices are distinct and each edge is directed

• Cycle

 A path in an undirected graph is a cycle if k > 1 and v1 = vk and no 
edge is repeated

 A path in a directed graph is a cycle if k > 1 and v1 = vk ... simple cycle 
if vertices v1, v2, . . . , vk−1 are distinct

 A graph without cycles is acyclic



Graph terminology
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• Connected graphs

 If there is a path from a vertex vi to a vertex vk, then vk is reachable from vi

 A graph G is connected if every vertex vk is reachable from every other 
vertex vi, and disconnected otherwise

• Weight (length) of a path

 Given a path p = <v1, v2, . . . , vk>, we can speak of the length of the path or 
the weight of the path

 Example: weight of path s → u → t: 

1 2 2 3 1k kv v v v v vc c c
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Computer representation of graphs
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• Four methods

 Weight matrix or adjacency matrix

 List of edges

 Linked adjacency list

 Forward star

• Weight matrix

 n nodes ⇒ n × n matrix C = [c i j]

 c i j ~ weight of edge <i, j>

 No edge ⇒ c i j  = ∞ (e.g., 1020)

 c i i  = 0

 Undirected network ⇒ C = CT symmetric ⇒ (
𝑛(𝑛−1)

2
) elements/words

 Directed network ⇒ n(n – 1) elements/words
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• List of edges

 Useful when the graph is sparse

⇒ # of edges 𝑚 ≪ 𝑛(𝑛 − 1)

 Needs three m vectors or a matrix A(m, 3)

b = [8, 5, 4, 6, 4, 3, 7, 6, 6, 3, 2, 5, 6]′

d = [1, 4, 5, 8, 3, 1, 8, 4, 7, 2, 1, 6, 5]′

c = [1700, 1500, 1500, 1400, 1200, 1000, 1000, 1000, 900, 800, 300, 250, 250]′

 Note the weights are in descending order

 You can start b, d or c list in any way you want

 It is convenient to start c as a heap for the shortest path problems ... more 
on this later!!

List of edges representation of graphs
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Linked adjacency list  representation of graphs
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• Linked adjacency list

• Easy to add or delete edges ⇒ change pointers to links

• Outlists of nodes

• Can also represent inlists of nodes

nil

Link
pointer

Pointer to edges

1 300 nil

2 800

3 1200

4 1500

5 250

6 1000 nil

7 1700 nil

1 1000

5 1500

6 250

4 1000 7 900

8 1400 nil

1
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6

7

8

Destination node

Weight of edge

Next edge

(3m + n) words = 47 words



• Forward star (out-list)

 Useful when edges don’t have to be added or deleted

 It is not easy to add or delete edges

• Backward star

 Similar to forward star with in-list (incoming edges to a node)

Forward star representation of graphs
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Shortest path problems
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• We can define several path related problems using the above terminology

 Given any two nodes s and t, find the shortest path (i.e., minimum length path) 
from s to t . . . single source - single destination shortest path problem

 Given a node v1 = s, find the shortest distances to all other nodes. . . single source -
multiple destination shortest path problem

 Shortest distance from every node to every other node . . . all pairs shortest path 
problem . . . Lecture 7

• We also distinguish between problems where

 Edge weights (arc lengths) are nonnegative

 Edge weights can be negative

• Why do we solve these problems?

• Communication networks

 <vi, vk> in a communication network

 c <vi, vk> = average packet delay to traverse link <vi, vk> 

 Shortest path ⇒ minimum cost route over which to send data or  minimize delay of 
route

 Average delay is a function of link traffic ... in fact, a nonlinear relationship

 However, shortest path problem is an integral part of most routing problems



Reliability networks
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• c <vi, vk> = − ln p <vi, vk>

• p <vi, vk> = probability that a given arc (edge) <vi, vk> is  
usable in the network

• Edges are assumed to be independent

• Most reliable path between s and t ⇒ find shortest distance 
between  nodes s and t with edge weights {− ln p <vi, vk>}

• Note: Reliability of a path 
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PERT networks (critical path analysis)
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• Nodes of subtasks, arcs (edges) ~ dependency

• tij = time required to complete j after i is completed

• <i, j> denotes precedence constraint that i must be completed before j
can begin

• Problem: find the most time consuming path

= longest (critical) path  …. This is the one you want to monitor!

