Lecture 6: Shortest Path Algorithms: (Part I)

Prof. Krishna R. Pattipati

Dept. of Electrical and Computer Engineering
University of Connecticut
Contact: krishna@engr.uconn.edu; (860) 486-2890

Outline

- Graph terminology
- Computer representation of graphs
- Weight matrix or adjacency matrix
- List of edges
- Linked adjacency list
- Forward star
- Applications of shortest path problem
- A generic shortest path algorithm for single originmultiple destinations problem
- Dijkstra's algorithm . . . label setting methods
- Heap implementation
- Dial's bucket method
- Label correcting methods
- Bellman-Moore-D’Esopo-Pape algorithm
- Threshold algorithm

Graph terminology

- Graph $G=(V, E)$
- $V=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ a finite set of vertices, nodes, junctions, points, 0 -cells, 0 -simplices
- $E=\left\{e_{1}, e_{2}, \ldots, e_{m}\right\}$ a finite set of edges, arcs, links, branches, elements, 1 -cells, 1 -simplices
- To each edge e, there corresponds two distinct vertices u and $v \Rightarrow e$ is incident on u, v

Graph terminology

- Directed graph (or digraph) and undirected graph
- If vertex pairs are ordered, i.e., e is directed from vertex u to vertex v, then the graph is called a diagraph
\Rightarrow Direct edge $\langle u, v\rangle$:

$\Rightarrow u$ is an immediate predecessor of v and v is an immediate successor of u
- If the edges have no direction, then the graph is said to be an undirected graph
\Rightarrow Vertices are unordered
\Rightarrow Undirected edge: (u, v)
- An undirected graph can be converted into a directed graph by adding bi-directional edges
- We assume that there exists only one edge between two nodes in one direction

Graph terminology

- Network
- A graph (directed or undirected) in which a real number is associated with each edge \Rightarrow network $=$ attributed graph
- If have multiple attributes, it is a multi-attributed graph or network
- This number is called the weight of the edge
- No loss in generality
- If a node has a weight, we can define a dummy node such that edge from dummy node to node has a weight
- Degree of a vertex
- For an undirected graph G :
- $d(v)=\#$ of adjacent vertices or \# of times v is an end point of edges
- Fact: \# of nodes of odd degree in a finite undirected graph is even
- Proof:

$$
\sum_{i=1}^{n} d\left(v_{i}\right)=2 m
$$

Graph terminology

- Walk or a path
- For an undirected graph G :
$\circ\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ is a walk in an undirected graph G if $\left(v_{1}, v_{2}\right),\left(v_{2}, v_{3}\right)$, $\ldots,\left(v_{k-1}, v_{k}\right)$ are edges on the walk
- The walk is directed if each edge is directed (<>)
- Note that vertices may be repeated in a walk
- Simple path
- ($v_{1}, v_{2}, \ldots, v_{k}$) is a simple path if all vertices are distinct
- Directed simple path if all vertices are distinct and each edge is directed
- Cycle
- A path in an undirected graph is a cycle if $k>1$ and $v_{1}=v_{k}$ and no edge is repeated
- A path in a directed graph is a cycle if $k>1$ and $v_{1}=v_{k} \ldots$ simple cycle if vertices $v_{1}, v_{2}, \ldots, v_{k-1}$ are distinct
- A graph without cycles is acyclic

Graph terminology

- Connected graphs
- If there is a path from a vertex v_{i} to a vertex v_{k}, then v_{k} is reachable from v_{i}
- A graph G is connected if every vertex v_{k} is reachable from every other vertex v_{i}, and disconnected otherwise
- Weight (length) of a path
- Given a path $p=\left\langle v_{1}, v_{2}, \ldots, v_{k}\right\rangle$, we can speak of the length of the path or the weight of the path

$$
=c_{v_{1} v_{2}}+c_{v_{2} v_{3}}+\cdots+c_{v_{k-1} v_{k}}
$$

- Example: weight of path $s \rightarrow u \rightarrow t: \quad c_{s u}+c_{u t}=7$

Computer representation of graphs

- Four methods
- Weight matrix or adjacency matrix
- List of edges
- Linked adjacency list
- Forward star
- Weight matrix
- n nodes $\Rightarrow n \times n$ matrix $C=\left[c_{i j}\right]$

