Prof. Krishna R. Pattipati

Dept. of Electrical and Computer Engineering
University of Connecticut
Contact: krishna@engr.uconn.edu; (860) 486-2890

Outline

- Examples of assignment problems
- Assignment Algorithms
- Auction and variants
- Hungarian Algorithm (also called Kuhn-Munkres Algorithm)
- Easy to understand, but not for practical applications
- Successive shortest path algorithm (Hungarian; Jonker, Volgenant and Castanon (JVC))
- Signature ... Not efficient computationally
- Special cases
- M-Best Assignment Algorithms
- Murty (1968)
- Stone \& Cox (1995)
- Popp, Pattipati \& Bar-Shalom (1999)

Examples of assignment problems

- Assignment problem
- Also known as weighted bipartite matching problem
- Bipartite graph
- Has two sets of nodes $S, T \Rightarrow V=S \cup T$
- And a set of edges E connecting them
- A matching on a bipartite graph $G=(S, T, E)$ is a subset of edges $X \in$ $E \ni$ no two edges in X are incident to the same node

- Nodes 1, 2, 3, 4 of S are matched or covered
- Node 5 is uncovered or exposed

Matching problems

- Two types of matching problems: $m=|S| ; n=|T|$
- Cardinality matching problem
- Find a matching with maximum number of arcs

$$
\begin{array}{r}
\max \sum_{(i, j) \in E} x_{i j} \\
\text { s.t. } \sum_{i} x_{i j} \leq 1 \\
\sum_{j} x_{i j} \leq 1 \\
x_{i j} \in\{0,1\}
\end{array}
$$

- Weighted matching problem or the assignment problem

$$
\begin{array}{cr}
\max \sum_{(i, j) \in E} w_{i j} x_{i j} & \text { or } \\
\text { s.t. } \sum_{(i, j) \in E} x_{i j} \leq 1 \quad \forall i=1, \ldots, n & (\text { or }=) \\
\sum_{(i, j) \in E} c_{i j} x_{i j}, c_{i j}=-w_{i j} \\
\sum_{(i, j) \in E} \leq 1 \quad \forall j=1, \ldots, m & (\text { or }=)
\end{array}
$$

- Problem can also be written as $\max _{\alpha} \sum_{i} w_{i \alpha_{i}} \quad \alpha \sim$ permutation of columns of W (= assignment of object α_{i} to person i)

Examples of assignment problems

- Examples
- Assigning people to machines
- Correlating reports from two sensors
- System of distinct representatives (cardinality matching problem)
- Cardinality matching \sim maximum flow ($\sim \equiv$ analogous to)
cardinality matching

Examples of assignment problems

- $n \times n$ assignment or bipartite matching \sim minimum cost network flow problem ... (Lecture 10)

bipartite matching

$2 n$ nodes

$\left[c_{i j}\right]=\left[\begin{array}{ccc}4 & 6 & -3 \\ 2 & 1 & 0 \\ \infty & 5 & 2\end{array}\right]$
\Rightarrow Can use RELAX to solve assignment problem (Lecture 10)
\Rightarrow In this particular case, even ϵ - relax works as well as RELAX even on sequential computers (Lecture 10)

Optimality conditions

- Dual of the assignment problem
- Assume equality constraints \& $m=n \mathrm{w} / \mathrm{o}$ loss of generality

$$
\begin{array}{ll}
& \underline{\text { Primal }} \\
\text { max } & \sum_{(i, j) \in E} w_{i j} x_{i j} \\
\text { s.t. } & \sum_{(i, j) \in E} x_{i j}=1 \quad \forall i=1, \ldots, n \\
& \sum_{(i, j) \in E} x_{i j}=1 \quad \forall j=1, \ldots, n \\
& x_{i j} \in\{0,1\}, \forall(i, j) \in E
\end{array}
$$

Dual

$$
\begin{array}{ll}
\min \left\{\sum_{i=1}^{n} \pi_{i}+\sum_{j=1}^{n} p_{j}\right\} \\
\text { s.t. } & \pi_{i}+p_{j} \geq w_{i j}, \forall(i, j) \in E
\end{array}
$$

CS conditions imply: $\left.\begin{array}{l}x_{i j}>0 \Rightarrow \pi_{i}+p_{j}=w_{i j} \\ x_{i j}=0 \Rightarrow \pi_{i}+p_{j}>w_{i j}\end{array}\right\}$ at optimum: $\begin{aligned} \pi_{i} & =\max _{k \in \operatorname{ut}(i)}\left\{w_{i k}-p_{k}\right\} \\ & =w_{i j}-p_{j}\end{aligned}$

- To provide physical interpretation, let $i=$ person and $j=$ object
- $p_{j} \sim$ price of object $j=$ amount of money that a person is willing to pay when assigned to j
- $\left(w_{i j}-p_{j}\right) \sim$ profit margin if person i is assigned to object $j=$ benefit person i associates with being assigned to object j
- So, if (i, j) is an optimal pair (i.e., part of an optimal solution), then the profit margin π_{i}^{*} is

$$
\pi_{i}^{*}=w_{i j}-p_{j}^{*}=\max _{k \in \operatorname{out}(i)}\left\{w_{i k}-p_{k}^{*}\right\}
$$

Optimality conditions

- Using this fact, we can simplify the dual problem considerably

$$
\begin{aligned}
& \min q(\underline{\pi}, \underline{p})=\min \left\{\sum_{i=1}^{n} \pi_{i}+\sum_{j=1}^{n} p_{j}\right\} \\
& \text { s.t. } \pi_{i}+p_{j} \geq w_{i j}, \forall(i, j) \in E \\
& \text { (or) } \pi_{i}+p_{j} \geq w_{i j}, \forall j \in \operatorname{out}(i) ; i=1,2, . ., n
\end{aligned}
$$

Note that every π_{i} can be decreased by a constant δ and every p_{j} increased by δ without affecting q.

- Suppose that somebody gave us prices of objects $\left\{p_{j}\right\}$
- Then, for a given set of $\left\{p_{j}\right\}$, the optimal

$$
\pi_{i}=\max _{j \in \mathrm{out}(i)}\left\{w_{i j}-p_{j}\right\}
$$

- Dual problem is equivalent to

$$
\min q(\underline{p})=\min _{\underline{p}}\left\{\sum_{j=1}^{n} p_{j}+\sum_{i=1}^{n} \max _{j \in \operatorname{out}(i)}\left\{w_{i j}-p_{j}\right\}\right\}
$$

- Note: no constraints on p_{j}

Auction algorithm for the assignment problem

- Start with an initial set of object prices, $\left\{p_{j}: 1 \leq j \leq n\right\}$ (e.g., $p_{j}=0$ or $\max _{i} w_{i j}$)
- Initially, either no objects are assigned or else have ϵ-complementary slackness satisfied

$$
\begin{aligned}
& \pi_{i}-\epsilon=\max _{k}\left\{w_{i k}-p_{k}\right\}-\epsilon \leq w_{i j}-p_{j}, j=\arg \max _{k}\left\{w_{i k}-p_{k}\right\} \\
& \pi_{i}-\epsilon \leq w_{i j}-p_{j}=\pi_{i}, \forall i, j \in \operatorname{out}(i) \ni j \text { is assigned to } i \\
& \Rightarrow \pi_{i}=w_{i j}-p_{j} \geq \max _{k}\left\{w_{i k}-p_{k}\right\}-\epsilon \Rightarrow \text { CS Conditions } \\
& \Rightarrow \text { Partial } \epsilon \text {-optimal assignment }
\end{aligned}
$$

