
Lecture 7:
Shortest Path Algorithms: (Part II)

Prof. Krishna R. Pattipati
Dept. of Electrical and Computer Engineering

University of Connecticut
Contact: krishna@engr.uconn.edu; (860) 486-2890

© K. R. Pattipati, 2001-2016

Outline

VUGRAPH 2

• Review of Dijkstra’s algorithm

• Bidirectional Dijkstra

• A* algorithm

• Dynamic programming-based algorithms
 BMDP as a successive approximation to DP recursion

 Floyd-Warshall algorithm ... all pairs

 Bellman-Ford algorithm

 Distributed Bellman-Ford algorithm

• Shortest paths on acyclic graphs

• Viterbi decoding

• Martins’ algorithm for multi-objective shortest path problems

• Other shortest path algorithms

• Summary

• Single source shortest paths when edge weights cij ≥ 0

• Basic idea

 Find the shortest path to the first nearest node, then to the second nearest node, etc.

⇒ 0 = λ[1] ≤ λ[2] ≤ ··· ≤ λ[n], [i] = ith nearest neighbor

 If W is the set of nodes for which shortest paths are generated (i.e., W is a
permanently labeled list), then at each iteration the nearest neighbor to W, denoted
by k, is the one s.t. λk = min{λj}; j ∈ T; T = ഥ𝑊

• In other words, shortest path to the next nearest neighbor k must necessarily
pass through nodes in W

• Shortest path to any other node j ∈ T will decrease only if the path from 1 → k
and link ckj is less than previous path length:

λj = min{λj, λk + ckj}; ∀j ∈ T

• O(n2) straightforward implementation

• O(nC + m) Dial’s bucket implementation

• O(𝑚log
2+

𝑚

𝑛

𝑛) heap implementation

• Dijkstra’s algorithm is a best-first search strategy

Dijkstra’s algorithm

VUGRAPH 3

1
3

6
9

2
5

8

4 7

3

4 1

2

6 2 2

1

7 3

4 5

1

Graph

s t

Example

VUGRAPH 4

Node 1 2 3 4 5 6 7 8 9

Initial: T
P(i)

0 3 6 7
 1 1 1 1 1 1 1 1

Iteration 1: T
P(i)

0 3 4 7 7
 1 2 1 2 1 1 1 1

Iteration 2: T
P(i)

0 3 4 7 7 6
 1 2 1 2 3 1 1 1

Iteration 3: T
P(i)

0 3 4 7 7 6 7 8
 1 2 1 2 3 1 6 6

Iteration 4: T
P(i)

0 3 4 7 7 6 11 7 8
 1 2 1 2 3 4 6 6

Iteration 5: T
P(i)

0 3 4 7 7 6 11 7 8
 1 2 1 2 3 4 6 6

Iteration 6: T
P(i)

0 3 4 7 7 6 11 7 8
 1 2 1 2 3 4 6 6

Iteration 7: T
P(i)

0 3 4 7 7 6 11 7 8
 1 2 1 2 3 4 6 6

Forward Dijkstra

Values in heap are represented by red color

The shortest distance from node 1 to node
9 is therefore 8 units and the shortest route
is built up as

o P(9)  9

o P(6)  6  9

o P(3) 3 6  9

o 123 6  9

Skim tree:
1

2 5

3
6

4 7

8
9

• In the bidirectional Dijkstra, forward search executes from the source node s and backward
search executes from destination node t

dij is the distance between node i and node j

Qf is the heap used for forward search from s to i

Qr is the heap used for reverse search from t to i

P(i) is the parent node preceding node i in the current optimal route from s to i

R(i) is the parent node succeeding i in the current optimal route from i to t

peek() gives the minimum value in the heap without actually removing the element

Bidirectional Search

Step 1: (Run forward algorithm) forward search from s with labels g. Check termination
condition.

• If Qf.peek() > Qr.peek(), i.e., minimum label of forward search > minimum label of backward
search, go to step 2 (do backward search), else, go to step 1 (do forward search)

Step 2: (Run reverse algorithm) reverse search from t with labels r. Check termination condition.