- $c_{i j} \sim$ weight of edge $\langle i, j>$
- No edge $\Rightarrow c_{i j}=\infty$ (e.g., 10^{20})
- $c_{i i}=0$
- Undirected network $\Rightarrow C=C^{T}$ symmetric $\Rightarrow\left(\frac{n(n-1)}{2}\right)$ elements/words
- Directed network $\Rightarrow n(n-1)$ elements/words

List of edges representation of graphs

- List of edges
- Useful when the graph is sparse
\Rightarrow \# of edges $m \ll n(n-1)$
- Needs three m vectors or a matrix $A(m, 3)$

Start node list $($ beginning node $)$	End node list (destination node)	$\underline{\text { Weight list }}$
$b(1)$	$d(1)$	$c(1)$
$b(2)$	$d(2)$	$c(2)$
\vdots	\vdots	\vdots
$b(m)$	$d(m)$	$c(m)$

$b=[8,5,4,6,4,3,7,6,6,3,2,5,6]^{\prime}$
$d=[1,4,5,8,3,1,8,4,7,2,1,6,5]^{\prime}$
$c=[1700,1500,1500,1400,1200,1000,1000,1000,900,800,300,250,250]^{\prime}$

- Note the weights are in descending order
- You can start $\boldsymbol{b}, \boldsymbol{d}$ or \boldsymbol{c} list in any way you want
- It is convenient to start c as a heap for the shortest path problems ... more on this later!!

Linked adjacency list representation of graphs

- Linked adjacency list

Pointer to edges

- Easy to add or delete edges \Rightarrow change pointers to links
- Outlists of nodes
- Can also represent inlists of nodes

Forward star representation of graphs

- Forward star (out-list)
- Useful when edges don't have to be added or deleted
- It is not easy to add or delete edges

Node i| Pointer |
| :--- |
| 1 |

Total words:

$2 m+n+1=26+8+1=35$

- Backward star
- Similar to forward star with in-list (incoming edges to a node)

Shortest path problems

- We can define several path related problems using the above terminology
- Given any two nodes s and t, find the shortest path (i.e., minimum length path) from s to $t \ldots$ single source - single destination shortest path problem
- Given a node $v_{1}=s$, find the shortest distances to all other nodes. . . single source multiple destination shortest path problem
- Shortest distance from every node to every other node . . . all pairs shortest path problem . . . Lecture 7
- We also distinguish between problems where
- Edge weights (arc lengths) are nonnegative
- Edge weights can be negative
- Why do we solve these problems?
- Communication networks
- $\left\langle v_{i}, v_{k}>\right.$ in a communication network
- $\left.c<v_{i}, v_{k}\right\rangle=$ average packet delay to traverse link $\left\langle v_{i}, v_{k}\right\rangle$
- Shortest path \Rightarrow minimum cost route over which to send data or minimize delay of route
- Average delay is a function of link traffic ... in fact, a nonlinear relationship
- However, shortest path problem is an integral part of most routing problems

Reliability networks

- $\left.\left.c<v_{i}, v_{k}\right\rangle=-\ln p<v_{i}, v_{k}\right\rangle$
- $\left.p<v_{i}, v_{k}\right\rangle=$ probability that a given arc (edge) $\left\langle v_{i}, v_{k}\right\rangle$ is usable in the network
- Edges are assumed to be independent
- Most reliable path between s and $t \Rightarrow$ find shortest distance between nodes s and t with edge weights $\left\{-\ln p<v_{i}, v_{k}>\right\}$
- Note: Reliability of a path π

$$
\begin{aligned}
& \quad \max \prod_{<v_{i}, v_{i+1}>\in \pi} p<v_{i}, v_{i+1}> \\
& \Rightarrow \quad \min -\sum_{\left\langle v_{i}, v_{i+1}\right\rangle \in \pi} \ln p<v_{i}, v_{i+1}>
\end{aligned}
$$

PERT networks (critical path analysis)

- Nodes of subtasks, arcs (edges) ~ dependency
- $t_{i j}=$ time required to complete j after i is completed
- $\langle i, j>$ denotes precedence constraint that i must be completed before j can begin

- Problem: find the most time consuming path
$=$ longest (critical) path This is the one you want to monitor!
$=$ shortest path with $c\left(v_{i}, v_{j}\right)=-t_{i j}$
- Viterbi decoding, discrete dynamic programming, etc.

