
Lecture 8:
Assignment Algorithms

Prof. Krishna R. Pattipati
Dept. of Electrical and Computer Engineering

University of Connecticut
Contact: krishna@engr.uconn.edu; (860) 486-2890

© K. R. Pattipati, 2001-2016

Outline

VUGRAPH 2

• Examples of assignment problems

• Assignment Algorithms

 Auction and variants

 Hungarian Algorithm (also called Kuhn-Munkres Algorithm)

 Easy to understand, but not for practical applications

 Successive shortest path algorithm (Hungarian; Jonker, Volgenant and
Castanon (JVC))

 Signature … Not efficient computationally

• Special cases

• M-Best Assignment Algorithms

 Murty (1968)

 Stone & Cox (1995)

 Popp, Pattipati & Bar-Shalom (1999)

Examples of assignment problems

VUGRAPH 3

• Assignment problem

 Also known as weighted bipartite matching problem

• Bipartite graph

 Has two sets of nodes 𝑆, 𝑇 ⇒ 𝑉 = 𝑆 ∪ 𝑇

 And a set of edges 𝐸 connecting them

• A matching on a bipartite graph G = (S, T, E) is a subset of edges 𝑋 ∈
𝐸 ∋ no two edges in 𝑋 are incident to the same node

 Nodes 1, 2, 3, 4 of 𝑆 are matched or covered

 Node 5 is uncovered or exposed

1

2

4

3

5

1

2

4

3

S T

Matching

Matching problems

VUGRAPH 4

• Two types of matching problems: m = |S|; n = |T|

 Cardinality matching problem

o Find a matching with maximum number of arcs

 Weighted matching problem or the assignment problem

o Problem can also be written as

max𝛼 σ𝑖𝑤𝑖𝛼𝑖
𝛼 ~ permutation of columns of 𝑊

(= assignment of object i to person i)

 

(,)

max

1

1

0,

1

s.t.

ij

i j E

ij

i

j

j

i

ij

x

x

x

x















 

(,) (,)

(,)

(,)

max or min ,

s.t. 1 1, , (or =)

 1 1, ,

(or =)

0,1

ij ij ij ij ij ij

i j E i j E

ij

i j E

ij

i j E

ij

w x c x c w

x i n

x j m

x

 





 

   

   



 





Examples of assignment problems

VUGRAPH 5

 Examples

o Assigning people to machines

o Correlating reports from two sensors

o System of distinct representatives (cardinality matching problem)

o Cardinality matching ~ maximum flow (~  analogous to)

cardinality matching

m + n nodes

maximum flow

𝟐 <−> 𝟒
𝟏 <−> 𝟓

m + n + 2 nodes
(Lecture 9)

1

2

3

4

5

6

1

2

3

4

5

6

s t

1

1

∞

∞

∞ ∞

∞
1

1

1

1

capacity

Examples of assignment problems

VUGRAPH 6

o 𝑛 × 𝑛 assignment or bipartite matching ~ minimum cost network flow
problem … (Lecture 10)

⇒ Can use RELAX to solve assignment problem (Lecture 10)

⇒ In this particular case, even 𝜖 – relax works as well as RELAX even on sequential
computers (Lecture 10)

bipartite matching

2n nodes

MCNF

2n + 2 nodes

1

2

3

4

5

6

1

2

3

4

5

6

s t

1,0

1,0

∞,4

∞,1

∞,2

∞,–3

∞,2
1,0

1,0

1,0

1,0

4

6–3

2
1

0
∞ 5

2

capacity, cost

∞,0 ∞,5

∞,6

∞,∞

4 6 3

2 1 0

5 2

ijc

 
      
  

Optimality conditions

VUGRAPH 7

CS conditions imply: ቋ
𝑥𝑖𝑗 > 0 ⇒ 𝜋𝑖 + 𝑝𝑗 = 𝑤𝑖𝑗

𝑥𝑖𝑗 = 0 ⇒ 𝜋𝑖 + 𝑝𝑗 > 𝑤𝑖𝑗

at optimum: 𝜋𝑖 = max
𝑘∈out(𝑖)

𝑤𝑖𝑘 − 𝑝𝑘

= 𝑤𝑖𝑗 − 𝑝𝑗

 To provide physical interpretation, let 𝑖 = person and 𝑗 = object

o 𝑝𝑗 ~ price of object 𝑗 = amount of money that a person is willing to pay when
assigned to 𝑗

o (𝑤𝑖𝑗 − 𝑝𝑗) ~ profit margin if person 𝑖 is assigned to object 𝑗 = benefit person 𝑖
associates with being assigned to object 𝑗

o So, if (𝑖, 𝑗) is an optimal pair (i.e., part of an optimal solution), then the profit
margin 𝜋𝑖

∗ is

Primal

   

(,)

(,)

(,)

max

s.t. 1 1, ,

1 1, ,

0,1 , ,

ij ij

i j E

ij

i j E

ij

i j E

ij

w x

x i n

x j n

x i j E







   

   

  







Dual

 

1 1

s.t

min

. , ,

n n

i j

i j ij

i j

p w

p

i j E


 

  
 

 

 



 

 

 
 

out
maxi ij j ik k

k i
w p w p   


   

• Dual of the assignment problem
 Assume equality constraints & 𝑚 = 𝑛 w/o loss of generality

Optimality conditions

VUGRAPH 8

 Using this fact, we can simplify the dual problem considerably

o Suppose that somebody gave us prices of objects {𝑝𝑗}

o Then, for a given set of {𝑝𝑗}, the optimal

o Dual problem is equivalent to

o Note: no constraints on 𝑝𝑗

 
1 1

min , min

s.t. , (,)

(or) , out(); 1,2,..,

n n

i j

i j

i j ij

i j ij

q p p

p w i j E

p w j i i n

 





 

  
  

  

   

    

 

out()
max { }i ij j
j i

w p


 

 
out()

1 1

min min max { }
n n

j ij j
p j i

j i

q p p w p


 

  
   

  
 

Note that every i can
be decreased by a
constant  and every pj

increased by  without
affecting q.

