

Lecture 9: Maximum Flow in a Network

Prof. Krishna R. Pattipati Dept. of Electrical and Computer Engineering University of Connecticut Contact: <u>krishna@engr.uconn.edu</u>; (860) 486-2890

© K. R. Pattipati, 2001-2016



- LP formulation and its dual
  - Maximum flow = Minimum cut
  - A historical perspective on maximum flow algorithms
- Ford-Fulkerson labeling algorithm
- Dinic-Malhotra-Pramodh Kumar-Maheswari (DMKM) algorithm
  - Push-pull algorithm
  - Wave method
- Applications of maximum flow
  - Mapping problem
  - PERT networks



- Suppose have a graph *G* = < *V*, *E* > with two distinguished (designated) nodes *s* and *t* 
  - s = source node; t = terminal node
- Consider edge between nodes *i* and *j* 
  - Edge < *i*, *j* > permits flow in both directions . . . undirected
    - $\circ~$  Edge < i,j> has a capacity  $c_{ij}$  in the forward direction and  $c_{ji}$  in the backward direction
    - $\circ c_{ij} \ge 0 \text{ and } c_{ji} \ge 0$
    - Usually, we assume  $c_{ij} = c_{ji}$  (symmetric)
  - Edge < *i*, *j* > permits flow from node *i* to node *j* only
    - Capacity  $c_{ij} \ge 0$
    - $c_{ji} = 0$  → no flow allowed in reverse direction
- Since any undirected graph can be converted into a directed graph, we assume that *G* is directed



- Let  $x_{ij}$  be the flow of commodity (oil, messages, vehicles) from *i* to *j* 
  - By definition  $x_{ji} = -x_{ij} \rightarrow$  flow matrix is *skew symmetric*
- $x_{ij} \le c_{ij}$  and  $x_{ji} \le c_{ji} \rightarrow$  flows satisfy <u>capacity constraints</u>
- For any  $\langle i, j \rangle$  if  $x_{ij} = c_{ij}$  or  $x_{ji} = c_{ji} \Rightarrow$  edge  $\langle i, j \rangle$  is <u>saturated</u>
- If don't have an edge  $\langle i, j \rangle \Rightarrow c_{ij} = c_{ji} = x_{ij} = x_{ji} = 0$
- We can also look at flows in a network in terms of path flows
  - Indeed, we can establish an equivalence between arc flows and path flows

- Let *P* be the set of paths in the network
- Let  $y_p$  be the flow on path p

Let 
$$\delta_{ij}(p) = \begin{cases} 1 & \text{if arc } \langle i, j \rangle \text{ is on path } p \\ 0 & \text{otherwise} \end{cases}$$

$$x_{ij} = \sum_{p \in P} y_p \delta_{ij}(p)$$



- Flow conservation constraints
  - $\forall$  node  $i \neq s, t$ , we have

$$flow in \equiv flow out$$
$$\sum_{j=1}^{n} x_{ji} \equiv \sum_{k=1}^{n} x_{ik} \forall i \neq s, t$$
$$\sum_{\langle j,i \rangle \in E} x_{ji} \equiv \sum_{\langle i,k \rangle \in E} x_{ik} \forall i \neq s, t$$

• Flow in the network

$$f = \sum_{i=1}^{n} x_{si} - \sum_{k=1}^{n} x_{ks} \quad \dots \text{ net flow out of source}$$
  
(or) 
$$f = \sum_{k=1}^{n} x_{kt} - \sum_{i=1}^{n} x_{ti} \quad \dots \text{ net flow into sink}$$

- Max. flow problem:
  - Want to find the maximum flow that the network can sustain from s to t
    - $\circ\,$  What is the capacity of the network?



• LP formulation



• Example:







#### Capacity of a cut

- Capacities provide a bound on the flow
- At the source: can't send more than (5 + 7 + 9) = 21 units
- Can't send this because at the sink: can't receive more than
  (6 + 8 + 5) = 19 units
- Can't send 19 units either because at the center: can't move more than (14 + 1 + 1) = 16 units
- What we have defined are three *cuts* 
  - Cut = A partition (or separation) of nodes into two groups *W* and *T* such that *s* ∈ *W* and *t* ∈ *T* = *W*
  - *Capacity of the cut* is the sum of capacity of edges crossing from *W* to *T*

$$C(W,\overline{W}) = \sum_{\substack{\langle i,j \rangle \in E:\\i \in W, j \in \overline{W}}} c_{ij} \begin{cases} \text{cut at the source: 21}\\ \text{cut at the sink: 19}\\ \text{cut in the middle: 16} \end{cases}$$