Dual of the shortest path problem

- For simplicity, we denote nodes $\{1,2, \ldots, n\}$ and edges $\langle i, j>$
- Source = node 1
- Destination = node n, for single destination problem
- Dual of the shortest path problem
- Let us look at the shortest path problem from the viewpoint of the dual
- If we want shortest path to node n only

$$
\begin{array}{ll}
\max & \lambda_{n} \\
\text { s.t. } & \lambda_{1}=0 \\
& \lambda_{j}-\lambda_{i} \leq c_{i j} \Rightarrow \lambda_{j} \leq \lambda_{i}+c_{i j}, \forall<i, j>
\end{array}
$$

- If we want to find shortest paths to all nodes from node 1 , replace objective function by:

$$
\max \left\{\lambda_{2}+\lambda_{3}+\cdots+\lambda_{n}\right\}
$$

- CS conditions
- If P is the shortest path then

$$
\begin{array}{ll}
* \lambda_{j}=\lambda_{i}+c_{i j}, & \text { if }\langle i, j>\in P \\
* \lambda_{j} \leq \lambda_{i}+c_{i j}, & \forall<i, j>\notin P
\end{array}
$$

- $\left\{\lambda_{i}\right\}$ are called labels of nodes

Example

$$
\begin{gathered}
\max \left\{\lambda_{2}+\lambda_{3}+\lambda_{4}+\lambda_{5}\right\} \\
\text { s.t. } \lambda_{1}=0 \\
\lambda_{2}-\lambda_{1} \leq 5 \\
\lambda_{3}-\lambda_{1} \leq 2 \\
\lambda_{3}-\lambda_{2} \leq 3 \\
\lambda_{4}-\lambda_{2} \leq 4 \\
\lambda_{2}-\lambda_{4} \leq 3 \\
\lambda_{4}-\lambda_{3} \leq 5 \\
\lambda_{5}-\lambda_{3} \leq 4 \\
\lambda_{3}-\lambda_{5} \leq 6 \\
\lambda_{5}-\lambda_{4} \leq 4
\end{gathered}
$$

A generic relaxation (dual) procedure

- Initialize:
- Set $\lambda_{1}=0$
- $\lambda_{i}=\infty$ (large \#) $\forall i=2,3, \ldots, n$
- $V=\{1\} \ldots$ candidate list
- Step 1:
- If all inequalities are satisfied
- Stop . . . found an optimal solution
- Else
- Remove a node i from the candidate list V
- End if
- Step 2:
- For each outgoing arc $<i, j>$ with $j \neq 1$,
- If $\lambda_{j}-\lambda_{i}>c_{i j}$
* Set $\lambda_{j}=\lambda_{i}+c_{i j} \ldots$ labeling step
* Add j to V if it is not already in V
- End if
- Go back to Step 1
- Labels $\left\{\lambda_{i}\right\}$ are monotonically nonincreasing
- $\lambda_{i}<\infty \Leftrightarrow$ node i has entered the candidate list V at least once
- The various implementations differ in the way they select the node from the candidate list V

Dijkstra's way of picking the node to relax

- Pick a node with the minimum label

$$
i=\arg \min _{j}\left\{\lambda_{j}\right\}
$$

- Needs non-negativity of $\left\{c_{i j}\right\}$ and graph connectivity for convergence!!
- Implementation issues
- use binary heap to efficiently remove node i from V
- Dial's "bucket" method ... see Bertsekas's book
- A node enters V only once if $c_{i j} \geq 0$
- These implementations are called "label setting" methods or "best-first" scanning methods

BMDP \& Threshold Algorithms

- Bellman-Moore-D’Esopo-Pape (BMDP)
- Maintain a queue of nodes in the candidate list, V
- A node may enter V more than once!!
- Breadth-first scanning or label correcting methods
- Threshold algorithms ... see Bertsekas's book
- Split queue into two queues Q^{\prime} and $Q^{\prime \prime}$, where labels of nodes in Q^{\prime} are less than a threshold s