• If Qr.peek() > Qf.peek(), go to step 1, else go to step 2

Termination: Algorithm terminates when some vertex c has gc+rc as small as the sum of
lengths of the shortest route out of s and the shortest route out of t. Corresponding shortest path
can be traced back using P(c) and R(c).

Bidirectional Dijkstra’s algorithm

().().)(min peekQpeekQrgrg rfii
i

cc 

Example

VUGRAPH 6

Node 1 2 3 4 5 6 7 8 9

Initial: g
P(i)

r
R(i)

0 3 6 7
 1 1 1 - - - - -

2 5 2 0
- - - - - 9 9 9 

Iteration 1: r
R(i)

r
R(i)

4 5 2 5 2 0
- - 6 6 9 9 9 9 

4 5 3 2 5 2 0
- - 6 6 8 9 9 9 

Iteration 2: g
P(i)

0 3 4 7 7
 1 2 1 2 1 1 1 1

Iteration 3: r
R(i)

7 4 5 3 2 5 2 0
9 5 6 6 8 9 9 9 

Bi-directional Dijkstra works as follows:

Iteration 1: As ,

r and R(i) for neighbors of node 6 are updated. Then, for
neighbors of node 8, r and R(i) are updated

Then

Iteration 2: As ,

g and P(i) for neighbors of node 2 are updated

Then

Iteration 3: As ,

r and R(i) for neighbors of node 5 are updated.

Then

The shortest distance from node 1 to node 9 is therefore 8
units and shortest route is built up as

o P(3)  3  R(3)

o P(2)  2  3  6  R(6)

o 1  2 3 6  9

2().3().  peekQpeekQ rf

33().().10)(min  peekQpeekQrg rfii
i

3().3().  peekQpeekQ rf

34().().8)(min  peekQpeekQrg rfii
i

3().4().  peekQpeekQ rf

44().().8)(min  peekQpeekQrg rfii
i

Values in heap are represented by red color

1
3

6
9

2
5

8

4 7

3

4 1

2

6 2 2

1

7 3

4 5

1

Graph

s t

A* algorithm

VUGRAPH 7

• A* is a heuristic search version of Dijkstra; it achieves better performance by
using cost-to-go heuristics to guide its search

• A* originated in AI. Classic paper: P.E. Hart, N.J. Nilsson, B. Raphael, (1968).
"A Formal Basis for the Heuristic Determination of Minimum Cost Paths".
IEEE Transactions on Systems Science and Cybernetics SSC4 4(2): 100–107.

• At each iteration of its main loop, A* needs to determine which of its partial
paths to expand into one or more longer paths. It does so based on an estimate
of the cost (total weight) to go to the goal node. Specifically, A* selects the path
that minimizes

f(n) = g(n)+h(n)

n := current last node on the path,

g(n) := cost of the path from the start node to n,

h(n) := heuristic that estimates the cost of the cheapest path from n to the
goal (a lower bound on the cost-to-go will ensure optimality of A*)

• The heuristics used are problem-specific.

• When h(n) = 0, A* algorithm reduces to Dijkstra

A* algorithm

VUGRAPH 8

Step 1: INITIALIZE
g(j) :=  for all j  N

Step 2: COMPUTESHORTESTPATH

create heap(H)
create closedSet \\ set containing nodes with permanent labels
g(s):= 0 and parent(s): = 

f(s):= g(s)+h(s)
H.insert(s; g(s) + h(s))
while H.peek()  t do

i:= H.pop() \\ remove the node with minimum f() value
closedSet.add(i)
for each (i; j) that starts at i do

if j ∉ closedSet then
tentative_value := g(i) + cij

if g(j) > tentative_value then
g(j):= tentative_value
f(j) := g(j)+h(j)

parent(j):=i

if j ∉ H then
H.insert(j; f(j))

else

H.decreasekey(j, f(j)) \\ sift up node j with new key f(j)

• DP recursion-based algorithms
 Bellman-Ford algorithm ... a label-correcting method useful

for distributed computations

 BMDP algorithm – a sophisticated label-correcting method

 Basic idea

o Find the shortest path from node 1 to node j using only one edge

o Then find the shortest distance with the constraint that path
must contain at most two edges; then one with at most three
edges and so on

o To be precise, let

 λ𝑗
(𝑙)

= length of the shortest path from the source node to node j,

subject to the constraint that the path contains no more than l
edges

 Initially, λ𝑗
(𝑙)

= 𝑐1𝑗; ∀𝑗 ≠ 1

 What is λ𝑗
(𝑙+1)

?