#### UCONN



### $Max Flow \equiv Min cut$

- Know  $f \leq C(W, \overline{W}), \forall (W, \overline{W})$  cut
  - Can't push through 16 units either!!
- Cut  $(4) \rightarrow 7 + 2 + 1 + 2 + 1 = 13$ 
  - Can't push through 13 units either!!
- Cut  $(5) \rightarrow 1 + 1 + 8 + 1 + 1 = 12$ 
  - $\operatorname{Cut}(5) \rightarrow W = \{s, a, b, c, e\}; \ \overline{W} = \{t, d, f\}$



- Property of a cut
  - Each cut corresponds to a feasible solution of the dual of max. flow problem ...later
  - Properties of cut(5):
    - $\circ~$  Every forward edge across the cut is saturated
    - $\circ\,$  It is a cut of maximum capacity

 $\rightarrow$  Max. flow = min cut (?)

...Recall dual is a minimization problem!!



### Some observations from example

- Minimum cut is not unique
  - Min. cut is not unique: e.g., if 14→10
    - $\Rightarrow$  a second min. cut



- Maximum flow pattern is not unique
  - Max. flow pattern is not unique. Degenerate bfs
  - Max. flow value f = 12 is <u>unique</u>: cap. of min cut is unique





• Let us look at the dual to establish feasibility

$$\underline{Primal}$$
  
min - f  
s.t.  $\sum_{i=1}^{n} x_{si} - \sum_{k=1}^{n} x_{ks} - f = 0$   
 $\sum_{j=1}^{n} x_{ij} - \sum_{k=1}^{n} x_{ki} = 0, \forall i \neq s, t$   
 $\sum_{i=1}^{n} x_{ii} + \sum_{k=1}^{n} x_{kt} + f = 0$   
 $-x_{ij} \ge -c_{ij}; x_{ij} \ge 0$ 

 $\frac{Dual}{\max - \sum_{\langle i,j \rangle \in E} \mu_{ij}c_{ij}} = \min \sum_{\langle i,j \rangle \in E} \mu_{ij}c_{ij}}$ s.t.  $-\gamma_s + \gamma_t \leq -1$   $\gamma_i - \gamma_j - \mu_{ij} \leq 0$   $\gamma_i$  unconstrained  $\mu_{ij} \geq 0$ 

- Let  $\gamma_i = -\lambda_i$ ,  $\forall i$
- Final Dual form

$$\Rightarrow \min \sum_{\langle i,j \rangle \in E} \mu_{ij} c_{ij}$$
  
s.t.  $\lambda_t - \lambda_s \ge 1$   
 $\lambda_i - \lambda_j + \mu_{ij} \ge 0 \Rightarrow \lambda_j - \lambda_i \le \mu_{ij}$   
 $\mu_{ij} \ge 0$ 





# Establishing dual feasibility of a cut

• Every  $s - t \operatorname{cut}(W, \overline{W})$  determines a dual feasible solution with cost  $C(W, \overline{W})$  as follows:

$$\mu_{ij} = \begin{cases} 1 & i \in W; j \in \overline{W} \\ 0 & \text{otherwise} \end{cases}$$

$$\Rightarrow \sum_{\langle i,j\rangle \in E} \mu_{ij}c_{ij} = \sum_{\substack{\langle i,j\rangle \in E\\i \in W, j \in \overline{W}}} c_{ij} = C(W,\overline{W})$$
$$\lambda_i = \begin{cases} 0 & i \in W\\1 & i \in W \end{cases} \text{ dual feasible}$$
$$i \in W, j \in W : OK$$
$$i \in \overline{W}, j \in \overline{W} : OK$$
$$i \in W, j \in \overline{W} : OK$$
$$i \in \overline{W}, j \in \overline{W} : OK$$
$$i \in \overline{W}, j \in W : OK \end{cases} \Rightarrow \text{feasible}$$

•  $\Rightarrow$  note that  $\lambda_t = 1$  and  $\lambda_s = 0$  <u>always</u>