Auction algorithm for the assignment problem

VUGRAPH 9

 Start with an initial set of object prices, 𝑝𝑗: 1 ≤ 𝑗 ≤ 𝑛 (e.g., 𝑝𝑗 = 0 or
max𝑖 𝑤𝑖𝑗)

 Initially, either no objects are assigned or else have 𝜖-complementary

slackness satisfied

𝜋𝑖 − 𝜖 = max
𝑘

𝑤𝑖𝑘 − 𝑝𝑘 − 𝜖 ≤ 𝑤𝑖𝑗 − 𝑝𝑗 , 𝑗 = arg max
𝑘

𝑤𝑖𝑘 − 𝑝𝑘

𝜋𝑖 − 𝜖 ≤ 𝑤𝑖𝑗 − 𝑝𝑗 = 𝜋𝑖 , ∀ 𝑖, 𝑗 ∈ out 𝑖 ∋ 𝑗 is assigned to 𝑖

⇒ 𝜋𝑖 = 𝑤𝑖𝑗 − 𝑝𝑗 ≥ max
𝑘

𝑤𝑖𝑘 − 𝑝𝑘 − 𝜖 ⇒ CS Conditions

⇒ Partial 𝜖-optimal assignment

• Auction algorithm consists of two phases

 Bidding phase:

o Each unassigned person 𝑖 computes the “current value” of object 𝑗 (i.e.,
potential profit if 𝑖 is assigned to 𝑗) & bids for the object of his choice

 Assignment phase:

o Each object (temporarily) offers itself to the highest bidder

• Bidding phase

 Each unassigned person 𝑖 computes the value of object 𝑗 ∈ out(𝑖)
𝑣𝑖𝑗 = 𝑤𝑖𝑗 − 𝑝𝑗; 𝑗 ∈ out(𝑖)

Auction has Two phases: Bidding & Assignment

VUGRAPH 10

 Let
𝜋𝑖 = max. value = max

𝑗∈out(𝑖)
𝑣𝑖𝑗 = 𝑣𝑖𝑗

∗

 Find the next best value (second best profit)

𝜙𝑖 = max
𝑗∈out(𝑖)
𝑗≠𝑗∗

𝑣𝑖𝑗

 Person 𝑖 then bids for object 𝑗∗ at a price of 𝑏𝑖𝑗
∗ = 𝑝𝑗

∗ + 𝜋𝑖 − 𝜙𝑖 + 𝜖=𝑤𝑖𝑗
∗ −𝜙𝑖 + 𝜖

 Note: actually, can have 𝑏𝑖𝑗
∗ ∈ 𝑝𝑗

∗ + 𝜖, 𝑝𝑗
∗ + 𝜋𝑖 − 𝜙𝑖 + 𝜖 … but the above choice

provides best performance (more later, from the dual cost structure)

 Q: what if 𝑗∗ is the only object ⇒ set 𝜙𝑖 = −∞ or a number ≪ 𝜋𝑖
 This process is highly parallelizable

• Assignment phase

 For each object 𝑗, if 𝑃(𝑗) is the set of persons from whom 𝑗 received a bid, then
𝑝𝑗 = max

𝑖∈𝑃(𝑗)
𝑏𝑖𝑗 = 𝑏𝑖∗𝑗

 Announce the new price to all persons

 Assign person 𝑖∗ to object 𝑗 ⇒ 𝑥𝑖∗𝑗 = 1

 De-assign any previous assignment 𝑖′ to 𝑗 ⇒ 𝑥𝑖′𝑗 = 0

 If there was no bid, don’t do anything

 This process is also highly 𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙𝑖𝑧𝑎𝑏𝑙𝑒

Properties of Auction algorithm

VUGRAPH 11

• Properties

 If 𝑝𝑗 is price of object 𝑗 before assignment & 𝑝𝑗
′ after assignment, we have 𝑝𝑗

′ ≥

𝑝𝑗 , ∀𝑗 ⇒ 𝑝𝑗 ↑
⇒ 𝑝𝑗∗

′ = 𝑝𝑗∗ + 𝜋𝑖 − 𝜙𝑖 + 𝜖 ⇒ 𝑝𝑗∗
′ ≥ 𝑝𝑗∗

 Maintains 𝜖-complementary slackness for assigned objects

 Suppose object 𝑗∗ accepts bid of person 𝑖

𝜋𝑖
′ = 𝑤𝑖𝑗∗ − 𝑝𝑗∗

′ = 𝜙𝑖 − 𝜖 = max
𝑗∈out(𝑖)
𝑗≠𝑗∗

𝑤𝑖𝑗 − 𝑝𝑗 − 𝜖 ≥ max
𝑗∈out(𝑖)
𝑗≠𝑗∗

𝑤𝑖𝑗 − 𝑝𝑗
′ − 𝜖

𝑤𝑖𝑗∗ − 𝑝𝑗∗
′ ≥ max

𝑗∈out 𝑖
𝑤𝑖𝑗 − 𝑝𝑗

′ − 𝜖

⇒ 𝜖-CS conditions continue to hold

 Profit margin of 𝑖 after assignment

𝜋𝑖
′ = max

𝑗∈out(𝑖)
𝑤𝑖𝑗 − 𝑝𝑗

′ = max 𝑤𝑖𝑗∗ − 𝑝𝑗∗
′ , max

𝑗∈out(𝑖)
𝑗≠𝑗∗

𝑤𝑖𝑗 − 𝑝𝑗
′

≤ max 𝑤𝑖𝑗∗ − 𝑝′𝑗∗ , max
𝑗∈out 𝑖
𝑗≠𝑗∗

𝑤𝑖𝑗 − 𝑝𝑗 = max 𝜙𝑖 − 𝜖, 𝜙𝑖 = 𝜙𝑖

𝑝𝑗∗
′ = 𝑝𝑗 + 𝜋𝑖 − 𝜙𝑖 + 𝜖 ⇒ price increases by least 𝜖

𝜋𝑖
′ = 𝑤𝑖𝑗∗ − 𝑝𝑗∗

′ = 𝜙𝑖 − 𝜖 ≥ 𝜋𝑖
′ − 𝜖 ⇒ profit goes down by at least 𝜖

Coordinate descent interpretation

VUGRAPH 12

 Coordinate descent interpretation of bidding and assignment phases

o Jacobi-like relaxation step for minimizing the dual function 𝑞(𝑝)

 In each bidding and assignment phase, the price 𝑝𝑗 of each object 𝑗 bidded upon is
increased to either a value that minimizes 𝑞(𝑝) when all other prices are kept

constant, or else exceeds the largest such value by no more than 𝜖

Recall: 𝑞 𝑝 = σ𝑗=1
𝑛 𝑝𝑗 + σ𝑖=1

𝑛 max
𝑗∈out(𝑖)

𝑤𝑖𝑗 − 𝑝𝑗

⇒ max
𝑗∈out(𝑖)