= shortest path with c(vi, vj) = –tij

• Viterbi decoding, discrete dynamic programming, etc.

i

j



• For simplicity, we denote nodes {1, 2, ... , n} and edges <i, j>
 Source = node 1

 Destination = node n, for single destination problem

• Dual of the shortest path problem
 Let us look at the shortest path problem from the viewpoint of the dual

 If we want shortest path to node n only

 If we want to find shortest paths to all nodes from node 1, replace objective 
function by:

 CS conditions

o If P is the shortest path then

 λj = λi + cij, if <i, j> ∈ P  

 λj ≤ λi + cij, ∀ <i, j> ∉ P

o {λi} are called labels of nodes

Dual of the shortest path problem
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Example
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A generic relaxation (dual) procedure
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• Initialize:

 Set λ1 = 0

 λi = ∞ (large #) ∀i = 2, 3, ... , n

 V = {1} ... candidate list

• Step 1:

 If all inequalities are satisfied

o Stop . . . found an optimal solution  

 Else

o Remove a node i from the candidate list V

 End if

• Step 2:

 For each outgoing arc <i, j> with j ≠ 1,  

o If λj – λi > cij

 Set λj = λi + cij ... labeling step

 Add j to V if it is not already in V

o End if

 Go back to Step 1

• Labels {λi} are monotonically nonincreasing

• λi < ∞ ⇔ node i has entered the candidate list V at least once

• The various implementations differ in the way they select the node from the candidate list V



Dijkstra’s way of picking the node to relax 
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• Pick a node with the minimum label

• Needs non-negativity of {cij} and graph connectivity for 
convergence!!

• Implementation issues
 use binary heap to efficiently remove node i from V

 Dial’s “bucket” method ... see Bertsekas’s book

• A node enters V only once if cij ≥ 0

• These implementations are called “label setting” 
methods or “best-first” scanning methods

arg min{ }j
j

i 



BMDP & Threshold Algorithms
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• Bellman-Moore-D’Esopo-Pape (BMDP)

 Maintain a queue of nodes in the candidate list, V

 A node may enter V more than once!!

 Breadth-first scanning or label correcting methods

• Threshold algorithms ... see Bertsekas’s book

 Split queue into two queues Q′ and Q″, where labels of nodes in 
Q′ are less than a threshold s



Dijkstra’s algorithm
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• Dijkstra’s algorithm … assume cij > 0

• Step 1: initialization  

 set λ1 = 0

 pred(1) = ∅

 λj = c1j for j = 2, ... , n

 pred(j) = 1 if cij < ∞  

 set W = {∅}, V = {1}. . . W = {i :  λi < ∞, i ∉ V } set of permanently labeled nodes

• Step 2: scanning and permanent labeling  

 find i ∈ V , where λi = min{λj}, j ∈ V

 set V = V − {i},  W = W ∪ {i}

• Step 3: revision of tentative labels

 ∀ outgoing arc <i, j> with j ≠ 1

o if λj > λi + cij

pred(j) = i

λj = λi + cij

if (j  V )

V = V ∪ {j}

end if 

o end if

o if (V = ∅) stop ⇒ computation is completed  

o else go to step 2

o end if





Illustration of Dijkstra’s Algorithm 
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• Iteration 1

 Node removed = 1 ⇒ W = {1}

 Labels: λ1 = 0,  λ2 = 5, λ3 = 2,  λ4 = ∞, λ5 = ∞

 Node list: V = {2, 3}

• Iteration 2

 since λ3 < λ2, node removed from V = 3 ⇒ W = {1, 3}

 labels: λ1 = 0, λ2 = 5, λ3 = 2, λ4 = ∞, λ5 = 6

 node list: V = {2, 5}

• Iteration 3

 since λ2 < λ5, node removed from V = 2 ⇒ W = {1, 3, 2}

 labels: λ1 = 0, λ2 = 5, λ3 = 2, λ4 = 9, λ5 = 6

 node list: V = {4, 5}

• Iteration 4

 node removed from V = 5 ⇒ W = {1, 3, 2, 5}

 labels: λ1 = 0, λ2 = 5, λ3 = 2, λ4 = 9, λ5 = 6

 node list: V = {4}

• Iteration 5 ... no need to perform iteration 5 since labels of nodes in W will not change

 node removed from V = 4 ⇒ W = {1, 3, 2, 5, 4}

 labels: λ1 = 0, λ2 = 5, λ3 = 2, λ4 = 9, λ5 = 6

 node list: V = {∅}
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Interpretations and proof of optimality
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• Removing from V a minimum label node ⇒ W contains nodes with  the 
smallest labels