- Auction algorithm consists of two phases
- Bidding phase:
- Each unassigned person i computes the "current value" of object j (i.e., potential profit if i is assigned to j) \& bids for the object of his choice
- Assignment phase:
- Each object (temporarily) offers itself to the highest bidder
- Bidding phase
- Each unassigned person i computes the value of object $j \in \operatorname{out}(i)$

$$
v_{i j}=w_{i j}-p_{j} ; j \in \operatorname{out}(i)
$$

Auction has Two phases: Bidding \& Assignment

- Let

$$
\pi_{i}=\max . \text { value }=\max _{j \in \operatorname{out}(i)} v_{i j}=v_{i j}^{*}
$$

- Find the next best value (second best profit)

$$
\phi_{i}=\max _{\substack{j \in \mathrm{out}(i) \\ j \neq j^{*}}} v_{i j}
$$

- Person i then bids for object j^{*} at a price of $b_{i j}^{*}=p_{j}^{*}+\pi_{i}-\phi_{i}+\epsilon=w_{i j}^{*}-\phi_{i}+\epsilon$
- Note: actually, can have $b_{i j}^{*} \in\left\{p_{j}^{*}+\epsilon, p_{j}^{*}+\pi_{i}-\phi_{i}+\epsilon\right\} \ldots$ but the above choice provides best performance (more later, from the dual cost structure)
- Q: what if j^{*} is the only object \Rightarrow set $\phi_{i}=-\infty$ or a number $\ll \pi_{i}$
- This process is highly parallelizable
- Assignment phase
- For each object j, if $P(j)$ is the set of persons from whom j received a bid, then

$$
p_{j}=\max _{i \in P(j)} b_{i j}=b_{i^{*} j}
$$

- Announce the new price to all persons
- Assign person i^{*} to object $j \Rightarrow x_{i^{*} j}=1$
- De-assign any previous assignment i^{\prime} to $j \Rightarrow x_{i^{\prime} j}=0$
- If there was no bid, don't do anything
- This process is also highly parallelizable

Properties of Auction algorithm

- Properties
- If p_{j} is price of object j before assignment $\& p_{j}^{\prime}$ after assignment, we have $p_{j}^{\prime} \geq$ $p_{j}, \forall j \Rightarrow p_{j} \uparrow$

$$
\Rightarrow p_{j^{*}}^{\prime}=p_{j^{*}}+\pi_{i}-\phi_{i}+\epsilon \Rightarrow p_{j^{*}}^{\prime} \geq p_{j^{*}}
$$

- Maintains ϵ-complementary slackness for assigned objects
- Suppose object j^{*} accepts bid of person i

$$
\begin{gathered}
\pi_{i}^{\prime}=w_{i j^{*}}-p_{j^{*}}^{\prime}=\phi_{i}-\epsilon=\max _{j \in \operatorname{out}(i)}^{j \neq j^{*}}\left\{\left\{w_{i j}-p_{j}\right\}-\epsilon \geq \max _{\substack{j \in \operatorname{out}(i) \\
j \neq j^{*}}}\left\{w_{i j}-p_{j}^{\prime}\right\}-\epsilon\right. \\
w_{i j^{*}}-p_{j^{*}}^{\prime} \geq \max _{j \in \operatorname{out}(i)}\left\{w_{i j}-p_{j}^{\prime}\right\}-\epsilon
\end{gathered}
$$

$\Rightarrow \epsilon-C S$ conditions continue to hold

- Profit margin of i after assignment

$$
\begin{aligned}
& \pi_{i}^{\prime}=\max _{j \in \operatorname{out}(i)}\left\{w_{i j}-p_{j}^{\prime}\right\}=\max \left\{w_{i j^{*}}-p_{j^{*},}^{\prime} \max _{\substack{j \in \operatorname{out}(i) \\
j \neq j^{*}}}\left\{w_{i j}-p_{j}^{\prime}\right\}\right\} \\
& \leq \max \left\{w_{i j^{*}}-{p^{\prime}}_{j^{*},} \max _{\substack{j \in \operatorname{out}(i) \\
j \neq j^{*}}}\left\{w_{i j}-p_{j}\right\}\right\}=\max \left\{\phi_{i}-\epsilon, \phi_{i}\right\}=\phi_{i}
\end{aligned}
$$

$p_{j^{*}}^{\prime}=p_{j}+\pi_{i}-\phi_{i}+\epsilon \Rightarrow$ price increases by least ϵ
$\pi_{i}^{\prime}=w_{i j^{*}}-p_{j^{*}}^{\prime}=\phi_{i}-\epsilon \geq \pi_{i}^{\prime}-\epsilon \Rightarrow$ profit goes down by at least ϵ

Coordinate descent interpretation

- Coordinate descent interpretation of bidding and assignment phases
- Jacobi-like relaxation step for minimizing the dual function $q(\underline{p})$
* In each bidding and assignment phase, the price p_{j} of each object j bidded upon is increased to either a value that minimizes $q(\underline{p})$ when all other prices are kept constant, or else exceeds the largest such value by no more than ϵ

Recall: $q(\underline{p})=\sum_{j=1}^{n} p_{j}+\sum_{i=1}^{n} \max _{j \in \operatorname{out}(i)}\left\{w_{i j}-p_{j}\right\}$
$\left.\Rightarrow \max _{j \in \operatorname{out}(i)}\left\{w_{i j}-p_{j}\right\}=\max \left\{\left(w_{i j}-p_{j}\right)\right)_{j^{\prime} \in \operatorname{out}(i), j^{\prime} \neq j}\left(w_{i j^{\prime}}-p_{j^{\prime}}\right)\right\}$

$$
=\max \left\{\left(w_{i j}-p_{j}\right), \phi_{i}\right\}
$$

Coordinate descent interpretation

- If $p_{j}<w_{i j}-\phi_{i}, i$ bids for object j the amount $w_{i j}-\phi_{i}+\epsilon$
- Accepted bid by $j: \max _{i}\left\{w_{i j}-\phi_{i}\right\}+\epsilon$
- Also, note that the right directional derivative of $q(\underline{p})$ along $p_{j}\left(=\underline{e}_{j}\right)$ is

$$
d_{j}^{+}=1-\left(\# \text { of persons } i \text { with } j \in \operatorname{out}(i) \ni p_{j}<w_{i j}-\phi_{i}\right)
$$

- This is because we can increase p_{j} only if $\phi_{i}=w_{i j^{\prime}}-p_{j^{\prime}} \leq w_{i j}-p_{j}$ where j^{\prime} is second best
- This interpretation leads to two other variations of auction
- Each assigned person i also bids for his own assigned object $j, b_{i j}=w_{i j}-\phi_{i}+\epsilon$