𝑤𝑖𝑗 − 𝑝𝑗 = max 𝑤𝑖𝑗 − 𝑝𝑗 , max
𝑗′∈out 𝑖 ,𝑗′≠𝑗

𝑤𝑖𝑗′ − 𝑝𝑗′

= max 𝑤𝑖𝑗 − 𝑝𝑗 , 𝜙𝑖

Dual cost
along 𝑝𝑗

slope = –3

slope = –2

slope = 0

slope = –1
slope = 1

range of
possible 𝑝𝑗

𝑝𝑗

𝜖

𝑤𝑖1𝑗 − 𝜙𝑖1
𝑤𝑖2𝑗 − 𝜙𝑖2

𝑤𝑖3𝑗 − 𝜙𝑖3 𝑤𝑖4𝑗 − 𝜙𝑖4

Coordinate descent interpretation

VUGRAPH 13

• If 𝑝𝑗 < 𝑤𝑖𝑗 − 𝜙𝑖, 𝑖 bids for object 𝑗 the amount 𝑤𝑖𝑗 − 𝜙𝑖 + 𝜖

• Accepted bid by 𝑗: max
𝑖

𝑤𝑖𝑗 − 𝜙𝑖 + 𝜖

• Also, note that the right directional derivative of 𝑞(𝑝) along 𝑝𝑗 = 𝑒𝑗 is

𝑑𝑗
+ = 1 − (# of persons 𝑖 with 𝑗 ∈ out 𝑖 ∋ 𝑝𝑗 < 𝑤𝑖𝑗 − 𝜙𝑖)

• This is because we can increase 𝑝𝑗 only if 𝜙𝑖 = 𝑤𝑖𝑗′ − 𝑝𝑗′ ≤ 𝑤𝑖𝑗 − 𝑝𝑗 where 𝑗′ is second best

 This interpretation leads to two other variations of auction

• Each assigned person 𝑖 also bids for his own assigned object 𝑗, 𝑏𝑖𝑗 = 𝑤𝑖𝑗 − 𝜙𝑖 + 𝜖

𝑝𝑗𝑤𝑖1𝑗 − 𝜙𝑖1 𝑤𝑖2𝑗 − 𝜙𝑖2 𝑤𝑖3𝑗 − 𝜙𝑖3
𝑤𝑖4𝑗 − 𝜙𝑖4

𝜙𝑖1

𝜙𝑖2

𝜙𝑖3

𝑤𝑖4𝑗

𝑤𝑖3𝑗

𝑤𝑖2𝑗

𝑤𝑖1𝑗

𝜙𝑖4

𝑝𝑗

Gauss-Seidel method

VUGRAPH 14

• Gauss-Seidel

 Only one person bids at a time

 Price rise is taken into account before the next person bids

 Problem: can’t parallelize, but has much faster convergence on sequential
implementations

 ∃ 𝑣𝑎𝑟𝑖𝑎𝑡𝑖𝑜𝑛𝑠 in between Jacobi and Gauss-Seidel (e.g. bids by a subset of persons)…
Research Problem

 Q: Can we maintain optimality even in the presence of 𝜖?

 A: Yes!!

• Suppose 𝑖 is assigned object 𝑗𝑖 , ∀𝑖 = 1,2,… , 𝑛

• Each step of the algorithm maintains

• If f* is the optimal primal value (note: maximization)

• If 𝑎𝑖𝑗 are integer & 𝜖 <
1

𝑛
⇒ 𝑛𝜖 < 1 ⇒ optimality

 Does the algorithm terminate?

• Yes if ∃ at least one feasible solution

i

i i

i

i

ij i

i

j

j j

i i i

w p

w p

n



 











  

i iij i j

i i i

f w p n f n       

Illustration of Gauss-Seidel Auction algorithm

VUGRAPH 15

14 5 8 7

2 12 6 5

7 8 3 9

2 4 6 10

W

    
 
   

 
    
 
    

• Initialize prices to zero.  = 0.2

Iter Prices X Bidder Object Bid

1 (0,0,0,0)  1 2 2.2

2 (0,2.2,0,0) (1,2) 2 1 3.2

3 (3.2,2.2,0,0) (1,2),(2,1) 3 3 6.2

4 (3.2,2.2,6.2,0) (1,2),(2,1),
(3,3)

4 1 4.4

5 (4.4,2.2,6.2,0) (1,2),(3,3),
(4,1)

2 4 1.6

6 (4.4,2.2,6.2,1.
6)

(1,2),(3,3),
(4,1),(2,4)

  

• Assignments: x12 = 1;x33= 1; x41= 1; x24= 1

• f *= w12 + w33 + w41 + w24 = -15

 4.4 2.2 6.2 1.6
T

p 

Auction with a different price initialization

VUGRAPH 16

14 5 8 7

2 12 6 5

7 8 3 9

2 4 6 10

W

    
 
   

 
    
 
    

• Initialize prices. 𝑝𝑗 = max
𝑖
(𝑤𝑖𝑗)  = 0.2

Iter Prices X Bidder Object Bid

1 (-2,-4,-3,-5) (2,1),(4,2),(3,
3)

1 2 -1.8

2 (-2,-1.8,-3,
-5)

(2,1),(3,3),(1,
2)

4 1 0.2

3 (0.2,-1.8,-3,
--5)

(3,3),(1,2),(4,
1)

2 4 -1.8

4 (0.2, -1.8, -3,
-1.8)

(3,3),(1,2),
(4,1),(2,4)

  

• Assignments: x12 = 1;x33= 1; x41= 1; x24= 1

• f *= w12 + w33 + w41 + w24 = -15

 2 4 3 5
T

p     

 0.2 1.8 3 1.8
T

p    

Proof of convergence

VUGRAPH 17

• Proof relies on the following facts

 If an object is assigned, it remains assigned throughout

 Each time an object is bidded upon, its price increases by at least 𝜖

 If an object is bidded upon infinite number of times, its price → ∞

 Recall: unbounded dual → infeasible primal

• If a person bids for at most out(𝑖) times, 𝜋𝑖 ↓ by at least 𝜖

 Each time a person bids, 𝜋𝑖 ↓ or 𝜋𝑖 remains same

 If exceed out(𝑖) times, 𝜋𝑖 ↓ at least 𝜖

 If a person bids infinite # of times, 𝜋𝑖 ↓ −∞

• Can show (see Bertsekas’s book) that, if the problem is feasible

If 𝜋𝑖 < this bound during auction, declare primal as infeasible. Unfortunately, it may
take many iterations before the bound is crossed. Alternately, add artificial link 𝑖, 𝑗

wij < –(2n– 1)C

     0

,
2 1 1 max , where maxi j ij

j i j
n C n p C w       

Algorithm complexity

VUGRAPH 18

o Scaling problems

o For some examples, # of bidding phases proportional to
𝑛𝐶

𝜖
⇒ performance is very

sensitive to 𝐶

o Scale all costs 𝑤𝑖𝑗 by (𝑛 + 1) & apply the algorithm with progressively lower value of 𝜖
until 𝜖 ≈ 1 or 𝜖 < 1