Dijkstra's algorithm

- Dijkstra's algorithm ... assume $c_{i j}>0$
- Step 1: initialization
- $\operatorname{set} \lambda_{1}=0$
- $\operatorname{pred}(1)=\varnothing$
- $\lambda_{j}=c_{1 j}$ for $j=2, \ldots, n$
- $\operatorname{pred}(j)=1$ if $c_{i j}<\infty$
- set $W=\{\varnothing\}, V=\{1\} \ldots W=\left\{i: \lambda_{i}<\infty, i \notin V\right\}$ set of permanently labeled nodes
- Step 2: scanning and permanent labeling
- find $i \in V$, where $\lambda_{i}=\min \left\{\lambda_{j}\right\}, j \in V$
- set $V=V-\{i\}, W=W \cup\{i\}$
- Step 3: revision of tentative labels
- \forall outgoing arc $\langle i, j>$ with $j \neq 1$

```
\(\bigcirc\) if \(\lambda_{j}>\lambda_{i}+c_{i j}\)
    \(\operatorname{pred}(j)=i\)
    \(\lambda_{j}=\lambda_{i}+c_{i j}\)
    if \((j \notin V)\)
        \(V=V \cup\{j\}\)
    end if
```

- end if
- if $(V=\emptyset)$ stop \Rightarrow computation is completed
- else go to step 2
- end if

Illustration of Dijkstra's Algorithm

- Iteration 1
- Node removed $=1 \Rightarrow W=\{1\}$
- Labels: $\lambda_{1}=0, \lambda_{2}=5, \lambda_{3}=2, \lambda_{4}=\infty, \lambda_{5}=\infty$
- Node list: $V=\{2,3\}$
- Iteration 2
- since $\lambda_{3}<\lambda_{2}$, node removed from $V=3 \Rightarrow W=\{1,3\}$
- labels: $\lambda_{1}=0, \lambda_{2}=5, \lambda_{3}=2, \lambda_{4}=\infty, \lambda_{5}=6$
- node list: $V=\{2,5\}$
- Iteration 3
- since $\lambda_{2}<\lambda_{5}$, node removed from $V=2 \Rightarrow W=\{1,3,2\}$
- labels: $\lambda_{1}=0, \lambda_{2}=5, \lambda_{3}=2, \lambda_{4}=9, \lambda_{5}=6$
- node list: $V=\{4,5\}$
- Iteration 4
- node removed from $V=5 \Rightarrow W=\{1,3,2,5\}$
- labels: $\lambda_{1}=0, \lambda_{2}=5, \lambda_{3}=2, \lambda_{4}=9, \lambda_{5}=6$

- node list: $V=\{4\}$
- Iteration 5 ... no need to perform iteration 5 since labels of nodes in W will not change
- node removed from $V=4 \Rightarrow W=\{1,3,2,5,4\}$
- labels: $\lambda_{1}=0, \lambda_{2}=5, \lambda_{3}=2, \lambda_{4}=9, \lambda_{5}=6$
- node list: $V=\{\varnothing\}$

Interpretations and proof of optimality

- Removing from V a minimum label node $\Rightarrow W$ contains nodes with the smallest labels
- At $k^{\text {th }}$ step, we have the set W of k closest nodes to node 1 as well as the shortest distances $\left\{\lambda_{i}\right\}_{i \in W}$ from node 1 to each node i of $W \Rightarrow \lambda_{i} \leq \lambda_{j}$ if $i \in$ W and $j \notin W$
- At each step, we add the next closest node into the set W
- Once a node enters W, it stays in W forever and labels of nodes in W do not change $\Rightarrow W$ can be interpreted as the set of permanently labeled nodes
- Proof:
- Valid initially because node 1 exits and enters W
- Suppose valid for iteration $(k-1) \Rightarrow \lambda_{i} \leq \lambda_{j}$ if $i \in W$ and $j \notin W$
- Since $c_{p i} \geq 0$, when a node p is removed from V and put in W, then $\forall i \in W$, we have λ_{i} $\leq \lambda_{p}+c_{p i} \Rightarrow$ node i never enters V if it is already in W
$\Rightarrow W=$ set of permanently labeled nodes
\Rightarrow Any label that changes must be from $j \notin \mathrm{~W}$
- At the end of the iteration, we have $\lambda_{j}=\lambda_{p}+c_{p j} \geq \lambda_{p} \geq \lambda_{i}, \forall i \in W \Rightarrow W$ has nodes with "small" labels