### Max. flow $\equiv$ Min. cut

- Flow  $x_{ij}^*$  and  $(W, \overline{W})$  are jointly optimal iff
  - $x_{ij}^* = 0$ ,  $\forall < i, j > \in E \ni i \in \overline{W}$  and  $j \in W$  $\Rightarrow$  Zero flows on backward arcs
  - $x_{ij} = c_{ij}, \forall < i, j > \in E \ni i \in W \text{ and } j \in \overline{W}$  $\Rightarrow$  Saturated flows on forward arcs
- If  $i \in \overline{W}$  and  $j \in W$

 $\Rightarrow \lambda_i - \lambda_j + \mu_{ij} = 1 - 0 + 0 = 1 > 0 \Rightarrow x_{ij}^* = 0$ 

• If  $i \in W$  and  $j \in \overline{W}$ 

 $\Rightarrow \lambda_i - \lambda_j + \mu_{ij} = 0 - 1 + 1 = 0 \Rightarrow x_{ij}^* = c_{ij}$ 

- To see this duality more clearly, consider a graph with  $c_{ij} = c_{ji} = 1$
- Minimal cut ≡ smallest number of edges across it ≡ # of edges from W to W
- Maximal flow  $\equiv$  # of disjoint paths from *s* to *t*

 $\Rightarrow$  Max. # of disjoint paths from *s* to *t* = min. # of edges across a cut (or)

 $\Rightarrow$  Capacity of a network = sum of capacities of its weakest links



# Historical perspective on max. flow algorithms

| Year    | Algorithm                     | Complexity                            |
|---------|-------------------------------|---------------------------------------|
| 1956    | Ford & Fulkerson              | can be exponential                    |
| 1969    | Edmonds & Karp                | $O(nm^2)$                             |
| 1970    | Dinic                         | $O(n^2m)$                             |
| 1974    | Karzanov                      | $O(n^3)$                              |
| 1978    | Malhotra,<br>Kumar, Maheswari | $O(n^3)$                              |
| 1977    | Cherkaski                     | $O(n^2 m^{1/2})$                      |
| 1978    | Galil                         | $O(n^{5/3}m^{1/2})$                   |
| 1979    | Galil, Naamad, Shiloach       | $O(nm(\log n)^2)$                     |
| 1980    | Sleator & Tarjan              | $O(nm \log n)$                        |
| 1986,87 | Goldberg & Tarjan             | $O(n^3)$                              |
| 1987    | Bertsekas                     | $O(n^3)$                              |
| 1989    | Ahuja & Orlin                 | <u>survey of max. flow algorithms</u> |

# Historical perspective on max. flow algorithms

- Ford-Fulkerson & Edmonds & Karp
  - Try to push flow on one path at a time called an *augmentation* path
  - If can't find a path from *s* to *t*, we are done!!
- Other algorithms
  - Several paths at once
  - We construct a series of *layered Networks*
  - If can't construct a layered network from *s* − *t*, we are done!
- More recent algorithms
  - Work on arcs ⇒ distributed computation



## Idea of Ford-Fulkerson labeling algorithm

- Ford-Fulkerson labeling algorithm
  - Given: a directed graph  $G = \langle V, E \rangle$  and a feasible flow  $(x_{ij})$
  - An *augmentation path* (or augmenting path) *p* is a path from *s* to *t* in the undirected graph resulting from *G* by ignoring edge directions with the following properties:
    - $\circ$  ∀ < *i*, *j* >∈ *E* that is traversed by *P* in the forward direction (called forward arc <*i*, *j*> or forward labeling of *j*), we have This idea

$$x_{ij} < c_{ij} \rightarrow x_{ij} \uparrow \begin{cases} \text{we can forward label } j \text{ if} \\ \bullet i \text{ is labeled and } j \text{ is not} \\ \bullet x_{ij} < c_{ij} \end{cases}$$

This idea is similar to Hungarian algorithm for the assignment problem

 $\circ$  ∀ (*j*, *i*) ∈ *E* that is traversed by *P* in the backward direction problem backward labeling of *j*), we have

$$x_{ji} > 0 \rightarrow x_{ji} \downarrow \begin{cases} \text{we can backward label } j \text{ if} \\ \bullet i \text{ is labeled and } j \text{ is not} \\ \bullet x_{ji} > 0 \end{cases}$$





• We can increase the flow on the augmenting path *p* until we violate the capacity constraint of a forward arc or empty a backward arc