 Use

 ∆= 𝑛𝐶 & 𝜏 = 2 is suggested

 Alternately, 𝜖 =
𝑛𝐶

2
initially & reduce 𝜖 ← max

𝜖

6
, 1

 With these values, the complexity of the algorithm is O(n|E|log(nC))

Proof of convergence for asynchronous version is similar to shortest path algorithm

 Computational results

o Comparable to any existing assignment algorithm… average complexity O(n1.8)

o Parallelizable

o Especially fast for sparse problems

1

2

3

1 0 𝜖 2𝜖

2 0 𝜖 2𝜖 # of bidding phases = c/𝜖

3

𝑐

𝑐
𝑐

𝑐

𝑐 𝑐

0

𝑝𝑗

  max 1, , 0,1,2,
k

k k


 
  

 

Auction algorithm variants

VUGRAPH 19

• Recent variants:
 Reverse auction ⇒ objects bid for persons

 Forward/reverse auction ⇒ alternate cycles of person-object biddings

 Look-back auction

 Extensions to inequality constraints

 Asymmetric assignment problem ⇒ 𝑚 ≠ 𝑛

 Multi-assignment problem ⇒ a person may be assigned to more than one object

• Reverse auction

 Objects compete for persons by offering discounts

 Duals:

 Reverse auction iteration

o Find the “best” person 𝑖∗ = arg max
𝑖∈In(𝑗)

(𝑤𝑖𝑗 − 𝜋𝑖)

Let 𝛽𝑗 = 𝑤𝑖∗𝑗 − 𝜋𝑖∗

𝛿𝑗 = max
𝑖∈In(𝑗)
𝑖≠𝑖∗

𝑤𝑖𝑗 − 𝜋𝑖

If 𝑖∗ is the only person, set 𝛿𝑗 = −∞ or 𝛿𝑗 ≪ 𝛽𝑗

o Bid for person 𝑖∗

𝑏𝑖∗𝑗 = 𝑤𝑖∗𝑗 − 𝛿𝑗 + 𝜖

o For each person 𝑖 receiving at least one bid,
𝜋𝑖 = max

𝑗∈𝐵(𝑖)
𝑏𝑖𝑗 = 𝑏𝑖𝑗∗

B(i) = set of objects from which 𝑖 received a bid. De-assign any previous assignment for 𝑖, set 𝑥𝑖𝑗∗ = 1

 
In()

1 1

max()
n n

i ij i
i j

i i

q w  


 

   

Auction algorithm variants

VUGRAPH 20

• Combined forward and reverse auction

 Maintain 𝜖 − 𝐶𝑆 conditions on both 𝜋, 𝑝

⇒ 𝜋𝑖 + 𝑝𝑗 ≥ 𝑤𝑖𝑗 − 𝜖 ∀(𝑖, 𝑗)

𝜋𝑖 + 𝑝𝑗 = 𝑤𝑖𝑗 ∀ 𝑖, 𝑗 ∈ 𝑋 = Solution

 Execute alternately the forward auction a few iterations and reverse
auction a few iterations

o Run forward auction: persons bid on objects. At the end of each iteration, set
𝜋𝑖 = 𝑤𝑖𝑗∗ − 𝑝𝑗∗ if 𝑥𝑖𝑗∗ = 1

stop if all are assigned, else go to Reverse Auction

(do until number of assignments increases by at least one.)

o Run reverse auction: objects bid on persons. At the end of each iteration, set
𝑝𝑗 = 𝑤𝑖∗𝑗 − 𝜋𝑖∗ if 𝑥𝑖∗𝑗 = 1

stop if all are assigned, else go to Forward Auction.

(do until number of assignments increases by at least one.)

 No need to do 𝜖 −scaling

• Look-back auction
 Number of objects a person bids to is typically small (3)

 Keep track of biddings of each person i in a small list

• Asymmetric assignment

 Number of objects 𝑛 > number of persons, 𝑚

 All persons should be assigned, but allow objects to remain unassigned

1 1

In()
1 1

min ()

s.t. (,)

 1, 2, ,

min max() () min max()

m n

i j

i j

i j ij

j

m n

i ij i ij i
j i j

i j

p n m

p w i j E

p j n

w n m w

 





  

 


 

  

   

  

     

 

 

Asymmetric Auction algorithm

VUGRAPH 21

Primal

   

(,)

(,)

(,)

max

s.t. 1 1, 2, ,

1 1, 2, ,

0,1 , ,

ij ij

i j E

ij

i j E

ij

i j E

ij

w x

x i m

x j n

x i j E







   

   

  







Equivalent primal

 

(,)

(,)

(,)

1

0

max

s.t. 1 1, 2, , 0

1 1, 2, ,

0

1,2,

,

,

ij ij

i j E

ij sj

i j E

ij

i j E

n

j

ij

sj

sj

sj

x

x n

w x

x i m w

x j n

x i j

m

x j n

E









     

 

 

 

  



 

 









Dual

Reverse Auction algorithm

VUGRAPH 22

 Use a modified reverse auction

 Select an object 𝑗 which is unassigned and satisfies 𝑝𝑗 > 𝜆. If no such object is
found, terminate the algorithm.

 Find best person 𝑖∗

If 𝜆 ≥ 𝛽𝑗 − 𝜖, set 𝑝𝑗 = 𝜆 and go to next iteration. Otherwise, let

Remove any assignment of 𝑖∗

Set 𝑥𝑖∗𝑗 = 1

• The algorithm terminates with an assignment that is within 𝑚𝜖 of being optimal (𝜖 ≤ 1/𝑚). See
Bertsekas’s book.

• Can use forward-reverse auction. Initialize forward auction with object prices equal to zero.

• Multi-assignment ⇒ it is possible to assign more than one object to a single person (e.g., tracking
clusters of objects)… See Exercise 7.10 of Bertsekas’s book.

• Asymmetric Assignment where there is no need for every person, as well as for every object, to be
assigned. See Exercise 7.11 of Bertsekas’s book.