Computational load and skim tree

- $(n-1)$ iterations
- Each iteration, need to find minimum label \Rightarrow worst case n operations
- $O\left(n^{2}\right)$ operations
- Label revision: $O(m)$ operations, $m=\#$ of arcs
- Since $m \leq n^{2}$, total computational load $O\left(n^{2}\right)$
- Can do better with heaps and buckets for sparse graphs
- Look at shortest paths
- They form a tree called shortest path tree or skim tree
- Spanning tree: tree containing all the vertices

- If want to find shortest paths from every node to every other node, invoke the single source algorithm \boldsymbol{n} times
$\Rightarrow O\left(n^{3}\right)$ computation time

Heaps

- A heap is a priority queue
- It allows finding the minimum element of a set and insertion (enqueuer)/deletion (dequeuer) of elements is easy
- A d-heap is a d-ary tree (i.e., with at most d children),
- Each node contains one item
- Items are arranged in a heap order
\Rightarrow value at each node less than values at its children (if they exist)
- Example: 3-ary tree

Parent values \leq Children values

Inserting an element to a d-heap

- Easy to insert an element
- Suppose want to insert 7 into the heap
- Make a new vacant node x to the tree such that x is a leaf
- Storing 7 in x may violate heap order
- Use SIFT-UP procedure to place 7 at its proper place

```
DO while parent exceeds child's value
Move parent to vacant node
Replace parent node by vacant node value
End DO
```


- Note that if inserted at node 9, it takes only one SIFT-UP. This can be done with the so-called left-complete d-ary tree.

Deleting an element from a \boldsymbol{d}-heap

- Easy to delete an element
- Suppose we want to delete 7
- Find a node y with no children
- Remove item from the node (say, value is $j=30$) and delete node y from the tree
- If value $j=7$ done!!
- Otherwise remove 7 from the node and attempt to replace it by j
- If ($j<7$) use SIFT-UP process
- Otherwise use SIFT-DOWN process
- SIFT-DOWN

$$
\begin{aligned}
& \text { If value of parent exceeds the value of a child } \\
& \text { Choose a child with minimum value } \\
& \text { Store child in parent \& parent in child } \\
& \text { End if }
\end{aligned}
$$

- When deleting an element, choose y that was most recently added ~ like stack (LIFO)

UCONN

Complexity of insert and delete operations in a d-heap

- Complexity of insert and delete operations in a d-heap
- Time for SIFT-UP depends on the depth of node at which SIFT-UP starts \Rightarrow insert $=O\left(\log _{d} n\right)$
- Time for SIFT-DOWN \propto total number of child nodes made vacant during SIFT-DOWN
\Rightarrow delete $=O\left(d \log _{d} n\right)$
- Time for minimum of the set of elements: $O(1)$
- If there are more inserts than deletes (as in shortest path for the set V), use d as large as possible, i.e., use

$$
d=\left\lceil 2+\frac{m}{n}\right\rceil, m=\# \text { of edges, } n=\# \text { of nodes }
$$

- Need no explicit pointers, if we number nodes in a breadth-first order
- Parent of $x=\left\lceil\frac{x-1}{d}\right\rceil$
- Children of node $x=(d(x-1)+2, \ldots, \min (d(x+1), n)$
- e.g.,

$$
\begin{array}{ll}
x=4, & d=3 \Rightarrow \text { parent }=1 ; \text { children }=\text { none } \\
x=5, & d=3 \Rightarrow \text { parent }=2 ; \text { children }=\text { none } \\
x=3, & d=3 \Rightarrow \text { parent }=1 ; \text { children }=8,9,10
\end{array}
$$

Index	1	2	3	4	5	6	7	8	9	10
Key	2	16	20	9	30	22	18	27	50	60

How to make \boldsymbol{d}-heaps?

- Q: How to make heaps?
- One of two ways:
- Use insert n times $\Rightarrow O\left(n \log _{d} n\right)$
- Create an arbitrary d-ary tree and execute SIFT-DOWN

$$
\sum_{i=0}^{\left\lceil\log _{d}(n)\right\rceil} \frac{n(i+1)}{d^{i}}=O(n)
$$

- To learn more about heaps, read:
- J.W.J. Williams, "Algorithm232: Heapsort," CACM, 7, 1964, pp. 347-348
- D.B. Johnson, "Priority queues with update and finding minimum spanning trees," Inform. Proc. Letters, 4, 1, 1975, pp. 53-57
- D.B. Johnson, "Efficient algorithms for shortest paths in sparse networks," JACM, vol. 24, pp. 1-13
- R. Tarjan, Data Structures and Network Algorithms, SIAM, 1983
- E. Horowitz and S. Sahni, Computer Algorithms, CSP, 1978
- Application to shortest path
- Let out $(i)=$ set of edges directed away from i
- $n=$ \# of nodes, $m=$ \# of edges
- Node list V is in the form of a heap