Gauss-Seidel method

- Gauss-Seidel
- Only one person bids at a time
- Price rise is taken into account before the next person bids
- Problem: can't parallelize, but has much faster convergence on sequential implementations
- \exists variations in between Jacobi and Gauss-Seidel (e.g. bids by a subset of persons)... Research Problem
- Q: Can we maintain optimality even in the presence of ϵ ?
- A: Yes!!
- Suppose i is assigned object $j_{i}, \forall i=1,2, \ldots, n$
- Each step of the algorithm maintains

$$
\begin{aligned}
& w_{i_{i}} \geq \pi_{i}+p_{j_{i}}-\epsilon \\
& \Rightarrow \sum_{i} w_{i_{i}} \geq \sum_{i} \pi_{i}+\sum_{i} p_{j_{i}}-n \epsilon
\end{aligned}
$$

- If f^{*} is the optimal primal value (note: maximization)

$$
f^{*} \geq \sum_{i} w_{i_{j i}} \geq \sum_{i} \pi_{i}+\sum_{i} p_{j_{i}}-n \epsilon \geq f^{*}-n \epsilon
$$

- If $a_{i j}$ are integer $\& \epsilon<\frac{1}{n} \Rightarrow n \epsilon<1 \Rightarrow$ optimality
- Does the algorithm terminate?
- Yes if \exists at least one feasible solution

Ilustration of Gauss-Seidel Auction algorithm

$W=\left[\begin{array}{cccc}-14 & -5 & -8 & -7 \\ -2 & -12 & -6 & -5 \\ -7 & -8 & -3 & -9 \\ -2 & -4 & -6 & -10\end{array}\right]$

- Initialize prices to zero. $\varepsilon=0.2$

Iter	Prices	X	Bidder	Object	Bid
1	$(0,0,0,0)$	ϕ	1	2	2.2
2	$(0,2.2,0,0)$	$(1,2)$	2	1	3.2
3	$(3.2,2.2,0,0)$	$(1,2),(2,1)$	3	3	6.2
4	$(3.2,2.2,6.2,0)$	$(1,2),(2,1)$, $(3,3)$	4	1	4.4
5	$(4.4,2.2,6.2,0)$	$(1,2),(3,3)$, $(4,1)$	2	4	1.6
6	$(4.4,2.2,6.2,1$.				
$6)$	$(1,2),(3,3)$, $(4,1),(2,4)$	ϕ	ϕ	ϕ	

- Assignments: $x_{12}=1 ; x_{33}=1 ; x_{41}=1 ; x_{24}=1 \quad \underline{p}^{T}=\left[\begin{array}{llll}4.4 & 2.2 & 6.2 & 1.6\end{array}\right]$
- $f^{*}=w_{12}+w_{33}+w_{41}+w_{24}=-15$

Auction with a different price initialization

$W=\left[\begin{array}{l}-1 \\ -2 \\ -7 \\ -2\end{array}\right.$	$\left[\begin{array}{cc}-8 & -7 \\ -6 & -5 \\ -3 & -9 \\ -6 & -10\end{array}\right]$	Initialize prices. $p_{j}=m$$\underline{p}^{T}=\left[\begin{array}{llll} -2 & -4 & -3 & -5 \end{array}\right]$			
Ite	Prices	X	Bidder	Object	Bid
1	$(-2,-4,-3,-5)$	$\begin{gathered} (2,1),(4,2),(3, \\ 3) \end{gathered}$	1	2	-1.8
2	$\begin{gathered} (-2,-1.8,-3, \\ -5) \end{gathered}$	$\begin{gathered} (2,1),(3,3),(1, \\ 2) \end{gathered}$	4	1	0.2
3	$\begin{gathered} (0.2,-1.8,-3, \\ --5) \end{gathered}$	$\begin{gathered} (3,3),(1,2),(4, \\ 1) \end{gathered}$	2	4	-1.8
4	$\begin{gathered} (0.2,-1.8,-3, \\ -1.8) \end{gathered}$	$\begin{aligned} & (3,3),(1,2), \\ & (4,1),(2,4) \end{aligned}$	ϕ	ϕ	ϕ

- Assignments: $x_{12}=1 ; x_{33}=1 ; x_{41}=1 ; x_{24}=1 \quad \underline{p}^{T}=\left[\begin{array}{llll}0.2 & -1.8 & -3 & -1.8\end{array}\right]$
- $f^{*}=w_{12}+w_{33}+w_{41}+w_{24}=-15$

Proof of convergence

- Proof relies on the following facts
- If an object is assigned, it remains assigned throughout
- Each time an object is bidded upon, its price increases by at least ϵ
- If an object is bidded upon infinite number of times, its price $\rightarrow \infty$
- Recall: unbounded dual \rightarrow infeasible primal
- If a person bids for at most out (i) times, $\pi_{i} \downarrow$ by at least ϵ
- Each time a person bids, $\pi_{i} \downarrow$ or π_{i} remains same
- If exceed out (i) times, $\pi_{i} \downarrow$ at least ϵ
- If a person bids infinite \# of times, $\pi_{i} \downarrow-\infty$
- Can show (see Bertsekas's book) that, if the problem is feasible

$$
\pi_{i} \geq-(2 n-1) C-(n-1) \epsilon-\max _{j}\left\{p_{j}^{0}\right\}, \text { where } C=\max _{i, j} w_{i j}
$$

If $\pi_{i}<$ this bound during auction, declare primal as infeasible. Unfortunately, it may take many iterations before the bound is crossed. Alternately, add artificial link (i, j)

$$
w_{i j}<-(2 n-1) C
$$

Algorithm complexity

- Scaling problems

p_{j}
$0 \quad \epsilon \quad 2 \epsilon$
$0 \quad$ \# $2 \epsilon \quad$ \# of bidding phases $=c / \epsilon$
- For some examples, \# of bidding phases proportional to $\frac{n C}{\epsilon} \Rightarrow$ performance is very sensitive to C
- Scale all costs $w_{i j}$ by $(n+1) \&$ apply the algorithm with progressively lower value of ϵ until $\epsilon \approx 1$ or $\epsilon<1$
* Use

$$
\epsilon(k)=\max \left\{1, \frac{\Delta}{\tau_{k}}\right\}, k=0,1,2, \ldots
$$

* $\Delta=n C \& \tau=2$ is suggested
* Alternately, $\epsilon=\frac{n c}{2}$ initially \& reduce $\epsilon \leftarrow \max \left\{\frac{\epsilon}{6}, 1\right\}$
* With these values, the complexity of the algorithm is $O(n|E| \log (n C))$

Proof of convergence for asynchronous version is similar to shortest path algorithm

- Computational results
- Comparable to any existing assignment algorithm... average complexity $O\left(n^{1.8}\right)$
- Parallelizable
- Especially fast for sparse problems

Auction algorithm variants

- Recent variants:
- Reverse auction \Rightarrow objects bid for persons
- Forward/reverse auction \Rightarrow alternate cycles of person-object biddings
- Look-back auction
- Extensions to inequality constraints
- Asymmetric assignment problem $\Rightarrow m \neq n$
- Multi-assignment problem \Rightarrow a person may be assigned to more than one object
- Reverse auction
- Objects compete for persons by offering discounts
- Duals: $q(\pi)=\sum_{i=1}^{n} \pi_{i}+\sum_{i=1}^{n} \max _{i \ln (j)}\left(w_{i j}-\pi_{i}\right)$
- Reverse auction iteration
- Find the "best" person $i^{*}=\arg \max _{i \in \operatorname{In}(j)}\left(w_{i j}-\pi_{i}\right)$

$$
\begin{aligned}
& \text { Let } \beta_{j}=w_{i^{*} j}-\pi_{i^{*}} \\
& \delta_{j}=\max _{\substack{i \in \ln (j) \\
i \neq i^{*}}}\left\{w_{i j}-\pi_{i}\right\} \\
& \text { If } i^{*} \text { is the only person, set } \delta_{j}=-\infty \text { or } \delta_{j} \ll \beta_{j}
\end{aligned}
$$