DP-based algorithms for single-source shortest paths

VUGRAPH 9

DP recursion-based algorithms

VUGRAPH 10

 One of two possibilities

 Shortest path contains at most l edges

⇒ λ𝑗
(𝑙+1)

=λ𝑗
(𝑙)

 Shortest path contains (l + 1) edges

⇒ λ𝑗
(𝑙+1)

= min𝑘{λ𝑘
(𝑙)
+𝑐𝑘𝑗}

 That is, among all nodes 𝑘 ∋ shortest path from node 1 to node k contains

at most l arcs, pick one giving min{λ𝑘
(𝑙)
+𝑐𝑘𝑗}

 If ∃ no negative cycles, a path can contain at most (n – 1) nodes ⇒ must
iterate at most (n – 1) times

 Each iteration takes approximately m operations

⇒ total computation = O(mn)(worst case)

 1 () ()

()

min{ ,min { }}

min{ } with 0 and 1

l l l

j j k j k kj

l

k kj jj

c

c c j

  





 

   

⇒

Example

VUGRAPH 11

2

8
2 4

53

Example

1 2 1

1

4

24

Look at evolution of λ

λ 3

λ 2

λ 1

λ 4

λ 5

λ1
(1)

= 0

λ2
(1)

= 1
λ4
(1)

= ∞

λ5
(1)

= ∞

λ3
(1)

= 4

Iteration 1

λ3
(3)

= 2

λ2
(3)

= 1

λ4
(3)

= 9

λ1
(3)

= 0

λ5
(3)

= 4

Iteration 3 Iteration 4

λ4
(4)

= 8λ2
(4)

= 1

λ1
(4)

= 0

λ3
(4)

= 2 λ5
(4)

= 4

- Shortest path tree

• Can also initialize λi = 0 if cij > 0 (set cjj = ∞)

Iteration 2

λ3
(2)

= 2

λ2
(2)

= 1
λ4
(2)

= 9

λ1
(2)

= 0

λ5
(2)

= 6

 Bellman-Ford finds shortest path lengths from node 1 to node j subject to the constraint that
node 1 is not repeated

 So, Bellman-Ford algorithm never converges, if there are negative length cycles not including
node 1

⇒ Can test for negative length cycles by comparing λ𝑗
(𝑁)

with λ𝑗
(𝑁−1)

⇒ If λ𝑗
(𝑁)

≠ λ𝑗
(𝑁−1)

⇒ negative length cycles

• Bellman equation λ𝑗= min𝑘{λ𝑘 + 𝑐𝑘𝑗} has non-unique solutions, if there are zero length
cycles not involving node 1

 However, Bellman-Ford does converge to correct distances, if you start with ∞ for all nodes,
except origin node 1 (not necessarily correct paths)

 Bellman-Ford can be implemented in a distributed fashion ... later

Negative length cycles

VUGRAPH 12

1 2 3

-3

1

1

• Note: λ2
(3)

= –1 for path 1 → 2 → 3 → 2

1 2 3

1

-1

10

• λ1 = 0
• λ2 = min{10, λ3-1}

• λ3 = λ2 + 1

⇒ λ2 = min{10, λ2}

⇒ any solution λ2 = 1, 2, . . . , 10 is OK

BMDP (label-correcting, breadth-first implementation)

VUGRAPH 13

• Practically, a much better algorithm

• Suppose had a shortest path from node 1 to node j

• Then, this path must have passed through some node k and used the
arc <k, j>

• “Principle of optimality”
⇒ λj = λk + ckj

⇒ λk must have been the shortest path length from node 1 to node k

⇒ Node k is such that (λk + ckj) is as small as possible, since λj is the shortest path from
node 1 to node j