Heap implementation of Dijkstra's Algorithm

- $\forall i=2, \ldots, n$
- parent $(i)=$ null
- $\lambda_{i}=\infty$
- end \forall
- $\lambda_{1}=0$
- parent $(1)=$ null
- $V=\{1\}$
- $i=1$
- while $i \neq$ null do
- for $(i, j) \in \operatorname{out}(i)$ and $j \neq 1$
- if $\left(\lambda_{j}>\lambda_{i}+c_{i j}\right)$
* $\lambda_{j}=\lambda_{i}+c_{i j}$
* $\operatorname{parent}(j)=i$
* if $(j \notin V)$
insert j into V
* else SIFT-UP j
* end if
- end if
- end for
- $i=$ delete $\min \{V\}$... finds the next minimum on the list by deleting the current minimum
- end do

Complexity of \boldsymbol{d}-heap version of Dijkstra

- $O\left(m \log _{d} n\right)$
- Optimum $d, d=\left\lceil 2+\frac{m}{n}\right\rceil$
- Considerable savings if $m \approx O(n) \Rightarrow d \approx 4$

Dial's "bucket" method

- $c_{i j}$ are assumed to be nonnegative integers
- No loss in generality: one can always scale real $c_{i j}$ to get integers to a specified accuracy
- The possible label values range from 0 to $(n-1) C$ where

$$
C=\max _{i, j} c_{i j}
$$

- So, for each possible label value, maintain a bucket and the corresponding nodes with that label value
- Can use doubly-linked lists to maintain the set of nodes in a given bucket
- List 1: <bucket b, \# of nodes, first node in the bucket>
- List 2: <node \#, node label, next node, previous node>
- Need to maintain only $(C+1)$ buckets because when we are currently searching bucket b, then all buckets beyond $(b+C)$ are empty $\lambda_{i} \leq b$ and $c_{i j} \leq C \Rightarrow \lambda_{j}=\lambda_{i}+c_{i j} \leq b+C$

Illustration of Dial's Bucket Method

iteration	V	node labels	buckets				$V \rightarrow W$	
			0	1	2	3	4	node
1	$\{1\}$	$(0, \infty, \infty, \infty, \infty, \infty, \infty)$	1	-	-	-	-	1
2	$\{2,3,4\}$	$(0,3,2,1, \infty, \infty, \infty)$	1	4	3	2	-	4
3	$\{2,3,6,7\}$	$(0,3,2,1, \infty, 3,4)$	1	4	3	2,6	7	3
4	$\{2,6,7\}$	$(0,3,2,1, \infty, 3,4)$	1	4	3	2,6	7	2
5	$\{6,7,5\}$	$(0,3,2,1,4,3,4)$	1	4	3	2,6	7,5	6
6	$\{7,5\}$	$(0,3,2,1,4,3,4)$	1	4	3	2,6	7,5	7
7	$\{5\}$	$(0,3,2,1,4,3,4)$	1	4	3	2,6	7,5	5
	$\{\varnothing\}$	$(0,3,2,1,4,3,4)$	1	4	3	2,6	7,5	

- Refined versions . . . see references in Bertsekas's book
- Alternate scanning strategies ... label correcting methods
- Recall that Dijkstra's algorithm uses a best-first scanning
- What if we use breadth-first scanning?
- Scan the one least recently labelled or the first in the queue
- Idea behind the method was discovered by Moore (1959) and Bellman (1958)
- Improvements by D’Esopo and Pape (1980)

Bellman-Moore-D'Esopo-Pape (BMDP) algorithm

- $\forall i=2, \ldots, n$
- parent $(i)=$ null
- $\lambda_{i}=\infty$
- end \forall
- $\lambda_{1}=0$
- parent(1) = null
- queue = [1]
- while queue $=$ null do
- $i=q u e u e[1]$
- queue $=$ queue $[2 \cdots]$ initially queue $=[\varnothing]$
- for $(i, j) \in \operatorname{out}(i)$
- if $\left(\lambda_{i}+c_{i j}<\lambda_{j}\right)$
* $\lambda_{j}=\lambda_{i}+c_{i j}$
* $\operatorname{parent}(j)=i$
* if $(j \notin q u e u e)$
queue $=$ queue $\cup j$
* end if
- end if
- end for
- end do