- Bid for person i^{*}

$$
b_{i^{*} j}=w_{i^{*} j}-\delta_{j}+\epsilon
$$

- For each person i receiving at least one bid,

$$
\pi_{i}=\max _{j \in B(i)} b_{i j}=b_{i j^{*}}
$$

Auction algorithm variants

Combined forward and reverse auction

- Maintain $\epsilon-C S$ conditions on both $(\underline{\pi}, \underline{p})$

$$
\begin{aligned}
\Rightarrow \quad & \pi_{i}+p_{j} \geq w_{i j}-\epsilon \quad \forall(i, j) \\
& \pi_{i}+p_{j}=w_{i j} \quad \forall(i, j) \in X \quad \text { Solution }
\end{aligned}
$$

- Execute alternately the forward auction a few iterations and reverse auction a few iterations
- Run forward auction: persons bid on objects. At the end of each iteration, set

$$
\pi_{i}=w_{i j^{*}}-p_{j^{*}} \quad \text { if } \quad x_{i j^{*}}=1
$$

stop if all are assigned, else go to Reverse Auction
(do until number of assignments increases by at least one.)

- Run reverse auction: objects bid on persons. At the end of each iteration, set

$$
p_{j}=w_{i^{*} j}-\pi_{i^{*}} \quad \text { if } \quad x_{i^{*} j}=1
$$

stop if all are assigned, else go to Forward Auction.
(do until number of assignments increases by at least one.)

- No need to do ϵ-scaling
- Look-back auction
- Number of objects a person bids to is typically small (≈ 3)
- Keep track of biddings of each person i in a small list
- Asymmetric assignment
- Number of objects $n>$ number of persons, m
- All persons should be assigned, but allow objects to remain unassigned

Asymmetric Auction algorithm

$$
\begin{gathered}
\text { Primal } \\
\max \sum_{(i, j) \in E} w_{i j} x_{i j} \\
\text { s.t. } \sum_{(i, j) \in E} x_{i j}=1 \quad \forall i=1,2, \ldots, m \\
\sum_{(i, j) \in E} x_{i j} \leq 1 \quad \forall j=1,2, \ldots, n \\
x_{i j} \in\{0,1\}, \forall(i, j) \in E
\end{gathered}
$$

$$
\begin{array}{ll}
\max & \frac{\text { Equivalent primal }}{\sum_{(i, j) \in E} w_{i j} x_{i j}} \\
\text { s.t. } & \sum_{(i, j) \in E} x_{i j}=1 \quad \forall i=1,2, \ldots, m \Rightarrow w_{s j}=0 \\
& \sum_{(i, j) \in E} x_{i j}+x_{s j}=1 \quad \forall j=1,2, \ldots, n \\
& \sum_{j=1}^{n} x_{s j}=n-m \\
& 0 \leq x_{i j} \forall(i, j) \in E \\
& 0 \leq x_{s j} \forall j=1,2, \ldots, n
\end{array}
$$

$$
\begin{aligned}
& \underline{\text { Dual }} \\
& \min \sum_{i=1}^{m} \pi_{i}+\sum_{j=1}^{n} p_{j}-(n-m) \lambda \\
& \text { s.t. } \quad \pi_{i}+p_{j} \geq w_{i j} \quad \forall(i, j) \in E \\
& \lambda \leq p_{j} \quad j=1,2, \ldots, n \\
& \Rightarrow \min \sum_{i=1}^{m} \pi_{i}+\sum_{j=1}^{n} \max \left(w_{i j}-\pi_{i}\right)-(n-m) \min _{j} \max _{i \in \operatorname{In}(j)}\left(w_{i j}-\pi_{i}\right)
\end{aligned}
$$

Reverse Auction algorithm

- Use a modified reverse auction
- Select an object j which is unassigned and satisfies $p_{j}>\lambda$. If no such object is found, terminate the algorithm.
- Find best person i^{*}

$$
\begin{aligned}
i^{*} & =\arg \max _{i \in \ln (j)}\left\{w_{i j}-\pi_{i}\right\} \\
\beta_{j} & =w_{i^{\prime} j}-\pi_{i^{*}} \\
\delta_{j} & \max _{i \in \ln (j) i, i i^{\prime}}\left\{w_{i j}-\pi_{i}\right\}
\end{aligned}
$$

If $\lambda \geq \beta_{j}-\epsilon$, set $p_{j}=\lambda$ and go to next iteration. Otherwise, let

$$
\begin{aligned}
\alpha & =\min \left\{\beta_{j}-\lambda, \beta_{j}-\delta_{j}+\epsilon\right\} \\
p_{j} & =\beta_{j}-\alpha=\max \left\{\lambda, \delta_{j}-\epsilon\right\} \Rightarrow p_{j} \\
\pi_{i^{*}} & =\pi_{i^{*}}+\alpha=\pi_{i^{*}} \uparrow
\end{aligned}
$$

Remove any assignment of i^{*}
Set $x_{i^{*} j}=1$

- The algorithm terminates with an assignment that is within $m \epsilon$ of being optimal $(\epsilon \leq 1 / m)$. See Bertsekas's book.
- Can use forward-reverse auction. Initialize forward auction with object prices equal to zero.
- Multi-assignment \Rightarrow it is possible to assign more than one object to a single person (e.g., tracking clusters of objects)... See Exercise 7.10 of Bertsekas's book.
- Asymmetric Assignment where there is no need for every person, as well as for every object, to be assigned. See Exercise 7.11 of Bertsekas's book.

Hungarian algorithm for the assignment problem

- Typically done as minimization. Fact: Adding a constant to a row or a column does not change solution

$$
\begin{array}{ll}
\min \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j} ; c_{i j}=-w_{i j} & \min \sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j}-\delta \sum_{j=1}^{n} x_{i j}=\sum_{i=1}^{n} \sum_{j=1}^{n} c_{i j} x_{i j}-\delta \\
\text { s.t. } \sum_{j=1}^{n} x_{i j}=1 \quad \forall i=1, \ldots, n & \text { s.t. } \sum_{j=1}^{n} x_{i j}=1 \quad \forall i=1, \ldots, n \\
\sum_{i=1}^{n} x_{i j}=1 \quad \forall j=1, \ldots, n & \sum_{i=1}^{n} x_{i j}=1 \forall j=1, \ldots, n \\
& x_{i j} \in\{0,1\}, \forall(i, j)
\end{array} \quad x_{i j} \in\{0,1\}, \forall(i, j), ~ l
$$

- Konig-Egervary Theorem: If have n zeros in different rows and columns of matrix C, then we can construct a "perfect" matching. This is called "ideal" ("perfect") cost matrix.
- Kuhn-Munkres algorithm systematically converts any C matrix into an "ideal" cost matrix
- Algorithm is called Hungarian in view of Konig-Egervary Theorem

Hungarian algorithm steps for minimization problem

- Step 1: For each row, subtract the minimum number in that row from all numbers in that row.
- Step 2: For each column, subtract the minimum number in that column from all numbers in that column.
- Step 3: Draw the minimum number of lines to cover all zeroes. If this number $=n$, Done - an assignment can be made .
- Step 4: Determine the minimum uncovered number (call it δ).
- Subtract δ from uncovered numbers.
- Add δ to numbers covered by two lines.
- Numbers covered by one line remain the same.