 

 
 

In()

In ,

arg max

max

ij i
i j

j i j i

j ij i
i j i i

i w

w

w



 

 

 







 

 

 

 

 

 

min ,

max ,

j j j

j j j j

i i i

p p

    

   

     

   

    

   

Hungarian algorithm for the assignment problem

VUGRAPH 23

• Typically done as minimization. Fact: Adding a constant to a row or a

column does not change solution

• Konig-Egervary Theorem: If have n zeros in different rows and columns

of matrix C, then we can construct a “perfect” matching. This is called

“ideal” (“perfect”) cost matrix.

• Kuhn-Munkres algorithm systematically converts any C matrix into an

“ideal” cost matrix

• Algorithm is called Hungarian in view of Konig-Egervary Theorem

   

1 1

1

1

min ;

s.t. 1 1, ,

1 1, ,

0,1 , ,

n n

ij ij ij ij

i j

n

ij

j

n

ij

i

ij

c x c w

x i n

x j n

x i j

 





 

   

   

 







   

1 1 1 1 1

1

1

min

s.t. 1 1, ,

1 1, ,

0,1 , ,

n n n n n

ij ij ij ij ij

i j j i j

n

ij

j

n

ij

i

ij

c x x x

x i n

x j

c

n

x i j

 
    





  

   

   

 

  





Hungarian algorithm steps for minimization problem

VUGRAPH 24

• Step 1: For each row, subtract the minimum number in that row from
all numbers in that row.

• Step 2: For each column, subtract the minimum number in that
column from all numbers in that column.

• Step 3: Draw the minimum number of lines to cover all zeroes. If this
number = n, Done — an assignment can be made.

• Step 4: Determine the minimum uncovered number (call it ).

 Subtract  from uncovered numbers.

 Add  to numbers covered by two lines.

 Numbers covered by one line remain the same.

 Then, Go to Step 3.

• Note: Essentially, we came to step 4 because we only partially matched
a subset of rows I and the corresponding subset of columns, J. What if
we subtract  > 0 from every row that is not in I , and we add  to every
column in J? Then, the only entries that get decreased are the entries
that are not covered. The total decrease = (n-|I|-|J|) >0.

J

I  x

x 

J

I

Illustration of Hungarian algorithm

VUGRAPH 25

14 5 8 7

2 12 6 5

7 8 3 9

2 4 6 10

 
 
 
 
 
 

Step 1
9 0 3 2

0 10 4 3

4 5 0 6

0 2 4 8

 
 
 
 
 
 

Step 2
9 0 3 0

0 10 4 1

4 5 0 4

0 2 4 6

 
 
 
 
 
 

10 0 4 0

0 9 4 0

4 4 0 3

0 1 4 5

 
 
 
 
 
 

• Assignments
• x33= 1
• x41= 1
• x24= 1
• x12 = 1

• Cost = c12 + c24 + c33 + c41 = 15

Step 4

Step 3

• Row-column heuristic: at each step, pick min element, assign,
and remove corresponding row and column.
• x21=1; x33=1; x42=1; x14=1; cost= 2+3+4+7=16

Graph theoretic ideas behind Hungarian algorithm

VUGRAPH 26

• An alternating path in a bipartite graph G= (S, T, E) with respect to a
matching M is a path with its edges alternately in M and not in M. See (a).

• Alternating tree Q (forest, F if the graph is disconnected) with respect
to a matching M has a root node r in S and all other nodes except r are
matched. See (b).

• An augmenting path P is a simple alternating path joining two free
vertices u ∈ S and v ∈ T. See (c).

• A Matching M is perfect (maximal) if there is no augmenting path with
respect to M. see (a).

• The Hungarian algorithm successively builds maximum matchings on a
equality graph G’ that satisfies CS conditions, i.e., rij = ui + vj – cij=0

multipliers

1 2 ()i j i n n ju v u v or u v u v     

1 3 2 1{(,), (,), (,), (,)}j i n nu v u v u v u v

Connection to Duality

VUGRAPH 27

• Recall dual:

• Hungarian algorithm is a primal-dual algorithm that starts with

• Maintains dual feasibility rij= cij-ui - vj  0.

• Works with equality graph, G’ for which rij = cij-ui - vj = 0 , i.e., preserves CS
conditions. Solves the maximum cardinality bipartite matching problem on the
graph G’ that either finds a perfect matching, or we get a vertex cover of size < n.

• If (I, J) is not perfect cover, it finds the direction of dual increase

()

()

min ; 1,2,..,

min (); 1,2,..,

i ij
j out i

j ij i
i In j

u c i n

v c u j n





 

  

;
min

;

;

ij
i I j J

i i

j j

r

i I

p p j J



  



 


  

  

 
1 1

max , max

s.t. , (,)

n n

i j

i j

i j ij

q u v u v

u v c i j E

 

  
  

  

   

 

Illustration of Hungarian algorithm

VUGRAPH 28

 

14 5 8 7 5 9 0 3 0

2 12 6 5 2 0 10 4 1
; 0 0 0 2 ; ;

7 8 3 9 3 4 5 0 4

2 4 6 10 2 0 2 4 6

cos 14

' ({1,2,3,4},{1,2,3,4},{(1,2), (1,4), (2,1), (3,3), (4,1)})

, ' {(1,2), (2,1), (3,3)} .

T
C u v R

Dual t

G

Matching M perfect

     
     
         
     
     
     





 

 '

,

{1}; {1,3}. cov 3 4

4 10 0 4 0

2 0 9 4 0
min 1 ; 0 1 0 3 ;

3 4 4 0 3

2 0 1 4 5

T

ij
i I j J

I J Node er

c u v R
 

   

   
   
        
   
   
   

• Assignments: x33= 1; x41= 1; x24= 1; x12 = 1

• Cost = c12 + c24 + c33 + c41 = 15

1 1

Dual cos 5t= 1
n n

i j

i j

u v
 

  

Class of Shortest Augmenting Path Algorithms

VUGRAPH 29

• Fact: Assignment is a special case of transportation problem and the more
general minimum cost network flow (MCNF) problem (Lecture 10)

• In assignment, each node in S transmits one unit and each unit in T must
receive one unit  multi-source, multi-sink problem

• Indeed, an optimal solution can be found by considering one source in S at a
time and finding the shortest path emanating from it to an unassigned node in
T.