⇒ Shortest paths must satisfy:

o λ1 = 0

o λj = min(k,j) ∈ In(j){λk + ckj}

where In(j) = set of edges of the form <k, j>

• Nonlinear (implicit) functional relationships

• Use successive approximation to solve them

BMDP algorithm employs breadth-first search

VUGRAPH 14

• Put node 1 in queue and λi = ∞, ∀i ≠ 1

• Do until queue is empty or gone through (n − 1) passes &
queue is nonempty
 Pick node i at the head of the queue

 If λi + cij < λj

o λj = λi + cij

o parent(j) = i

o If j ∉ queue

 Insert j into queue

o Else

 Leave it where it was (or) put it at the head of the queue if it was picked
before

 Pass 0 ... scanning node 1

 Pass 1 ... scanning list of nodes added to queue by scanned node at
pass 0, etc.

 Gone through (n − 1) passes and queue is nonempty

⇒ Negative cycle

Floyd-Warshall method

VUGRAPH 15

• Another way of solving DP equation is via Floyd-Warshall method

 Finds all pairs shortest paths

 Consider the shortest path from node i to node j

 Suppose the shortest path goes through node l

 Then

o λij = λil + λlj ⇒ λij = min{min{λil + λlj}, cij}

 In words

o Each of λil and λlj must also be optimal ... “principle of optimality”

 One way of solving these recursions is as follows

o Start with single-edge distances cij (i.e., no intermediate nodes) as starting
estimates of shortest path lengths

o Then, we calculate the shortest distances (and paths) under the constraint
that only node 1 is used as an intermediate node, and then with constraint
that only nodes 1 and 2 are used as intermediate nodes and so on

o To be precise, let λ𝑖𝑗
(𝑘)

= shortest path length from node i to node j under the

constraint that only nodes 1, 2, ... , k can be used as intermediate nodes on the
path

Floyd-Warshall method

VUGRAPH 16

 So, the algorithm is

o λ𝑖𝑗
(0)

= cij , ∀𝑖, 𝑗

o for k = 0, 1, . . . , n − 1 do

 λ𝑖𝑗
(𝑘+1)

= min{ λ𝑖𝑗
(𝑘)
, λ𝑖,𝑘+1

(𝑘)
+ λ𝑘+1,𝑗

(𝑘)
}, ∀𝑖, 𝑗 = 1, 2 , ... , n

o End do

 What do these recursion mean?

o λ𝑖𝑗
(0)

= shortest path lengths under the constraint that no intermediate

nodes are involved

o Now, shortest path between nodes i and j involving nodes 1, 2, ... , k + 1
has node (k + 1) on its path or not

 If it does:

 If it does not:
 

(1) () ()

, 1 1, (1) () () ()

, 1 1,(1) ()
min ,

k k k

ij i k k j k k k k

ij ij i k k jk k

ij ij

  
   

 



  

 

  
  

 

Floyd-Warshall method

VUGRAPH 17

• Computational load
 n steps, n2 additions, and n2 comparisons ⇒ O(n3)

 Storage: O(n2)

 Best for dense graphs

• Interpretation as a “triangle” update

λ𝑖𝑗
(𝑘)

λ𝑘+1,𝑗
(𝑘)

λ𝑖,𝑘+1
(𝑘)

k+1

i j

LP interpretation

VUGRAPH 18

• Recall all-pairs problem

• Relaxation

 Initially λij = cij

 If λij > λik + λkj

o Set λij = λik + λkj

• Can detect negative cycles via λii < 0 and setting λii = ∞

Initially

1 1

max

s.t. , , ,

 ; , 1, 2,..,

n n

ij

i j

ij ik kj

ij ij

i j k i j

c i j n



  



 

   

 



1 2

1

-2

1
3

0 1
1 1 1 1 2

2 1 2 1 1 2 1 1
k k 

         
            