- Then, Go to Step 3.
- Note: Essentially, we came to step 4 because we only partially matched a subset of rows I and the corresponding subset of columns, J. What if we subtract $\delta>0$ from every row that is not in I, and we add δ to every column in J ? Then, the only entries that get decreased are the entries that are not covered. The total decrease $=(n-|I|-|J|) \delta>0$.

Illustration of Hungarian algorithm

$$
\left[\begin{array}{cccc}
14 & 5 & 8 & 7 \\
2 & 12 & 6 & 5 \\
7 & 8 & 3 & 9 \\
2 & 4 & 6 & 10
\end{array}\right] \stackrel{\text { Step 1 }}{ }\left[\begin{array}{cccc}
9 & 0 & 3 & 2 \\
0 & 10 & 4 & 3 \\
4 & 5 & 0 & 6 \\
0 & 2 & 4 & 8
\end{array}\right] \stackrel{\text { Step 2 }}{ }\left[\begin{array}{cccc}
9 & 0 & 3 & 0 \\
0 & 10 & 4 & 1 \\
4 & 5 & 0 & 4 \\
0 & 2 & 4 & 6
\end{array}\right]
$$

Step 4

- Assignments
- $x_{33}=1$
- $x_{41}=1$
- $x_{24}=1$
- $x_{12}=1$

- Cost $=c_{12}+c_{24}+c_{33}+c_{41}=15$
- Row-column heuristic: at each step, pick min element, assign, and remove corresponding row and column.
- $x_{21}=1 ; x_{33}=1 ; x_{42}=1 ; x_{14}=1 ; \operatorname{cost}=2+3+4+7=16$

Graph theoretic ideas behind Hungarian algorithm

- An alternating path in a bipartite graph $G=(S, T, E)$ with respect to a matching M is a path with its edges alternately in M and not in M. See (a).
- Alternating tree Q (forest, F if the graph is disconnected) with respect to a matching M has a root node r in S and all other nodes except r are matched. See (b).
- An augmenting path P is a simple alternating path joining two free vertices $u \in S$ and $v \in T$. See (c).
- A Matching M is perfect (maximal) if there is no augmenting path with respect to M. see (a). $\left\{\left(u_{1}, v_{3}\right),\left(u_{2}, v_{j}\right),\left(u_{i}, v_{1}\right),\left(u_{n}, v_{n}\right)\right\}$

(a)

(b)

(c)
multipliers

$$
u_{i} \rightarrow v_{1} \rightarrow u_{2} \rightarrow v_{j} \text { (or) } u_{i} \rightarrow v_{n} \rightarrow u_{n} \rightarrow v_{j}
$$

- The Hungarian algorithm successively builds maximum matchings on a equality graph G^{\prime} that satisfies CS conditions, i.e., $r_{i j}=u_{i}+v_{j}-c_{i j}=0$

Connection to Duality

- Recall dual:

$$
\begin{aligned}
& \max q(\underline{u}, v)=\max \left\{\sum_{i=1}^{n} u_{i}+\sum_{j=1}^{n} v_{j}\right\} \\
& \text { s.t. } \quad u_{i}+v_{j} \leq c_{i j}, \forall(i, j) \in E
\end{aligned}
$$

- Hungarian algorithm is a primal-dual algorithm that starts with

$$
\begin{aligned}
& u_{i}=\min _{j \in o u t(i)} c_{i j} ; i=1,2, . ., n \\
& v_{j}=\min _{i \in \ln (j)}\left(c_{i j}-u_{i}\right) ; j=1,2, . ., n
\end{aligned}
$$

- Maintains dual feasibility $r_{i j}=c_{i j}-u_{i}-v_{j} \geq 0$.
- Works with equality graph, G^{\prime} for which $r_{i j}=c_{i j}-u_{i}-v_{j}=0$, i.e., preserves CS conditions. Solves the maximum cardinality bipartite matching problem on the graph G^{\prime} that either finds a perfect matching, or we get a vertex cover of size $<n$.
- If (I, J) is not perfect cover, it finds the direction of dual increase

$$
\begin{aligned}
& \delta=\min _{i \notin I ; j \notin J} r_{i j} \\
& \pi_{i}=\pi_{i}-\delta ; i \in I \\
& p_{j}=p_{j}+\delta ; j \notin J
\end{aligned}
$$

Illustration of Hungarian algorithm

$$
C=\left[\begin{array}{cccc}
14 & 5 & 8 & 7 \\
2 & 12 & 6 & 5 \\
7 & 8 & 3 & 9 \\
2 & 4 & 6 & 10
\end{array}\right] \Rightarrow \underline{u}=\left[\begin{array}{l}
5 \\
2 \\
3 \\
2
\end{array}\right] ; \underline{v}^{T}=\left[\begin{array}{llll}
0 & 0 & 0 & 2
\end{array}\right] ; R=\left[\begin{array}{cccc}
9 & 0 & 3 & 0 \\
0 & 10 & 4 & 1 \\
4 & 5 & 0 & 4 \\
0 & 2 & 4 & 6
\end{array}\right] ;
$$

Dual $\cos t=14$

$$
G^{\prime}=(\{1,2,3,4\},\{1,2,3,4\},\{(1,2),(1,4),(2,1),(3,3),(4,1)\})
$$

Matching,$M^{\prime}=\{(1,2),(2,1),(3,3)\} \neq$ perfect. $I=\{1\} ; J=\{1,3\}$. Node cov er $=3<4$

$$
\delta=\min _{i \neq l, j \neq J} c_{i j}^{\prime}=1 \Rightarrow \underline{u}=\left[\begin{array}{l}
4 \\
2 \\
3 \\
2
\end{array}\right] ; \underline{v}^{T}=\left[\begin{array}{llll}
0 & 1 & 0 & 3
\end{array}\right] ; R=\left[\begin{array}{cccc}
10 & 0 & 4 & 0 \\
0 & 9 & 4 & 0 \\
4 & 4 & 0 & 3 \\
0 & 1 & 4 & 5
\end{array}\right]
$$

- Assignments: $x_{33}=1 ; x_{41}=1 ; x_{24}=1 ; x_{12}=1$
- Cost $=c_{12}+c_{24}+c_{33}+c_{41}=15$

$$
\text { Dual cost }=\sum_{i=1}^{n} u_{i}+\sum_{j=1}^{n} v_{j}=15
$$

Class of Shortest Augmenting Path Algorithms

- Fact: Assignment is a special case of transportation problem and the more general minimum cost network flow (MCNF) problem (Lecture 10)
- In assignment, each node in S transmits one unit and each unit in T must receive one unit \Rightarrow multi-source, multi-sink problem
- Indeed, an optimal solution can be found by considering one source in S at a time and finding the shortest path emanating from it to an unassigned node in T.
- While Hungarian algorithm finds any feasible augmenting path, Jonker, Volgenant and Castanon (JVC) and a number of other algorithms find the shortest augmenting paths
- JVC \equiv a clever shortest augmenting path implementation of Hungarian and a number of pre-processing techniques, including column reduction, reduction transfer, reduction of unassigned rows, which is basically auction
- Basic idea
- Select an unassigned node in S
- Construct the residual (auxiliary, incremental) graph, G^{\prime} with costs $\left\{r_{i j}\right\}$
- Find the shortest augmenting path via Dijkstra (recall $r_{i j} \geq 0$)
- Augment the solution \Rightarrow improve the match
- Update the dual variables so that CS conditions hold