• While Hungarian algorithm finds any feasible augmenting path, Jonker,
Volgenant and Castanon (JVC) and a number of other algorithms find the
shortest augmenting paths

 JVC  a clever shortest augmenting path implementation of Hungarian
and a number of pre-processing techniques, including column reduction,
reduction transfer, reduction of unassigned rows, which is basically
auction

• Basic idea

 Select an unassigned node in S

 Construct the residual (auxiliary, incremental) graph, G’ with costs {rij}

 Find the shortest augmenting path via Dijkstra (recall rij 0)

 Augment the solution  improve the match

 Update the dual variables so that CS conditions hold

Jonker, Volgenant and Castanon (JVC) algorithm

VUGRAPH 30

• JVC algorithm for primal minimization (cij = –wij, Code is available on the net)

 Indices 𝑖 and 𝑗 refer to rows and columns, respectively

 𝑥𝑖(𝑦𝑗) is the column (row) index assigned to row 𝑖 (column 𝑗), with 𝑥𝑖 = 0 (𝑦𝑗 = 0) for an
unassigned row 𝑖 (column 𝑗)

 The dual variables (prices) 𝑢𝑖 and 𝑣𝑗 correspond to row 𝑖 and column 𝑗, respectively, with 𝑟𝑖𝑗 =
𝑐𝑖𝑗 − 𝑢𝑖 − 𝑣𝑗 denoting the reduced costs

• Basic outline of JVC algorithm

Step 1: initialization … column reduction

Step 2: termination, if all rows are assigned

Step 3: augmentation … construct auxiliary network and determine from unassigned row 𝑖 to
unassigned column 𝑗 an alternating path of minimal total reduced cost … use to augment the
solution

Step 4: update dual solution … restore complementary slackness and go to step 2

Primal

 

min

s.t. 1

1

0, , ,

ij iji j

iji

ijj

ij

x c

x

x

x i j E



  



 





Dual

max

s.t. 0

i j

i j

ij i j

u v

c u v

  
 

 



 

 

 

JVC algorithm procedure – initialization

VUGRAPH 31

• Initialization

 Column reduction

for 𝑗 = 𝑛…1 do

𝑐𝑗 = 𝑗; ℎ = 𝑐1𝑗; 𝑖1 = 1
for 𝑖 = 2…𝑛 do

if 𝑐𝑖𝑗 < ℎ then ℎ = 𝑐𝑖𝑗; 𝑖1 = 𝑖

𝑣𝑗 = ℎ

if 𝑥𝑖1 = 0 then 𝑥𝑖1 = 𝑗; 𝑦𝑗 = 𝑖1
else 𝑥𝑖 = −𝑥𝑖; 𝑦𝑗 = 0

end do
end do

⇒ 𝑣𝑗 = min
𝑖
(𝑐𝑖𝑗)

.. each column is assigned to minimal row element

.. some rows may not be assigned

 Reduction transfer from unassigned to assigned rows

for each assigned row 𝑖 do
𝑗1 = 𝑥𝑖; 𝜇 = min{𝑐𝑖𝑗 − 𝑣𝑗: 𝑗 = 1, … , 𝑛; 𝑗 ≠ 𝑗1}

𝑣𝑗1 = 𝑣𝑗1 − 𝜇 − 𝑢𝑖 ; 𝑢𝑖 = 𝜇
end do

… similar to 2nd best profit in auction

  21 42 33

Column Reduction:

14 5 8 7

2 12 6 5

7 8 3 9

2 4 6 10

0

0
2 4 3 5 ; ; 1

0

0

cos 14

1 4 .

T

C

v u x x x

Dual t

Row and column unassigned

 
 
 
 
 
 

 
 
      
 
 
 



 

1 1

3 3

2 4

Reduction Transfer:

Row 2: =min(8,3,0), 2; 0

Row 3: =min(5,4,4), 1; 4

Row 4: =min(0,3,5), 4; 0

0

0
2 4 1 5 ;

4

0

cos 14

T

v u

v u

v u

v u

Dual t







 

  

 

 
 
    
 
 
 



JVC algorithm procedure – pre-processing

VUGRAPH 32

 Augmenting reduction of unassigned rows (…auction)

𝐿𝐼𝑆𝑇 = all unassigned rows
∀𝑖 ∈ 𝐿𝐼𝑆𝑇 do

repeat

𝑘1 = min{𝑐𝑖𝑗 − 𝑣𝑗: 𝑗 = 1,… , 𝑛}

select 𝑗1 with 𝑐𝑖𝑗1 − 𝑣𝑗1 = 𝑘1
𝑘2 = min{𝑐𝑖𝑗 − 𝑣𝑗: 𝑗 = 1,… , 𝑛; 𝑗 ≠ 𝑗1}

select 𝑗2 with 𝑤 = 𝑐𝑖𝑗2 − 𝑣𝑗2 = 𝑘2; 𝑗2 ≠ 𝑗1
𝑢𝑖 = 𝑘2
if 𝑘1 < 𝑘2 then

𝑣𝑗1 = 𝑣𝑗1 − (𝑘2 − 𝑘1)

else if 𝑗1 is assigned, then
𝑗1 = 𝑗2

𝑟 = 𝑦𝑗1;

if 𝑟 > 0 then

𝑥𝑟 = 0; 𝑥𝑖 = 𝑗1; 𝑦𝑗1 = 𝑖; 𝑖 = 𝑟

until 𝑘1 = 𝑘2 or 𝑟 = 0
end do

 Complexity of first two initialization procedures is O(n2), and it can be shown that
the augmenting reduction procedure has complexity O(Rn2), with R the range of
cost coefficients

 

 

1 2

2 1

12

42

1 2

1 4

41

21

1

Augmentation Reduction:

Row 1: =min(12,1,9,2)=1; 2

3; 2

1

0

2

0
2 3 1 5 ;

4

0

cos 15

Row 4: =min(0,1,7,5)=0; 1

1; 1

1

0

2

0
1 3 1 5 ;

4

1

Row 2: =min

T

T

k k

v u

x

x

v u

Dual t

k k

v u

x

x

v u

k



 





 
 
    
 
 
 





 





 
 
    
 
 
 

 

2

4 2

24

(1,9,7,0)=0; 1

4; 1

1

0

2

1
0 3 1 4 ;

4

2

Primal and dual feasible. Done!