     
                  

stop: λ22 = −1 stop: λ11, λ22 = −1

• If edge weights are non-negative, invoke Dijkstra n times

⇒ O(n3) straightforward implementation

 O(n2C + mn) Dial’s bucket implementation

 O(𝑚𝑛 log
2+

𝑚

𝑛

𝑛) heap implementation

• But, what if we have negative edge weights

 Add a dummy node N to the graph G s.t. 𝑐𝑁𝑖 = 0, ∀𝑖 =1, 2, ... , n ⇒ arcs are of the form <N, i>

 For each i compute shortest distance from N using Bellman-Moore-d’Esopo-Pape ⇒ O(mn) time

• Define
 Recall LP inequalities: λ𝑗

′≤ λ𝑖
′+𝑐𝑖𝑗

 Now we can apply Dijkstra n times with total computational load:

o O(𝑚𝑛 log
2+

𝑚

𝑛

𝑛) + O(nm)

 How do we convert back to original distances: easy!!

o If p is the path from vertex k to vertex l, then

Extension of Dijkstra to all pairs shortest path problem

VUGRAPH 19

' ' '

'

'

0

 shortest distance from to

 shortest distance from to

ij i j ij

i

j

c c

N i

N j

 





   





N 0

0 0
0

i

j

 ' ' '

kl kl l k     

   

 

' ' ' ' ' '

,

' ' ' '

, ,

 =

kl

kl kl

kl kl l k ij l k

i j P

ij i j l k ij

i j P i j P

c

c c

     

   

 

   

     

      



 

• Idea
 Each node can compute its distance from other nodes (or

symmetrically the distances of other nodes from it) with minimal
communication with its neighbor and knowing only the (estimates
of) distances from its neighbors

 Node does not know the topology of network

 Based on Bellman-Ford algorithm

• Especially useful in communication networks (e.g., internet)
 Must continually update in response to changes in link states or link

traffic

Distributed shortest path algorithms

VUGRAPH 20

1

(1) ()

ln()

(1)

min{ }, 1

 and 0

j k

l l

kj
k j

l

c j 









   



Distributed shortest path algorithms

VUGRAPH 21

• Two types of distributed algorithms:
 Synchronous

o Each node executes simultaneously & exchanges data with its neighbors &
executes again

o Will converge in (N − 1) iterations, but has two problems:

 All nodes must agree to start the algorithm at a certain time (Need a global clock)

 Need a mechanism for restarting the algorithm if

a) cij changes due to traffic changes (or)

b) Link status changes

 Asynchronous
o Execute the iteration whenever node j receives data from its neighbors

o Original ARPA network did this

 Nodes exchanged their data every 625 msecs asynchronously

o Under what conditions, does such an algorithm converge?

o What is the speed of convergence? . . . it can be very slow compared to a
centralized scheme in some cases!!

A model of asynchronous computation

VUGRAPH 22

• Let λ𝑘
𝑗
(𝑡): estimate of m shortest distances of each neighbor node

𝑘 ∈ In(𝑗) communicated to node j

• j (t)= estimate of the shortest distance of node j which was last
computed at node j via

• Assumptions:

 𝑐𝑘𝑗 ≥ 0

 Nodes never stop updating their own estimates

 Initial estimates λj(t0) and communicated estimates λk(t0) are
nonnegative

 Old distance information is eventually purged from the system ⇒ finite
communication time

• Result

 Algorithm converges to correct shortest distance for sufficiently large
time t

()() min{ () }
k

j

j kj
k

t t c  

• We use monotonicity property of Bellman-Ford iteration:

• Suppose ҧ𝜆𝑘 ≥ 𝜆𝑘 , ∀𝑘 ∈ In 𝑗

• Suppose we start Bellman-Ford iteration with λ𝑘
0
= 𝜆𝑘 = 0 and λ𝑘

0
= ҧ𝜆𝑘 = ∞

• Then, with the first initialization, the distances converge monotonically up to correct
distances

• With the second initialization, the distances converge monotonically down to correct
distances

• Since every bounded monotonic sequence has a limit:

Outline of proof

VUGRAPH 23

()

In()
min { }j

j k kj
k j

c 


 

⇒
In() In()

min { } min { }kk kj kj
k j k j

c c 
 

  