### How to find augmentation paths?

- We propagate *labels* from *s* to *t* or get stuck
- Each node *i* has a two part label: label(*i*) =  $\langle L_i, F_i \rangle$ 
  - $\circ L_i = \text{from where } i \text{ was labeled} \begin{cases} \bullet \text{ Parent of } i \text{ for forward arc} \\ \bullet \text{ Son of } i \text{ for backward arc} \end{cases}$

 $\circ$   $F_i$  = amount of extra flow that can be brought to *i* from *s* 

$$\begin{array}{c}
 j \\
 i, \min\{F_i, c_{ij} - x_{ij}\}) \\
 i \\
 i \\
 L_i, F_i
 \end{array}$$

$$\begin{array}{c}
 j \\
 (-i, \min\{F_i, x_{ji}\}) \\
 i \\
 L_i, F_i
 \end{array}$$

When label all nodes adjacent to i, we are said to scan i

- We add all nodes labeled by scanning *i* to a LIST
  - So, to find augmenting path, scan  $s \xrightarrow{i=s}$  add to LIST all nodes labeled from *i* → pick a node from LIST
- Outcome
  - *t* gets labeled  $\Rightarrow$  found an augmentation path
  - LIST becomes empty  $\Rightarrow$  can't find a path  $\Rightarrow$  optimal



### **Algorithm Procedure**

```
 \forall i,j \in E, \text{ let } x_{ij} = 0 
repeat
set all labels to 0; LIST = {s}
while LIST \neq \emptyset do
pick any node i \in \text{LIST} and remove it
scan i \Rightarrow add to list all nodes on augmenting path
if t is labeled
augment flow x_{ij}
goto repeat
end if
end do
```

- What does scan *i* mean?
- Procedure scan *i* 
  - Label forward to all unlabeled nodes adjacent to *i* by arcs that are unsaturated, putting newly labeled nodes on LIST
  - Label backward to all unlabeled nodes from which *i* is adjacent by arcs that have positive flows, putting newly labeled nodes on LIST



• Example





• When  $c_{ii}$  are integers  $\Rightarrow$  Ford-Fulkerson takes at most *f* augmentations



 $\langle s \ u \ v \ t \rangle \rightarrow \langle s \ v \ u \ t \rangle \rightarrow \langle s \ u \ v \ t \rangle \rightarrow \cdots \rightarrow 2M$  iterations

- When  $c_{ij}$  are rational
  - Write as ratio of integers with a common denominator *D*
  - Scale each cost by  $D \Rightarrow$  takes at most Df iterations
- When  $c_{ij}$  are irrational (of infinite precision), Ford-Fulkerson may not terminate
  - In fact, may converge to a non-optimal value
  - If use shortest augmenting path, all these problems go away . . . In fact, Edmonds & Karp showed that the # of augmenting paths ≤ n(n<sup>2</sup>-1)/4 with this strategy (∃ even better algorithms)



# Pathological Example (Ford and Fulkerson, 1962)

$$< x_i, y_i >= \arcsin A_i$$

$$A_1 = a_0 = 1$$

$$A_2 = a_1 = \frac{\sqrt{5}-1}{2} = 0.618... = \sigma$$

$$A_3 = a_2 = a_0 - a_1 = \sigma^2$$

$$A_4 = a_2 = a_0 - a_1 = \sigma^2$$
All other arcs have capacity  $s = \frac{1}{1-\sigma}$ 

In general, for this network, at the  $n^{th}$ Step, flow augmentation will be  $a_{n+1}$ and  $a_{n+2}$  such that  $a_{n+2} = a_n - a_{n+1}$ 



#### UCONN



#### Pathological Example (Ford and Fulkerson, 1962)

• At step  $n \dots$  add  $a_{n+1} \& a_{n+2}$ 

 $\Rightarrow a_0 + (a_1 + a_2) + \cdots + (a_{n+1} + a_{n+2}) = \frac{1}{1 - \sigma} = s$ 