• At kth step, we have the set W of k closest nodes to node 1 as well as the 
shortest distances {λi}iW from node 1 to each node i of W ⇒ λi ≤ λj if i ∈
W and j ∉W

• At each step, we add the next closest node into the set W

• Once a node enters W, it stays in W forever and labels of 
nodes in W do not change ⇒ W can be interpreted as the set of 
permanently labeled nodes

• Proof:
 Valid initially because node 1 exits and enters W

 Suppose valid for iteration (k − 1) ⇒ λi ≤ λj if i ∈ W and j ∉ W

 Since cpi ≥ 0, when a node p is removed from V and put in W, then ∀i ∈ W, we have λi

≤ λp + cpi ⇒ node i never enters V if it is already in W

⇒ W = set of permanently labeled nodes

⇒ Any label that changes must be from j ∉W

 At the end of the iteration, we have λj = λp + cpj ≥ λp ≥ λi,  ∀i ∈W ⇒ W  has nodes with 
“small”  labels



• (n − 1) iterations

• Each iteration, need to find minimum label ⇒ worst case n operations

• O(n2) operations

• Label revision: O(m) operations, m = # of arcs

• Since m ≤ n2, total computational load O(n2)

• Can do better with heaps and buckets for sparse graphs

• Look at shortest paths

 They form a tree called shortest path tree or skim tree

 Spanning tree: tree containing all the vertices

 If want to find shortest paths from every node to every other node, 
invoke the single source algorithm n times

⇒ O(n3) computation time

Computational load and skim tree
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Heaps
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• A heap is a priority queue

• It allows finding the minimum element of a set and insertion 
(enqueuer)/deletion (dequeuer) of elements is easy

• A d-heap is a d-ary tree (i.e., with at most d children),
 Each node contains one item

 Items are arranged in a heap order

⇒ value at each node less than values at its children (if they exist)

• Example: 3-ary tree

2

16 20 9

30 22 18 27 50 60

Parent values ≤ Children  values



• Easy to insert an element

 Suppose want to insert 7 into the heap

 Make a new vacant node x to the tree such that x is a leaf

 Storing 7 in x may violate heap order

 Use SIFT-UP procedure to place 7 at its proper place

 Note that if inserted at node 9, it takes only one SIFT-UP. This can be done with the so-called 
left-complete d-ary tree.

Inserting an element to a d-heap
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DO while parent exceeds child’s value
Move parent to vacant node
Replace parent node by vacant node value

End DO

2

1 6 2 0 9

30 22 18 27 50 60

2

1 6 2 0 9

7 22 18 27 50 60

2

7 2 0 9

16 22 18 27 50 60

30x 7

30



Deleting an element from a d-heap
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• Easy to delete an element

 Suppose we want to delete 7

 Find a node y with no children

 Remove item from the node (say, value is j = 30) and delete node y from the tree

 If value j = 7 done!!

 Otherwise remove 7 from the node and attempt to replace it by j

 If (j < 7) use SIFT-UP process

 Otherwise use SIFT-DOWN process

 SIFT-DOWN

 When deleting an element, choose y that was most recently added ∼ like stack (LIFO)

If value of parent exceeds the value of a child
Choose a child with minimum value
Store child in parent & parent in child

End if

2

1 6 2 0 9

30 22 18 27 50 60

2

2 0 9

16 22 18 27 50 60

2

7 2 0 9

16 22 18 27 50 60
30

30

Use SIFT-DOWN



Complexity of insert and delete operations in a d-heap
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• Complexity of insert and delete operations in a d-heap

 Time for SIFT-UP depends on the depth of node at which SIFT-UP starts ⇒ insert = O(logd n)

 Time for SIFT-DOWN ∝ total number of child nodes made vacant during SIFT-DOWN 

⇒ delete = O(d logd n)

 Time for minimum of the set of elements: O(1)

 If there are more inserts than deletes (as in shortest path for the set V), use d as large as 
possible, i.e., use