T

k

v u

x

r

v u



 





 
 
    
 
 
 

JVC algorithm procedure – augmentation + update

VUGRAPH 33

• Augmentation

 Modified version of Dijkstra’s shortest augmenting path method
∀𝑖∗ unassigned do

𝑇𝑂𝑆𝐶𝐴𝑁 = 1…𝑛
for 𝑗 = 1…𝑛 do

𝑑𝑗 = ∞
end do
𝑖 = 𝑖∗; 𝑑𝑖∗ = 0; 𝜇 = 0
repeat

∀𝑗 ∈ 𝑂𝑈𝑇 𝑖 ∩ 𝑇𝑂𝑆𝐶𝐴𝑁 do
if 𝜇 + 𝑐𝑖𝑗 − 𝑢𝑖 − 𝑣𝑗 < 𝑑𝑗 then

𝑑𝑗 = 𝜇 + 𝑐𝑖𝑗 − 𝑢𝑖 − 𝑣𝑗; pred 𝑗 = 𝑖
end do
𝜇 = ∞
∀𝑗 ∈ 𝑇𝑂𝑆𝐶𝐴𝑁 do

if 𝑑𝑗 < 𝜇 then

𝜇 = 𝑑𝑗; 𝜇𝑗 = 𝑗
end do

𝑖 = 𝑦𝜇𝑗; 𝑇𝑂𝑆𝐶𝐴𝑁 = 𝑇𝑂𝑆𝐶𝐴𝑁 − 𝜇𝑗
until 𝑦𝜇𝑗 = 0

end do

 Complexity for augmentation phase is O(n3), so this holds for the entire JVC algorithm

• Update of the dual solution

 After augmentation of the partial assignment, the values of dual variables must be updated to
restore complementary slackness, that is,

o 𝑐𝑖𝑘 − 𝑢𝑖 − 𝑣𝑘 = 0, if 𝑥𝑖 = 𝑘 for assigned column 𝑘, 𝑖 = 1,… , 𝑛 and

o 𝑐𝑖𝑘 − 𝑢𝑖 − 𝑣𝑘 ≥ 0

Don’t need to execute
this too many times

Murty’s Clever Partitioning Idea to get m-best solutions

VUGRAPH 45

• Suppose you have three binary variables, x1 , x2 , x3

x1 x2 x3

1 1 1

1 1 0

1 0 1

1 0 0

0 1 1

0 1 0

0 0 1

0 0 0

Best solution

• To get 2nd best solution

• Fix x1= 0

• Now, you are searching over
(0,1,1), (0,1,0),(0,0,1),(0,0,0)

• Fix x1= 1 and x2=0

• Now, you are searching over
(1,0,1), (1,0,0)

• Fix x1= 1, x2=1 and x3=1

• Now, you evaluate (1,1,1)

 You searched over all (x1 , x2 , x3),

except the best (1,1,0)

• Pick the 2nd best solution (cost and
variables) from the solutions from
these. Keep the other two in a list.

• To get the 3rd best, do the
partitioning on 2nd best solution

2nd Best solution

• To get the 3rd best, do the partitioning
on 2nd best solution

• Fix x1= 0 and x2=0 and search
over(0,0,1),(0,0,0)

• Fix x1= 0, x2=1 and x3=0

• Pick the 3rd best from these and others
in the list.

Murty’s Partitioning for Assignment

VUGRAPH 46

 Suppose we express the assignment problem 𝑃 of size 𝑛 as a bipartite graph, represented as a

list of triples 𝑦, 𝑧, 𝑙 , with an assignment 𝐴𝑘 from the (feasible) solution space 𝐴 denoted as a set
of triples in which each 𝑦 and 𝑧 appear exactly once, that is,

𝐴 =ራ

𝑘=1

𝑛!

𝐴𝑘 , where 𝐴𝑘 = 𝑦𝑘𝑗 , 𝑧𝑘𝑗 , 𝑙𝑘𝑗 , 𝑗 = 1,… , 𝑛

 The cost 𝐶(𝐴𝑘) of the assignment 𝐴𝑘 is simply the sum of 𝑙′s in the triples, that is,

𝐶 𝐴𝑘 =෍

𝑗=1

𝑛

𝑙𝑘𝑗

 The single best assignment 𝐴∗ to 𝑃 can be found using any of the classical methods of solving
the assignment problem (e.g., auction, JVC)

 Subsequent assignments to 𝑃 are found by solving a succession of assignment problems, where
𝑃 is partitioned into a series of sub-problems, 𝑃1, 𝑃2, … , 𝑃𝑛, having solution spaces 𝐴1, 𝐴2, … , 𝐴𝑛 ∋

ራ

𝑖=1

𝑛

𝐴𝑖 = 𝐴 − 𝐴∗

𝐴𝑖 ∩ 𝐴𝑗 = ∅, for 𝑖, 𝑗 = 1,… , 𝑛, 𝑖 ≠ 𝑗

 Subproblem 𝑃1 is 𝑃 less the 1st triple 𝑦1, 𝑧1, 𝑙1 in the best assignment 𝐴∗ of 𝑃

⇒ 𝐴1 = 𝐴𝑖 ∈ 𝐴: 𝑦𝑖𝑗 , 𝑧𝑖𝑗 , 𝑙𝑖𝑗 ≠ 𝑦1, 𝑧1, 𝑙1 , 𝑗 = 1,… , 𝑛

 In subproblems 𝑃2, … , 𝑃𝑛, we want to force 𝑦1, 𝑧1, 𝑙1 to be in all assignments of 𝐴2, … , 𝐴𝑛

Murty’s M-Best assignment algorithm

VUGRAPH 47

 Hence, 𝑃2 is 𝑃1, plus the triple 𝑦1, 𝑧1, 𝑙1 , less all triples 𝑦1, 𝑧𝑗 , 𝑙𝑗 & 𝑦𝑗 , 𝑧1, 𝑙𝑗 , 𝑗 = 2,… , 𝑛, and
less the 2nd triple 𝑦2, 𝑧2, 𝑙2 in the best assignment 𝐴∗ of 𝑃

 In the construction of subproblems 𝑃𝑘, … , 𝑃𝑛, we force 𝑦𝑙 , 𝑧𝑙 , 𝑙𝑙 , 𝑙 = 1,… , 𝑘 − 1 to be in all
assignments of 𝐴𝑘, … , 𝐴𝑛

 In general, subproblem 𝑃𝑘, 1 < 𝑘 ≤ 𝑛, is 𝑃𝑘−1 plus the triple 𝑦𝑘−1, 𝑧𝑘−1, 𝑙𝑘−1 , less all triples
𝑦𝑘−1, 𝑧𝑗 , 𝑙𝑗 & 𝑦𝑗 , 𝑧𝑘−1, 𝑙𝑗 , 𝑗 ≠ 𝑘 − 1, and less the 𝑘th triple 𝑦𝑘, 𝑧𝑘, 𝑙𝑘 in the best assignment 𝐴∗

of 𝑃

 Note that solution spaces 𝐴𝑖 for subproblems 𝑃𝑖 , 𝑖 = 1, … , 𝑛 are disjoint and their union will
be exactly the solution space to 𝑃 less its optimal assignment (i.e., 𝐴 − 𝐴∗)