- Start with  $\langle s \ x_1 \ y_1 \ t \rangle \Rightarrow \langle A_1 \ A_2 \ A_3 \ A_4 \rangle = \langle 0 \ a_1 \ a_2 \ a_2 \rangle \Rightarrow \text{flow } a_0$
- At step  $n(n \ge 1)$ :
  - Suppose at step *n*, we order arcs  $A'_1$ ,  $A'_2$ ,  $A'_3$ ,  $A'_4 \ni$  residual capacities are: 0,  $a_n$ ,  $a_{n+1}$ ,  $a_{n+1}$ , respectively
  - Order  $\langle x'_i, y'_i \rangle$  accordingly
  - Flow so far:  $a_0 + a_1 + ... + a_{n-1}$
- Step: *n* (a):
  - Choose flow augmenting path

 $\Rightarrow$  Residual cap: 0,  $a_{n+2}$ , 0,  $a_{n+1}$ , respectively





#### Pathological Example (Ford and Fulkerson, 1962)

- Step: *n b*:
  - Choose flow augmenting path

 $\Rightarrow a_{n+2}, 0, a_{n+2}, a_{n+1}$ 

- $\Rightarrow$  Flow so far:  $a_0 + a_1 + \dots + a_n$
- $\Rightarrow$  Step *n* ends with appropriate residual capacities for step (*n*+1)
- As  $n \to \infty$ , flow converges to  $s = \frac{1}{1-a_1} = \frac{1}{1-\sigma} = s$
- However, max. flow = 4s
- Ford-Fulkerson terminates with non-optimal flows !!





#### **DMKM Algorithm**

- Two phase algorithm executed iteratively
- Phase 1
  - Obtain an auxiliary layered network (i.e., an acyclic graph) from the original network G with a feasible flow pattern
- Phase 2
  - Find *saturating flow* in a layered network . . . also called *blocking* flows
  - Phase 2 takes  $O(n^2)$  or  $O(m \log n)$  steps depending on implementation
- We will show that phase 1 need be executed at most *n* times  $\Rightarrow O(n^3)$  or  $O(mn \log n)$  steps for the algorithm



- Consider phase 2 first
  - Want to find saturation flows in a layered network
  - What is a layered network?
    - An acyclic graph  $G_L = \langle V_L, E_L \rangle \ni V_L$  is partitioned into layers  $V_0, V_1, \cdots, V_L$
    - $\circ V_0 = \{s\}, V_1 = \text{set of nodes adjacent to } s$
    - $V_k$  = set of nodes adjacent to all nodes of  $V_{k-1}$ ,  $k \ge 1$
    - Finally,  $V_L = \{t\}$



How to find saturating flows?



- Repeat until *s* and *t* are disconnected
  - Saturate some of the edges
  - Remove edges (& nodes if either all incoming or outgoing edges are saturated)
- The process is called "finding saturating flows" or "finding blocking flows"
- Two algorithms for finding blocking flows
  - "Push-pull" algorithm
  - Wave method



- "Push-pull method"
  - Define throughput of a node *i*, *i* ≠ *s*, *t* as:

$$TP_i = \min\left\{\sum_{(k,i)\in E} (c_{ki} - x_{ki}), \sum_{(i,j)\in E} (c_{ij} - x_{ij})\right\}$$

= min{potential input to *i*, potential output from *i*}

Similarly

$$TP_{s} = \sum_{(s,i)\in E} (c_{si} - x_{si}); TP_{t} = \sum_{(k,t)\in E} (c_{kt} - x_{kt})$$

Suppose

 $TP_r = \min_i TP_i \& r = \arg\min_i TP_i$ 

- *r* is called the reference node
- For the example problem

 $TP_s = 7, TP_a = 3, TP_b = 3, TP_c = 3, TP_d = 3, TP_t = 7$ r = a or b or c or d



- **Key**: guaranteed at least  $TP_r$  units of flow from *s* to *t*
- **Q**: How to "pull" *TP<sub>r</sub>* units of flow from *s* to *t* & how to "push" *TP<sub>r</sub>* units from *r* to *t*?