⇒ () (1)l l

j k j  


 

⇒
(1) ()l l

j jj  


 

()

()

(,)

lim ; 1

max
& lim ;

min

l

j j
l l

l
i i

j j
l l

i j ij

l N

l
c

 


 





  

 

• Now, we show that ∀l, ∃ a time t(l) such that ∀t ≥ t(l)

• Proof is by induction and trivial

 If it is valid for l, we can show that it is valid for (l + 1)

 For l = 0, it is true due to nonnegative assumption

 Since the communicated distances satisfy the bounds at iteration l, the
computed distances must also satisfy the bounds, since the nodes update
their distances using Bellman-Ford recursion

 Since the nodes eventually communicate, their communicated distances
must satisfy the new bounds

• For detailed proof, see:

 D.P. Bertsekas and R. Gallager, Data Networks, 2nd edition, Prentice-Hall,
1992

 D.P. Bertsekas and J. Tsitsiklis, Parallel and Distributed Computation,
Prentice-Hall, 1990

Outline of proof

VUGRAPH 24

()()

()() ()

()

()

ll
jj j

ll j
kk k

t j

t k

  

  

   

   

Communication &
computed distances
are bounded

• Slow reaction time to changes in link status

⇒ Takes as many as L iterations before the algorithm converges to correct shortest path
lengths:

L, L + 2, (L + 1)

⇒ How to make distributed Bellman-Ford algorithm faster? Research Problem

• Starting references
 See books by Bertsekas

 D.P. Bertsekas, “Distributed Dynamic Programming,” IEEE Trans. AC, pp. 610-616, 1982

 D.P. Bertsekas, “Dynamic behavior of shortest path routing algorithms for communication networks,” IEEE
Trans. AC, pp. 60-74, 1982

 K.M. Chandy and J. Misra, “Distributed computation on graphs”, CACM, pp. 833-837, 1982.

“Bad news Phenomena”

VUGRAPH 25

1
3 4

2

1

L

1

1
1

L≫1

Before (1, 4) fails 𝜆2 = 3
𝜆3 = 2
𝜆4 = 1

Suppose use synchronized Bellman-Ford

l =0 1 2 3 4 5 6 7 8 9 10

λ 2 3 3 3 6 6 6 9 9 9 12 12

λ 3 2 2 5 5 5 8 8 8 11 11 11

λ 4 1 4 4 4 7 7 7 10 10 10 13 etc.

• Applications in PERT networks

• Use depth-first search to topologically order nodes

• Topological order

 Order nodes from 1 − n ∋ if <i, j> is an edge, i appears before j in the order

• Example:

 Topological order 1 3 4

 2 is never considered ⇒ λ2 = ∞

 Iteration 0

o λ1 = 0, λ3 = −1, λ4 = 4

 iteration 1

o λ4 = −3

 iteration 2

o done!!

Shortest paths on acyclic graphs

VUGRAPH 26

3

4

1

2

-2

4
-1

1

4

3 4

1

-2

-1⇒

Shortest paths on acyclic graphs

VUGRAPH 27

• Q: how to get an initial topological ordering?

• A: recursive DFS for topological ordering: call dfs(i)

• How does dfs(i) work?

• O(m) complexity

• O(m) complexity

Procedure dfs(i)

mark that node i is visited . . .pre-visit(i)

for (i, j)∈ out(i) do

if j is not visited

call dfs(j)

end if
end do
post-visit(i)

for each i in decreasing post visit ⇒ Topological ordering
λ j = min{λ j, λ i + cij}, ∀ j∈ out(i)

end i

Example

VUGRAPH 28

1
3

1
2

-4
3

-6

6

9

1

1
2

5
5

6

4

32

Topological order

pre visit

sequence: 1 4 6 5 2 3 nodes: 1 2 3 4 5 6

post visit

sequence: 6 5 4 3 2 1 Topological order from

Topo. ord: 1 2 3 4 5 6 reversed post visit sequence

Iteration 0: λ2 = 1, λ3 = 3, λ4 = –6

Iteration 1: λ3 = 3, λ4 = –6

Iteration 2: λ4 = –6, λ5 = 12, λ6 = 9

Iteration 3: λ5 = –5, λ6 = -4

Iteration 4: λ6 = –4 done!!