 Once we partition 𝑃 according to its optimal assignment 𝐴∗, we place the resulting
subproblems 𝑃1, … , 𝑃𝑛 together with their optimal assignments 𝐴1

∗ , … , 𝐴𝑛
∗ on a priority queue of

(problem, assignment) pairs (e.g., 𝑄𝑢𝑒𝑢𝑒 ← 𝑃𝑖 , 𝐴𝑖
∗ , 𝑖 = 1, … , 𝑛)

 We then find the problem 𝑃′ in the queue having the best assignment … the best assignment
𝐴′∗ to this problem is the 2nd best assignment to 𝑃

 We then remove 𝑃′ from the queue and replace it by its partitioning (according to optimal
assignment 𝐴′∗) ⇒ the best assignment found in the queue will be the 3rd best assignment to 𝑃

 Complexity: since we perform one partitioning for each of the M-Best assignments, each
partitioning (worst case) creating O(n) new problems, ⇒ O(Mn) assignment problems and
queue insertions . . . each assignment takes O(n3), each insertion takes at most O(Mn), hence,
Murty’s algorithm takes O(Mn4)

 2 2 2 2 1 1 1: , , , , , 1, , & , ,
j j j

i i

i i iA A A y z l y z l j n y z l A      

 : , , , , , 1, , & , , , 1, , 1
j j j

i i

k i i i k k k l l lA A A y z l y z l j n y z l A l k         

Optimization of Murty’s algorithm

VUGRAPH 48

• (Stone & Cox)

 Recall Murty’s algorithm is independent of the assignment algorithm
chosen for solving the assignment problem

 Suppose we use the JVC algorithm to find the optimal assignment

o 2 important properties of the JVC algorithm

 The optimal assignment will be found as long as the partial binary variable
assignment, X, and dual variables u and v satisfy the following two criteria:

 The slack or reduced cost (i.e., cij – ui – vj) between any z and y is useful in estimating
the cost of the best assignment in which they are assigned to each other

 If the current lower bound on the cost of the partial assignment, with either zi

or yj unassigned, is C, then the cost of the optimal assignment that assigns zi to
yj will be at least C + cij – ui – vj

 A new lower bound can be computed by finding the minimum slack of a
partial assignment

When used in Murty’s algorithm, Stone & Cox noted that the JVC assignment algorithm
allows for a # of optimizations that dramatically improve both average-case and worst-case
complexity

 3 optimizations proposed

o Dual variables & partial solution inheritance during partitioning

o Sorting subproblems by lower cost bounds before solving

o Partitioning in an optimized order

 Only inheritance reduces worst-case complexity, so we’ll discuss it

, 1,

, 0,

ij ij i j

ij ij i j

i j x c u v

i j x c u v

   

  

Dual variables

VUGRAPH 49

• Dual variables & partial solution inheritance during partitioning
 When a problem is partitioned, considerable work has been expended in finding its

best assignment . . . we exploit this computation when finding best assignments in
subproblems resulting from partitioning

 Consider a problem 𝑃 being partitioned, with dual variables 𝑢(𝑃) and 𝑣(𝑃), binary
variable assignment 𝑥(𝑃), and cost matrix 𝑐(𝑃)

o Subproblem 𝑃1 can inherit part of 𝑃′s computation by assigning 𝑐(𝑃1) = 𝑐(𝑃),

setting 𝑐𝑖1𝑗1
(𝑃1) = ∞ and setting 𝑥𝑖1𝑗1

(𝑃1) = 0 corresponding to arc 𝑦𝑖1 , 𝑧𝑖1 , 𝑙 ∈ 𝐴∗,

and initializing 𝑥(𝑃1) = 𝑥(𝑃), 𝑢(𝑃1) = 𝑢(𝑃), and 𝑣(𝑃1) = 𝑣(𝑃)

o In general, subproblem 𝑃𝑘 can inherit part of the computation at 𝑃𝑘−1 by

assigning 𝑐 𝑃𝑘 = 𝑐 𝑃𝑘−1 , setting 𝑐𝑖𝑘𝑗𝑘
(𝑃𝑘) = ∞ and setting 𝑥𝑖𝑘𝑗𝑘

(𝑃𝑘) = 0 corresponding

to 𝑦𝑖𝑘 , 𝑧𝑖𝑘 , 𝑙 ∈ 𝐴∗, and initializing 𝑥(𝑃𝑘) = 𝑥(𝑃𝑘−1), 𝑢(𝑃𝑘) = 𝑢(𝑃𝑘−1), and 𝑣(𝑃𝑘) =

𝑣(𝑃𝑘−1)

The value of this optimization is that, after the first assignment to the original
assignment problem is found, no more than one augmentation needs to be
performed for each new subproblem

 Complexity: the augmentation step of JVC takes O(n2), so Murty’s algorithm with
this optimization is O(Mn3)

Correlation problem

VUGRAPH 50

• A solvable case of assignment problem: correlation problem

 f(y) = g(y) = 1 ⇒ wij = |αi – βj|

𝛼1 ≥ 𝛼2… ≥ 𝛼𝑛
 Matching

𝛽1 ≥ 𝛽2… ≥ 𝛽𝑛
 This can be interpreted as the following assignment problem

o Suppose have n in S and n in T such that

 Attractiveness of 𝑖 ∈ 𝑆 = 𝛼𝑖

 Attractiveness of 𝑗 ∈ 𝑇 = 𝛽𝑗

 Define 𝑤𝑖𝑗 = |𝛼𝑖 − 𝛽𝑗|

This is also min-max optimal matching … ∃ several other solvable cases…see Lawler

 

 

, if

, if

j

i

i

j

ij j i

ij j i

w f y dy

w g y dy









 

 

 

 





1 2

1 2

as

min

sort
s.t. 1,

sort

1,

0

sign(,)

ij iji j

n

iji
n

ijj

ij

x

x j

x i

x

w

i j

  

  

 
 

  







 





Summary

VUGRAPH 51

• Examples of assignment problems

• Auction algorithm

 Coordinate dual descent

 Scaling in critical to the success of the algorithm

• Hungarian method

 O(n3) algorithm

 Not as fast as auction or JVC in practice

• Successive shortest path method

 JVC algorithm

 Fastest algorithm in practice to date (?)

• M-Best assignment algorithms

Recent Book: R. Burkard, M. Dell’Amico and S. Martello, Assignment Problems,
SIAM, 2009.