- "Push"  $TP_r$  units from r to t
  - Distribute *TP<sub>r</sub>* units to the outgoing edges from *r* 
    - $\circ\,$  Take these edges one by one & saturate them until all  $TP_r$  units are exhausted
    - Flow reaching the next layer is distributed among its outgoing edges & pushed to the next layer
- Example:





- "Pull"  $TP_r$  units from s to r
  - Pull *TP<sub>r</sub>* from immediate predecessors of *r*
  - Then from their immediate predecessors & so on
- Example:



- Delete all saturated edges & nodes that have all their incoming or outgoing edges saturated
  - Deletion of a node ⇒ deletion of all its incoming or outgoing edges



• Result



 $\Rightarrow$  Saturating flow = 4, since *s* and *t* are disconnected

• Note: saturating flow ≠ maximum flow



- Phase 1 ... construct a layered network from a graph with a feasible flow pattern
  - We do it in two steps
    - Construct a network  $G_x$  with a feasible flow pattern  $\langle x_{ij} \rangle$  from G
    - Then, construct a layered network from  $G_x$
  - How to construct  $G_x$ ?
    - If  $\langle i, j \rangle \in E$  and  $x_{ij} \langle c_{ij}$ , then  $\langle i, j \rangle \in G_x$  and  $d_{ij} = c_{ij} x_{ij}$ , where  $d_$
    - If  $\langle i, j \rangle \in E$  and  $x_{ij} > 0$ , then  $\langle j, i \rangle \in G_x$  and  $d_{ji} = x_{ji} \Longrightarrow x_{ji} \downarrow$
  - Network G<sub>x</sub> is called the "residual graph" (residual network)
- Layered network example





- Construction of a layered network from  $G_x$ 
  - Use breadth-first search



- Rules
  - If any node is in a higher layer than *t*, then discard the node & all edges incident on it
  - Discard all nodes other than *t* that are in the same layer as *t*
  - Discard all edges that go from a higher layer to a lower layer
  - Discard any edge that joins two nodes of the same layer
- Example: next  $G_x$  for our layered network example



*s* & *t* disconnected  $\Rightarrow$  max. flow = 6



• Example 2:





• Example 2 continued:





- Initialize flows  $x_{ij} = 0$ , done = "false", f = 0
- While not (*done*) do
  - Construct  $G_x = \langle V_x, E_x \rangle$  with capacity matrix D
  - If *t* is not reachable from  $s \in G_x$

 $\circ$  done = "true"

- Else
  - Construct a layered network  $G_L$  from  $G_x$
  - $\circ\,$  Find saturating flow g of  $G_L$

$$\circ f = f + g$$

- End if
- End do



- Finding saturating flows in a layered network (phase 2)
  - At least one node is deleted at each iteration
    - $\Rightarrow$  At most *n* iterations
  - In the *i*<sup>th</sup> iteration
    - Work involved is related to the *#* of times different edges are processed

$$T = T_s + T_p$$

where  $T_s$  ...saturated to capacity and  $T_p$  ...partial

 $\circ~$  If an arc is saturated, delete it

$$\Rightarrow T_s = O(m)$$
  
eps  $\leq n$  (1 for each n

○ # of partial steps 
$$\leq n$$
 (1 for each node)

 $\Rightarrow T_p = O(n^2)$  $\Rightarrow \text{Total work} = O(m) + O(n^2) = O(n^2)$ 

- Phase 1
  - There are at most (*n* − 1) steps since the layers increase by at least one & *s* − *t* path length ≤ *n* − 1
  - Constructing layered network ... *O*(*m*)
    - $\Rightarrow$  Total work:  $O(nm) + O(n^3) = O(n^3)$



#### Blocking flow computation via "wave method"

- To present the method, we need the concept of *preflow* 
  - A preflow  $(x_{ij})$  satisfies skew symmetry  $(x_{ij} = -x_{ji})$  and capacity constraints
  - The conservation constraints are not satisfied
    - Flow  $(x_{ij})$  is such that inflow ≥ outflow for every node  $\neq s$

 $\Rightarrow$  Total inflow into any node  $i \neq s$  must be at least as great as the total outflow from i

$$\Delta_i = \sum_j x_{ji} - \sum_k x_{ik} \ge 0$$

• Since  $x_{ik} = -x_{ki}$ , we can also write this as:

$$\Delta_i = \sum_j x_{ji} \ge 0$$

where j is over all edges incident to i (both incoming and outgoing edges)

- Balanced node  $\Delta_i = 0$ ,  $(i \neq s, t)$
- Unbalanced node  $\Delta_i \ge 0$ ,  $(i \neq s, t)$
- A preflow is blocking if it saturates every path
- An edge on each path is at its capacity

#### Key idea of wave method

- Start with a blocking preflow
- Iteratively convert it into a balanced blocking flow
  - $\Rightarrow$  A flow that satisfies conservation constraints
- How?
  - Increase the outgoing flow of an unblocked & unbalanced node (or)
  - Decrease the incoming flow of a blocked node