Viterbi decoding

VUGRAPH 29

• References

 J. K. Omura, “On the Viterbi decoding algorithm,” IEEE T - IT, 1969, 177-179

 G. D. Forney, The Viterbi algorithm, Proc. IEEE, 1973, pp. 268- 278

• To send binary messages over noisy communication channels, we use coding to enhance
the reliability of communication

• A common type of coding is the convolutional coding

• Source data sequence: {w1 w2 ···}, wk ∈ {0, 1}

• Coded sequence {y1 y2 ···}
 yk is an r-dimensional vector of binary numbers

• The relationship between yk and wk

 xk is a q-dimensional binary vector (state vector)

 Products and sums involved in Cxk-1 + dwk and Axk-1 + bwk are computed using binary arithmetic

1

2

; {0,1}

k

ik

k

r

k

y

y
y

y

 
 
  
 
 
 

1

0

1

 is given

k kk

k k k

y C x dw
x

x Ax bw





  


  

Example

VUGRAPH 30

• q = 2, r = 3

• Old state → transition → new state

• xk−1 = [0 1] and wk = 0 ⇒ xk = [1 1] and yk = [0 1 1], etc.

• key: given x0 and w1,..., wk can find y1,..., yk

• Unfortunately, we receive a noisy version of yk

• Let the received message be zk

• Know p(zk|yk) . . . likelihood function

• So instead of ,we receive over N samples

• If assume independent errors, the likelihood function is:

• A maximum likelihood detector converts

• Via

• Given ෠𝑌𝑁, we can find [ෝ𝑤1, … , ෝ𝑤𝑁]. . . Recall trellis

1 0 1
0 1 0

0 1 ; ; 1 ;
1 0 1

0 1 1

C A d b

   
               
   

      

00 00

01 01

10 10

11 11

x k -1 x k

w k/ y k

trellis

0/000

1/111 1/011

0/100

1/100

0/011

0/111

1/000

1
[, ,]

N

N

Y

y y  1, ,

N

N

Z

z z

1

p(|) p(|)
N

kN N k
k

Z Y z y




1

ˆ ˆ ˆ, ,N N N
Z Y y y    

 ˆp(|) max p(|)
N

N N N N
Y

Z Y Z Y

Why is this a shortest path problem?

VUGRAPH 31

• Given zk, we can assign to each arc in the trellis, the length {−ln p(zk|yk)}, where yk is the
code word associated with the arc

 ∃ variations of this idea . . . see references

• For deterministic optimization problem and its connection to the shortest path problem,
see

 D.P. Bertsekas, Dynamic programming: Deterministic and Stochastic Models, Prentice-Hall, 1987

• Some times, we need M shortest paths from a source to a destination
 E. Lawler, Combinatorial Optimization: Networks and Matroids, Holt, Reinhart, and Whinston, NY, 1976

 C.C. Skiscism and B.L. Golden, “Computing K-shortest Path Lengths in Euclidean Networks,” Networks, Vol.
17, pp. 341-352, 1987

 
1
,...,

11

max p(|) max p(|) min ln p(|)
N N

N

N N

k kN N k kY Y y y
kk

Z Y z y z y
 

 

   
     

  


..

.

..

.

..

.

0

0

0
0

s x0 x1
x2 xN–1 t

• Get shortest s → t path
• Obtain wk from yk

k = 1,2,…,N

1

1

1

min () (,)

s.t. (,), ~ finite set of states

N

N k kN k

k

k k k k

J g x g x u

x f x u x







 





Martins’ algorithm

VUGRAPH 32

• The multiple objective shortest path problems with n objectives can be described
mathematically as

in which Ps,t represents the set of all paths between a starting node s and terminal node t,
while zi(p) is the cost of path p with respect to objective i

• Each link (i,j), connecting node i and node j, has a label of values representing the costs
for different objectives assigned to it