Jonker, Volgenant and Castanon (JVC) algorithm

- JVC algorithm for primal minimization ($c_{i j}=-w_{i j}$, Code is available on the net)

$$
\begin{aligned}
& \underline{\text { Primal }} \\
& \min \sum_{i} \sum_{j} x_{i j} c_{i j} \\
& \text { s.t. } \\
& \sum_{i} x_{i j}=1 \\
& \\
& \sum_{i j} x_{i j}=1 \\
& x_{i j} \geq 0, \forall(i, j,) \in E
\end{aligned}
$$

- Indices i and j refer to rows and columns, respectively
- $x_{i}\left(y_{j}\right)$ is the column (row) index assigned to row i (column j), with $x_{i}=0\left(y_{j}=0\right)$ for an unassigned row i (column j)
- The dual variables (prices) u_{i} and v_{j} correspond to row i and column j, respectively, with $r_{i j}=$ $c_{i j}-u_{i}-v_{j}$ denoting the reduced costs
- Basic outline of JVC algorithm

Step 1: initialization ... column reduction
Step 2: termination, if all rows are assigned
Step 3: augmentation ... construct auxiliary network and determine from unassigned row i to unassigned column j an alternating path of minimal total reduced cost ... use to augment the solution
Step 4: update dual solution ... restore complementary slackness and go to step 2

JVC algorithm procedure - initialization

- Initialization
- Column reduction

$$
\begin{aligned}
& \text { for } j=n \ldots 1 \text { do } \\
& \quad c_{j}=j ; h=c_{1 j} ; i_{1}=1 \\
& \text { for } i=2 \ldots n \text { do } \\
& \quad \text { if } c_{i j}<h \text { then } h=c_{i j} ; i_{1}=i \\
& \quad v_{j}=h \\
& \quad \text { if } x_{i_{1}}=0 \text { then } x_{i_{1}}=j ; y_{j}=i_{1} \\
& \text { else } x_{i}=-x_{i} ; y_{j}=0 \\
& \text { end do }
\end{aligned}
$$

end do

$$
\Rightarrow v_{j}=\min _{i}\left(c_{i j}\right)
$$

.. each column is assigned to minimal row element .. some rows may not be assigned

- Reduction transfer from unassigned to assigned rows for each assigned row i do
$j_{1}=x_{i} ; \mu=\min \left\{c_{i j}-v_{j}: j=1, \ldots, n ; j \neq j_{1}\right\}$
$v_{j 1}=v_{j 1}-\left(\mu-u_{i}\right) ; u_{i}=\mu$ end do

Column Reduction:

$$
\begin{aligned}
& C=\left[\begin{array}{cccc}
14 & 5 & 8 & 7 \\
2 & 12 & 6 & 5 \\
7 & 8 & 3 & 9 \\
2 & 4 & 6 & 10
\end{array}\right] \\
& \Rightarrow \underline{v}^{T}=\left[\begin{array}{llll}
2 & 4 & 3 & 5
\end{array}\right] ; \underline{u}=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0
\end{array}\right] ; x_{21}=x_{42}=x_{33}=1
\end{aligned}
$$

Dual $\cos t=14$
Row 1 and column 4 unassigned.
Reduction Transfer:
Row 2: $\mu=\min (8,3,0), v_{1}=2 ; u_{1}=0$
Row 3: $\mu=\min (5,4,4), v_{3}=-1 ; u_{3}=4$
Row 4: $\mu=\min (0,3,5), v_{2}=4 ; u_{4}=0$
$\Rightarrow \underline{v}^{T}=\left[\begin{array}{llll}2 & 4 & -1 & 5\end{array}\right] ; \underline{u}=\left[\begin{array}{l}0 \\ 0 \\ 4 \\ 0\end{array}\right]$
... similar to 2 nd best profit in auction
Dual $\cos t=14$

JVC algorithm procedure - pre-processing

Augmentation Reduction:
Row 1: $k_{1}=\min (12,1,9,2)=1 ; k_{2}=2$

- Augmenting reduction of unassigned rows (...auction) LIST $=$ \{all unassigned rows $\}$
$\forall i \in$ LIST do
repeat

$$
\begin{aligned}
& k_{1}=\min \left\{c_{i j}-v_{j}: j=1, \ldots, n\right\} \\
& \text { select } j_{1} \text { with } c_{i j_{1}}-v_{j_{1}}=k_{1} \\
& k_{2}=\min \left\{c_{i j}-v_{j}: j=1, \ldots, n ; j \neq j_{1}\right\} \\
& \text { select } j_{2} \text { with } w=c_{i j_{2}}-v_{j_{2}}=k_{2} ; j_{2} \neq j_{1}
\end{aligned}
$$

$$
u_{i}=k_{2}
$$

if $k_{1}<k_{2}$ then

$$
v_{j_{1}}=v_{j_{1}}-\left(k_{2}-k_{1}\right)
$$

else if j_{1} is assigned, then

$$
\begin{aligned}
& \quad j_{1}=j_{2} \\
& \quad r=y_{j_{1}} ; \\
& \text { if } r>0 \text { then } \\
& \quad x_{r}=0 ; x_{i}=j_{1} ; y_{j_{1}}=i ; i=r \\
& \text { until } k_{1}=k_{2} \text { or } r=0
\end{aligned}
$$

end do
$v_{2}=3 ; u_{1}=2$
$x_{12}=1$
$x_{x_{12}}=0$
$\Rightarrow \underline{v}^{T}=\left[\begin{array}{llll}2 & 3 & -1 & 5\end{array}\right] ; \underline{u}=\left[\begin{array}{l}2 \\ 0 \\ 4 \\ 0\end{array}\right]$
Dual $\cos t=15$
Row 4: $k_{1}=\min (0,1,7,5)=0 ; k_{2}=1$
$v_{1}=1 ; u_{4}=1$
$x_{41}=1$
$x_{21}=0$
$\Rightarrow \underline{v}^{T}=\left[\begin{array}{llll}1 & 3 & -1 & 5\end{array}\right] ; \underline{u}=\left[\begin{array}{l}2 \\ 0 \\ 4 \\ 1\end{array}\right]$
Row 2: $k_{1}=\min (1,9,7,0)=0 ; k_{2}=1$
$v_{4}=4 ; u_{2}=1$
$x_{24}=1$
$r=0$
$\Rightarrow \underline{v}^{T}=\left[\begin{array}{llll}0 & 3 & -1 & 4\end{array}\right] ; \underline{u}=\left[\begin{array}{l}2 \\ 1 \\ 4 \\ 2\end{array}\right]$
Primal and dual feasible. Done!