 Need no explicit pointers, if we number nodes in a breadth-first order

o Parent of 𝑥 =
𝑥−1

𝑑

o Children of node x = (d(x − 1) + 2, . . . , min(d(x + 1), n)

o e.g.,

2 , #  of edges,  = # of nodes
m

d m n
n

 
    

x = 4, d = 3 ⇒ parent = 1; children = none

x = 5, d = 3 ⇒ parent = 2; children = none

x = 3, d = 3 ⇒ parent = 1; children = 8, 9, 10 2

1

3 4

5 6 7 8 9 10
Index 1 2 3 4 5 6 7 8 9 10

Key 2 16 20 9 30 22 18 27 50 60



• Q: How to make heaps?
• One of two ways:

 Use insert n times ⇒ O(nlogdn)

 Create an arbitrary d-ary tree and execute SIFT-DOWN

• To learn more about heaps, read:
 J.W.J. Williams, “Algorithm232: Heapsort,” CACM, 7, 1964, pp.  347-348

 D.B. Johnson, “Priority queues with update and finding minimum spanning trees,” 
Inform. Proc. Letters, 4, 1, 1975, pp. 53-57

 D.B. Johnson, “Efficient algorithms for shortest paths in sparse networks,”  JACM, 
vol. 24, pp. 1-13

 R. Tarjan, Data Structures and Network Algorithms, SIAM, 1983

 E. Horowitz and S. Sahni, Computer Algorithms, CSP, 1978

• Application to shortest path
 Let out(i) = set of edges directed away from i

 n = # of nodes, m = # of edges

 Node list V is in the form of a heap

How to make d-heaps?
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Heap implementation of Dijkstra’s Algorithm
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• ∀i = 2, ... , n

 parent(i) = null

 λi = ∞

• end ∀

• λ1 = 0

• parent(1) = null

• V = {1}

• i = 1

• while i ≠ null do

 for (i, j) ∈ out(i) and j ≠ 1  

o if (λj > λi + cij)

 λj = λi + cij

 parent(j) = i

 if (j V)

insert j into V

 else

SIFT-UP j

 end if 

o end if

 end for

 i = delete min{V} ... finds the next minimum on the list by deleting the current minimum

• end do





Complexity of d-heap version of Dijkstra
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• O(mlogdn)

• Optimum d, d = 2 +
𝑚

𝑛

• Considerable savings if m ≈ O(n) ⇒ d ≈ 4
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Dial’s “bucket” method
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• cij are assumed to be nonnegative integers

• No loss in generality: one can always scale real cij to get integers to a 
specified accuracy

• The possible label values range from 0 to (n − 1)C where

• So, for each possible label value, maintain a bucket and the 
corresponding nodes with that label value

• Can use doubly-linked lists to maintain the set of nodes in a given  
bucket
 List 1:  <bucket b, # of nodes,  first node in the bucket>

 List 2:  <node #, node label, next node,  previous node>

• Need to maintain only (C +1) buckets because when we are currently  
searching bucket b, then all buckets beyond (b + C) are empty λi ≤ b and
cij ≤ C ⇒ λj = λi + cij ≤ b + C

,
max ij

i j
C c



Illustration of Dial’s Bucket Method
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• Refined versions . . . see references in Bertsekas’s book
 Alternate scanning strategies ... label correcting methods

• Recall that Dijkstra’s algorithm uses a best-first scanning

• What if we use breadth-first scanning?
 Scan the one least recently labelled or the first in the queue

 Idea behind the method was discovered by Moore (1959) and Bellman  (1958)

 Improvements by D’Esopo and Pape (1980)

iteration V node labels
buckets V → W

node0 1 2 3 4

1 {1} (0,∞, ∞, ∞, ∞, ∞, ∞) 1 - - - - 1

2 {2, 3, 4} (0,3,2,1, ∞, ∞, ∞) 1 4 3 2 - 4

3 {2, 3, 6, 7} (0,3,2,1, ∞, 3,4) 1 4 3 2, 6 7 3

4 {2, 6, 7} (0,3,2,1, ∞, 3,4) 1 4 3 2, 6 7 2

5 {6, 7, 5} (0,3,2,1, 4,3,4) 1 4 3 2, 6 7, 5 6

6 {7, 5} (0,3,2,1, 4,3,4) 1 4 3 2, 6 7, 5 7

7 {5} (0,3,2,1, 4,3,4) 1 4 3 2, 6 7, 5 5

{∅} (0,3,2,1, 4,3,4) 1 4 3 2, 6 7, 5



Bellman-Moore-D’Esopo-Pape (BMDP) algorithm

VUGRAPH 33

• ∀i = 2, ... , n

 parent(i) = null

 λi = ∞

• end ∀

• λ1 = 0

• parent(1) = null

• queue = [1]