• Martins’ algorithm is a label setting algorithm and makes use of labels to indicate the
“distance” to a certain node. A label can be represented as with v as the
node which the label is being assigned to, and prevL denoting the
reference to the previous label

• Definition 1 (dominance) The vector [a1,…,an] dominates the vector [b1,…,bn] if and
only if

• Definition 2 (Pareto optimality) A set of elements S is Pareto optimal if and only if
none of the elements of S is dominated by another element

• Definition 3 (lexicographic ordering) The vector [a1,…,an] is lexicographically smaller
(denoted by <l) than the vector [b1,…,bn] if

))(),...,(),((min 21,
pzpzpz nPp ts

],...,,[21 ijnijijij cccc 

],,[LprevcvL 
],...,,[21 ncccc 

):},...,1{():},...,1{(iiii banibani 

)():(:},...,1{ kkii babakink 

Martins’ algorithm

VUGRAPH 33

T := 

originLabel := [origin, [0,…,0], ]

origin.addLabel(originLabel)

T.add(originLabel)

while (T is not empty) do

label := T.removeMin()

owner := label.owner()

neighbors := owner.neighbors()

for all (nb in neighbors) do

link := getLinkBetween(owner, nb)

newLabel := [nb, label+link.cost, label]

if (newLabel not dominated by any of nb.labels()) then

nb.removeDominatedLabel(newLabel)

nb.addLabel(newLabel)

T.add(newLabel)

end if

end for

end while

Example

VUGRAPH 34

Iteration # T Removed label Node 1 labels Node 2 labels Node 3 labels Node 4 labels

0 {L1}  L1=[1,[0,0], ]   

1 {L2, L3} L1 L1=[1,[0,0], ] L2=[2,[2,3],L1] L3=[3,[3,4],L1] 

2 {L4, L5} L2 L1=[1,[0,0], ] L2=[2,[2,3],L1] L4=[3,[3,3],L2] L5=[4,[5,4],L2]

3 {L5, L6} L2 L1=[1,[0,0], ] L2=[2,[2,3],L1] L4=[3,[3,3],L2] L5=[4,[5,4],L2]

L6=[4,[4,5],L4]

2

3

41

(2, 3) (3, 1)

(3, 4) (1, 2)

(1,1) (1, 0)s t

Graph

L1

L2

L4

L3

L6

L5

• In each iteration, we remove the minimum label from T according to lexicographical
ordering

• In iteration 2, label L4 dominates L3. Hence, L3 is removed before we add L4

• In iteration 3, label L6 is Pareto optimal, while not dominating label L5. Hence, L6 was
added to node 4 label list without removing L5

Other shortest path algorithms

VUGRAPH 35

• Bidirectional Dijkstra

 T. Nicholson, J. Alastair, “Finding the shortest route between two points in a network,” The
computer journal 9.3, pp 275-280, 1966

• Martins’ algorithm

 E.Q.V. Martins, “On a multicriteria shortest path problem,” European Journal of Operational
Research, vol. 16, no. 2, pp 236-245, 1984

• Bidirectional Martins’ algorithm

 S. Demeyer, J. Goedgebeur, P. Audenaert, M. Pickavet, P. Demeester, “Speeding up Martins’
algorithm for multiple objective shortest path problems,” 4OR, pp 323-48, 2013

• D* algorithm

 Koenig, Sven, and Maxim Likhachev, “Improved fast replanning for robot navigation in
unknown terrain,” IEEE International Conference on Robotics and Automation, 2002.

• Theta star algorithm

 Nash A, Daniel K, Koenig S, Felner A. “Theta*: Any-Angle Path Planning on Grids,” National
Conference on Artificial Intelligence, vol. 22, no. 2, pp 1177

• Delta-step algorithm

 U. Meyer, P. Sanders “Δ-stepping: a parallelizable shortest path algorithm,” Journal of
Algorithms, pp 114-52, 2003

Summary

VUGRAPH 36

• BMDP as a DP-based algorithm

• Distributed Bellman-Ford algorithm

• Shortest path algorithms for acyclic graphs

• Viterbi decoding