- Complexity of first two initialization procedures is $O\left(n^{2}\right)$, and it can be shown that the augmenting reduction procedure has complexity $O\left(R n^{2}\right)$, with R the range of cost coefficients

JVC algorithm procedure - augmentation + update

- Augmentation

- Modified version of Dijkstra's shortest augmenting path method
$\forall i^{*}$ unassigned do

$$
\text { TOSCAN }=\{1 \ldots n\}
$$

for $j=1 \ldots n$ do
$d_{j}=\infty$
end do
$i=i^{*} ; d_{i^{*}}=0 ; \mu=0$
repeat
$\forall j \in(O U T(i) \cap T O S C A N) ~ d o$

$$
\begin{aligned}
& \text { if } \mu+c_{i j}-u_{i}-v_{j}<d_{j} \text { then } \\
& \quad d_{j}=\mu+c_{i j}-u_{i}-v_{j} ; \quad \operatorname{pred}[j]=i
\end{aligned}
$$

Don't need to execute
end do
$\mu=\infty$
$\forall j \in T O S C A N$ do

$$
\begin{aligned}
& \text { if } d_{j}<\mu \text { then } \\
& \qquad \mu=d_{j} ; \mu_{j}=j
\end{aligned}
$$

end do
$i=y_{\mu_{j}} ; \operatorname{TOSCAN}=\operatorname{TOSCAN}-\left\{\mu_{j}\right\}$
until $y_{\mu_{j}}=0$
end do

- Complexity for augmentation phase is $O\left(n^{3}\right)$, so this holds for the entire JVC algorithm
- Update of the dual solution
- After augmentation of the partial assignment, the values of dual variables must be updated to restore complementary slackness, that is,

○ $c_{i k}-u_{i}-v_{k}=0$, if $x_{i}=k$ for assigned column $k, i=1, \ldots, n$ and

- $c_{i k}-u_{i}-v_{k} \geq 0$

Murty's Clever Partitioning Idea to get m-best solutions

- Suppose you have three binary variables, x_{1}, x_{2}, x_{3}

x_{1}	x_{2}	x_{3}	- To
1	1	1	
1	1	0	\Leftarrow Best solution
1	0	1	
1	0	0	
0	1	1	$\longleftarrow 2^{\text {nd }}$ Best solution
0	1	0	
0	0	1	
0	0	0	

- To get the $3^{\text {rd }}$ best, do the partitioning on $2^{\text {nd }}$ best solution
- Fix $x_{1}=0$ and $x_{2}=0$ and search over(0,0,1),(0,0,o)
- Fix $x_{1}=0, x_{2}=1$ and $x_{3}=0$
- Pick the $3^{\text {rd }}$ best from these and others in the list.
- To get the $3^{\text {rd }}$ best, do the partitioning on $2^{\text {nd }}$ best solution
- Fix $x_{1}=1$ and $x_{2}=0$
- Now, you are searching over (1,0,1), ($1,0,0$)
- Fix $x_{1}=1, x_{2}=1$ and $x_{3}=1$
- Now, you evaluate $(1,1,1)$
\Rightarrow You searched over all $\left(x_{1}, x_{2}, x_{3}\right)$, except the best $(1,1,0)$
- Pick the $2^{\text {nd }}$ best solution (cost and
variables) from the solutions from
these. Keep the other two in a list.
- Pick the $2^{\text {nd }}$ best solution (cost and
variables) from the solutions from
these. Keep the other two in a list.
- Pick the $2^{\text {nd }}$ best solution (cost and
variables) from the solutions from
these. Keep the other two in a list.
- Fix $x_{1}=0$
- Now, you are searching over ($0,1,1$), ($0,1,0$), ($0,0,1$),($0,0,0$)
partitioning on 2 best solution
UCONN

Murty's Partitioning for Assignment

- Suppose we express the assignment problem P of size n as a bipartite graph, represented as a list of triples $\langle y, z, l\rangle$, with an assignment A^{k} from the (feasible) solution space A denoted as a set of triples in which each y and z appear exactly once, that is,

$$
A=\bigcup_{k=1}^{n!} A^{k}, \quad \text { where } A^{k}=\left\{\left\{y_{k_{j}}, z_{k_{j}}, l_{k_{j}}\right\rangle\right\}, \quad j=1, \ldots, n
$$

- The cost $C\left(A^{k}\right)$ of the assignment A^{k} is simply the sum of l^{\prime} s in the triples, that is,

$$
C\left(A^{k}\right)=\sum_{j=1}^{n} l_{k_{j}}
$$

- The single best assignment A^{*} to P can be found using any of the classical methods of solving the assignment problem (e.g., auction, JVC)
- Subsequent assignments to P are found by solving a succession of assignment problems, where P is partitioned into a series of sub-problems, $P_{1}, P_{2}, \ldots, P_{n}$, having solution spaces $A_{1}, A_{2}, \ldots, A_{n} \ni$

$$
\begin{gathered}
\bigcup_{i=1}^{n} A_{i}=A-A^{*} \\
A_{i} \cap A_{j}=\emptyset, \quad \text { for } i, j=1, \ldots, n, \quad i \neq j
\end{gathered}
$$

- Subproblem P_{1} is P less the $1^{\text {st }}$ triple $\left\langle y_{1}, z_{1}, l_{1}\right\rangle$ in the best assignment A^{*} of P

$$
\Rightarrow A_{1}=\left\{A^{i} \in A:\left\langle y_{i_{j}}, z_{i_{j}}, l_{i_{j}}\right\rangle \neq\left\langle y_{1}, z_{1}, l_{1}\right\rangle, j=1, \ldots, n\right\}
$$

- In subproblems P_{2}, \ldots, P_{n}, we want to force $\left\langle y_{1}, z_{1}, l_{1}\right\rangle$ to be in all assignments of A_{2}, \ldots, A_{n}

Murty's M-Best assignment algorithm

- Hence, P_{2} is P_{1}, plus the triple $\left\langle y_{1}, z_{1}, l_{1}\right\rangle$, less all triples $\left\langle y_{1}, z_{j}, l_{j}\right\rangle \&\left\langle y_{j}, z_{1}, l_{j}\right\rangle, j=2, \ldots, n$, and less the $2^{\text {nd }}$ triple $\left\langle y_{2}, z_{2}, l_{2}\right\rangle$ in the best assignment A^{*} of P

$$
\Rightarrow A_{2}=\left\{A^{i} \in A:\left\langle y_{i_{j}}, z_{i_{j}}, l_{i_{j}}\right\rangle \neq\left\langle y_{2}, z_{2}, l_{2}\right\rangle, j=1, \ldots, n \&\left\langle y_{1}, z_{1}, l_{1}\right\rangle \in A^{i}\right\}
$$

- In the construction of subproblems P_{k}, \ldots, P_{n}, we force $\left\langle y_{l}, z_{l}, l_{l}\right\rangle, l=1, \ldots, k-1$ to be in all assignments of A_{k}, \ldots, A_{n}
- In general, subproblem $P_{k}, 1<k \leq n$, is P_{k-1} plus the triple $\left\langle y_{k-1}, z_{k-1}, l_{k-1}\right\rangle$, less all triples $\left\langle y_{k-1}, z_{j}, l_{j}\right\rangle \&\left\langle y_{j}, z_{k-1}, l_{j}\right\rangle, j \neq k-1$, and less the k th triple $\left\langle y_{k}, z_{k}, l_{k}\right\rangle$ in the best assignment A^{*} of P

$$
\Rightarrow A_{k}=\left\{A^{i} \in A:\left\langle y_{i_{j}}, z_{i_{j}}, l_{i_{j}}\right\rangle \neq\left\langle y_{k}, z_{k}, l_{k}\right\rangle, j=1, \ldots, n \quad \&\left\langle y_{l}, z_{l}, l_{l}\right\rangle \in A^{i}, l=1, \ldots, k-1\right\}
$$