• while queue ≠ null do

 i = queue[1]

 queue = queue [2 · · ·] initially queue = [∅]  

 for (i, j) ∈ out(i)

o if (λi + cij < λj)  

 λj = λi + cij

 parent(j) = i

 if (j ∉ queue)

queue = queue ∪ j

 end if  

o end if

 end for  

• end do



BMDP variations
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• Unlike Dijkstra, a node may enter and leave the queue several times and may be scanned several 
times

• Suppose a node that is in the queue (i.e., a labeled node) gets relabeled (i.e., its λ is modified) 
before it is scanned

• Where should we place it?

 Leave it where it was, when it first entered the queue

 Place it at the head of the queue if the node has already been entered, examined and removed 
from the queue

 If the node has never entered the queue before (i.e., it was labelled for the first time), put it at 
the end of the queue

• This is a hybrid scanning method, and was found to work very well in practice [Dial et al. (1979), 
and Pape (1980)]

• Unlike Dijkstra, the algorithm is guaranteed to terminate even in the presence of 
negative edge weights, as long as there is no cycle with an overall negative weight

• If have a cycle of negative weight, you will continue to be in the cycle and distance 
monotonically decreases ⇒ primal is unbounded and dual is infeasible

• Each pass requires O(m) computation

• There can be at most (n − 1) passes if the network does not have cycles of negative length

⇒ Worst-case computational load O(mn)

⇒ In practice, they perform much better

• Detection of negative cycles

 If at the end of n passes, queue is not empty ⇒ ∃ a cycle of negative length and can terminate



Illustration of BMDP Algorithm
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• Dijkstra won’t work for negative edge weight problems!!

• Example

• Iteration 4: node 4 goes out ⇒ queue empty ⇒ done!!  
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queue = [1]
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(∞)

3

3 4

21

Iteration 1

queue = [2, 3]
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Iteration 2

queue = [3]

1

-2
3 4

21

-1

Iteration 3

queue = [4]



Remarks
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• Performs very well in practice

• Can devise examples where a node may enter and exit the 
candidate list an exponential number of times

• See:
 Kershenbaum, A., “A note on Finding Shortest Path Trees,” 

Networks, vol. 11, pp. 399-400, 1981

• For variants, see:
 Bertsekas’s book

 S. Pallotino, “Shortest path methods: complexity, interrelationships,  
and new propositions,” Networks, vol. 14, pp. 257-267, 1984

 G.S. Gallo and S. Pallotino, “Shortest path algorithms,” Annals of 
Operations Research, vol. 7, pp. 3-79, 1988



Threshold algorithms
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• Know that for graphs with positive arc weights, Dijkstra’s algorithm ensures that no 
node is removed more than once

• Q: is it possible to emulate the minimum label selection policy of Dijkstra with a much 
smaller computational effort?

• One answer: split V into two queues Q′ and Q″

 Q′ = nodes with small labels ⇒ nodes with labels ≤ s

 Q″ = remaining

• At each iteration

 Remove a node from Q′ and apply generic shortest path algorithm

 Any node to be added is added to Q″

• When Q′ is exhausted, repartition V into Q′ and Q″ with a new threshold

• Key: how to adjust thresholds?

 s = current minimum label ⇒ Dijkstra

 s > maximum label ⇒ BMDP algorithm

 Selection of s is an art

 See:

o F. Glover, D. Klingman, and N. Phillips, “A new polynomial bounded shortest path algorithm,” 
Operations Research, vol. 33, pp. 65-73, 1985

o F. Glover, D. Klingman, N. Phillips, and R.F. Schneider, “New polynomial shortest path algorithms and 
their computational attributes,” Management Science, vol. 31, pp. 1106-1128, 1985



Summary
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• Graph terminology

• Computer representation of graphs

• A generic shortest path algorithm for single origin-multiple 
destinations problem

• Dijkstra’s algorithm ... label setting methods
 Heap implementation

 Dial’s bucket method

• Label correcting methods
 Bellman-Moore-D’Esopo-Pape algorithm

 Threshold algorithm

• Next: all pairs shortest path and distributed shorest path 
algorithms ... Lecture 7