UCDNN

BMDP variations

- Unlike Dijkstra, a node may enter and leave the queue several times and may be scanned several times
- Suppose a node that is in the queue (i.e., a labeled node) gets relabeled (i.e., its λ is modified) before it is scanned
- Where should we place it?
- Leave it where it was, when it first entered the queue
- Place it at the head of the queue if the node has already been entered, examined and removed from the queue
- If the node has never entered the queue before (i.e., it was labelled for the first time), put it at the end of the queue
- This is a hybrid scanning method, and was found to work very well in practice [Dial et al. (1979), and Pape (1980)]
- Unlike Dijkstra, the algorithm is guaranteed to terminate even in the presence of negative edge weights, as long as there is no cycle with an overall negative weight
- If have a cycle of negative weight, you will continue to be in the cycle and distance monotonically decreases \Rightarrow primal is unbounded and dual is infeasible
- Each pass requires $O(m)$ computation
- There can be at most ($n-1$) passes if the network does not have cycles of negative length
\Rightarrow Worst-case computational load $O(m n)$
\Rightarrow In practice, they perform much better
- Detection of negative cycles
- If at the end of n passes, queue is not empty $\Rightarrow \exists$ a cycle of negative length and can terminate

Illustration of BMDP Algorithm

- Dijkstra won't work for negative edge weight problems!!
- Example

Problem

queиe = [1]

Iteration 2

queue $=[3]$

Iteration 1

$$
\text { queue }=[2,3]
$$

Iteration 3

queue $=[4]$

- Iteration 4 : node 4 goes out \Rightarrow queue empty \Rightarrow done!!

Remarks

- Performs very well in practice
- Can devise examples where a node may enter and exit the candidate list an exponential number of times
- See:
- Kershenbaum, A., "A note on Finding Shortest Path Trees," Networks, vol. 11, pp. 399-400, 1981
- For variants, see:
- Bertsekas's book
- S. Pallotino, "Shortest path methods: complexity, interrelationships, and new propositions," Networks, vol. 14, pp. 257-267, 1984
- G.S. Gallo and S. Pallotino, "Shortest path algorithms," Annals of Operations Research, vol. 7, pp. 3-79, 1988

Threshold algorithms

- Know that for graphs with positive arc weights, Dijkstra's algorithm ensures that no node is removed more than once
- \mathbf{Q} : is it possible to emulate the minimum label selection policy of Dijkstra with a much smaller computational effort?
- One answer: split V into two queues Q^{\prime} and $Q^{\prime \prime}$
- $Q^{\prime}=$ nodes with small labels \Rightarrow nodes with labels $\leq s$
- $Q^{\prime \prime}=$ remaining
- At each iteration
- Remove a node from Q^{\prime} and apply generic shortest path algorithm
- Any node to be added is added to $Q^{\prime \prime}$
- When Q^{\prime} is exhausted, repartition V into Q^{\prime} and $Q^{\prime \prime}$ with a new threshold
- Key: how to adjust thresholds?
- $s=$ current minimum label \Rightarrow Dijkstra
- $s>$ maximum label \Rightarrow BMDP algorithm
- Selection of s is an art
- See:
- F. Glover, D. Klingman, and N. Phillips, "A new polynomial bounded shortest path algorithm," Operations Research, vol. 33, pp. 65-73, 1985
- F. Glover, D. Klingman, N. Phillips, and R.F. Schneider, "New polynomial shortest path algorithms and their computational attributes," Management Science, vol. 31, pp. 1106-1128, 1985

Summary

- Graph terminology
- Computer representation of graphs
- A generic shortest path algorithm for single origin-multiple destinations problem
- Dijkstra's algorithm ... label setting methods
- Heap implementation
- Dial's bucket method
- Label correcting methods
- Bellman-Moore-D’Esopo-Pape algorithm
- Threshold algorithm
- Next: all pairs shortest path and distributed shorest path algorithms ... Lecture 7