- Note that solution spaces A_{i} for subproblems $P_{i}, i=1, \ldots, n$ are disjoint and their union will be exactly the solution space to P less its optimal assignment (i.e., $A-A^{*}$)
- Once we partition P according to its optimal assignment A^{*}, we place the resulting subproblems P_{1}, \ldots, P_{n} together with their optimal assignments $A_{1}^{*}, \ldots, A_{n}^{*}$ on a priority queue of (problem, assignment) pairs (e.g., Queue $\left.\leftarrow\left(P_{i}, A_{i}^{*}\right), i=1, \ldots, n\right)$
- We then find the problem P^{\prime} in the queue having the best assignment ... the best assignment $A^{\prime *}$ to this problem is the $2^{\text {nd }}$ best assignment to P
- We then remove P^{\prime} from the queue and replace it by its partitioning (according to optimal assignment $\left.A^{\prime *}\right) \Rightarrow$ the best assignment found in the queue will be the $3^{\text {rd }}$ best assignment to P
- Complexity: since we perform one partitioning for each of the M-Best assignments, each partitioning (worst case) creating $O(n)$ new problems, $\Rightarrow O(M n)$ assignment problems and queue insertions . . each assignment takes $O\left(n^{3}\right)$, each insertion takes at most $O(M n)$, hence, Murty's algorithm takes $O\left(M n^{4}\right)$

Optimization of Murty's algorithm

(Stone \& Cox)

- Recall Murty's algorithm is independent of the assignment algorithm chosen for solving the assignment problem
- Suppose we use the JVC algorithm to find the optimal assignment
- 2 important properties of the JVC algorithm
\star The optimal assignment will be found as long as the partial binary variable assignment, X, and dual variables u and v satisfy the following two criteria:

$$
\begin{aligned}
& \forall i, j \ni x_{i j}=1, c_{i j}=u_{i}+v_{j} \\
& \forall i, j \ni x_{i j}=0, c_{i j} \geq u_{i}+v_{j}
\end{aligned}
$$

* The slack or reduced cost (i.e., $c_{i j}-u_{i}-v_{j}$) between any z and y is useful in estimating the cost of the best assignment in which they are assigned to each other
> If the current lower bound on the cost of the partial assignment, with either z_{i} or y_{j} unassigned, is C, then the cost of the optimal assignment that assigns z_{i} to y_{j} will be at least $C+c_{i j}-u_{i}-v_{j}$
> A new lower bound can be computed by finding the minimum slack of a partial assignment
When used in Murty's algorithm, Stone \& Cox noted that the JVC assignment algorithm allows for a \# of optimizations that dramatically improve both average-case and worst-case complexity
- 3 optimizations proposed
- Dual variables \& partial solution inheritance during partitioning
- Sorting subproblems by lower cost bounds before solving
- Partitioning in an optimized order
- Only inheritance reduces worst-case complexity, so we'll discuss it

Dual variables

- Dual variables \& partial solution inheritance during partitioning
- When a problem is partitioned, considerable work has been expended in finding its best assignment . . . we exploit this computation when finding best assignments in subproblems resulting from partitioning
- Consider a problem P being partitioned, with dual variables $u^{(P)}$ and $v^{(P)}$, binary variable assignment $x^{(P)}$, and cost matrix $c^{(P)}$
- Subproblem P_{1} can inherit part of P^{\prime} s computation by assigning $c^{\left(P_{1}\right)}=c^{(P)}$, setting $c_{i_{1} j_{1}}^{\left(P_{1}\right)}=\infty$ and setting $x_{i_{1} j_{1}}^{\left(P_{1}\right)}=0$ corresponding to $\operatorname{arc}\left\langle y_{i_{1}}, z_{i_{1}}, l\right\rangle \in A^{*}$, and initializing $x^{\left(P_{1}\right)}=x^{(P)}, u^{\left(P_{1}\right)}=u^{(P)}$, and $v^{\left(P_{1}\right)}=v^{(P)}$
- In general, subproblem P_{k} can inherit part of the computation at P_{k-1} by assigning $c^{\left(P_{k}\right)}=c^{\left(P_{k-1}\right)}$, setting $c_{i_{k} j_{k}}^{\left(P_{k}\right)}=\infty$ and setting $x_{i_{k} j_{k}}^{\left(P_{k}\right)}=0$ corresponding to $\left\langle y_{i_{k}}, z_{i_{k}}, l\right\rangle \in A^{*}$, and initializing $x^{\left(P_{k}\right)}=x^{\left(P_{k-1}\right)}, u^{\left(P_{k}\right)}=u^{\left(P_{k-1}\right)}$, and $v^{\left(P_{k}\right)}=$ $v^{\left(P_{k-1}\right)}$
The value of this optimization is that, after the first assignment to the original assignment problem is found, no more than one augmentation needs to be performed for each new subproblem
- Complexity: the augmentation step of JVC takes $O\left(n^{2}\right)$, so Murty's algorithm with this optimization is $O\left(M n^{3}\right)$

Correlation problem

- A solvable case of assignment problem: correlation problem

$$
\begin{aligned}
& w_{i j}=\int_{\alpha_{i}}^{\beta_{j}} f(y) d y, \text { if } \beta_{j} \geq \alpha_{i} \\
& w_{i j}=\int_{\beta_{j}}^{\alpha_{i}} g(y) d y, \text { if } \beta_{j}<\alpha_{i}
\end{aligned}
$$

- $f(y)=g(y)=1 \Rightarrow w_{i j}=\left|\alpha_{i}-\beta_{j}\right|$
- Matching

- This can be interpreted as the following assignment problem
- Suppose have n in S and n in T such that
* Attractiveness of $i \in S=\alpha_{i}$
* Attractiveness of $j \in T=\beta_{j}$
* Define $w_{i j}=\left|\alpha_{i}-\beta_{j}\right|$

$$
\begin{array}{ll}
\min & \sum_{i} \sum_{j} x_{i j} w_{i j} \\
\text { s.t. } & \sum_{i} x_{i j}=1, \forall j \\
& \sum_{j} x_{i j}=1, \forall i \\
& x_{i j} \geq 0
\end{array} \Rightarrow \begin{aligned}
& \operatorname{sort} \alpha_{1} \geq \alpha_{2} \geq \ldots \geq \alpha_{n} \\
& \operatorname{sort} \beta_{1} \geq \beta_{2} \geq \ldots \geq \beta_{n} \\
& \operatorname{assign}(i, j)
\end{aligned}
$$

This is also min-max optimal matching ... \exists several other solvable cases...see Lawler

Summary

- Examples of assignment problems
- Auction algorithm
- Coordinate dual descent
- Scaling in critical to the success of the algorithm
- Hungarian method
- $O\left(n^{3}\right)$ algorithm
- Not as fast as auction or JVC in practice
- Successive shortest path method
- JVC algorithm
- Fastest algorithm in practice to date (?)
- M-Best assignment algorithms

Recent Book: R. Burkard, M. Dell'Amico and S. Martello, Assignment Problems, SIAM, 2009.