• Start with a preflow that saturates every edge out of *s* & zero flow on all other edges



- Blocked node  $\Rightarrow$  decrease incoming flow; unblocked node  $\Rightarrow$  increase outgoing flow
- Increase step:
  - If (i, j) is an unsaturated edge such that j is unblocked, increase  $x_{ij}$  via:  $x_{ij} \leftarrow x_{ij} + \min\{c_{ij} x_{ij}, \Delta_i\}$
- Decrease step:
  - If node i is blocked and  $\exists$  a positive flow  $x_{ji}$ , then:  $x_{ji} \leftarrow x_{ji} \min\{x_{ji}, \Delta_i\}$







### Mechanization of the wave method

- Start with a preflow  $\exists$  every edge out of *s* is saturated & has zero flow on all other edges
- Repeat increase flow & decrease flow until all nodes are balanced
- Increase flow
  - Scan nodes other than *s* and *t* in topological order (reverse post-order visit)
  - Balance each node *i* that is unbalanced & unblocked when it is scanned
  - If balancing fails, label node *i* blocked (permanently)
- Decrease flow
  - Scan vertices other than *s* and *t* in reverse topological order (i.e., post-order visit)
  - Balance each vertex that is unbalanced & blocked when it is scanned
- Example:



dfs scanning: *s b d t a c* Post order: *t d b c a s* (reverse topological order) Topological order: *s a c b d t* 

Easy problem!

# Mechanization of the wave method

Example:



*d* blocked  $\Rightarrow$  initiate decrease flow and result of <u>iteration 1</u>: make flow in (*c*,*d*) = 0

1, 1

2.1

2.2

4,0

b

6.6

• Second flow increase (*c* is blocked. Balance)

Topological order:  $s \ a \ b \ c \ d \ e \ f \ t$ 



- Third flow increase
  - *a* is blocked  $\Rightarrow$  make flow  $\langle s, a \rangle = 5$
  - We are done since every path from *s* to *t* is blocked
  - Blocking flow = 5 units

#### UCONN



- Wave method computes blocking flow of an acyclic graph in  $O(n^2)$  time (& blocking flow of a general graph in  $O(n^3)$  time)
- Proof:
  - If a node *i* is blocked, every path from *i* to *t* is blocked
  - Initially *s* is blocked
  - After increase flow step, if the balancing is a success, ∃ no unblocked, unbalanced nodes
  - If balancing fails, ∃ a blocked, unbalanced node
  - This blocked node is balanced during decrease flow step & remains balanced during subsequent increase flow steps
    - $\Rightarrow$  We block at least one node in each step
    - $\Rightarrow$  At most (n 1) steps
    - $\Rightarrow$  At each step of increase flow, either an edge is saturated or terminates in a balance

 $\Rightarrow$  Similarly at each step of decrease flow either an edge flow is set to zero or terminates in a balance

 $\Rightarrow O(2m) + (n-1) (n-2) \text{ operations} \Rightarrow O(n^2)$ 

*O*(*n*<sup>3</sup>) complexity for max. flow follows from our earlier discussion w.r.t. DMKM algorithm



#### **More Recent Algorithms**

- D. D. Sleator and R. Tarjan, "A data structure for dynamic trees," J. of Comput. Sys. Sci., vol. 26, pp. 362-91, 1983
- Y. Shiloach and U. Vishkin, "An  $O(n^2 \log n)$  parallel max-flow algorithm", <u>J. of Algorithms</u>, vol. 3, pp. 128-46, 1982
- N. Gabow, "Scaling algorithms for network problems", <u>J.</u> of Comput. Sys. Sci., pp.260-270, 1981
- R. E. Tarjan, "A simple version of Karzanov's blocking flow algorithm," <u>OR letters</u>, vol. 2, pp 265-268, 1984
- Goldberg, A. V., "Efficient graph algorithms for sequential & parallel computers," Ph.D. thesis, LCS, MIT, 1987
- Bertsekas, D. P., <u>Linear network optimization</u>, MIT press, 1991



#### Mapping Problem Processing times

- Set of tasks A,B,..., *F* with a graph structure
- Arcs  $\Rightarrow$  communication time
- Processing times on two processors: *t*<sub>*i*1</sub>, *t*<sub>*i*2</sub>
- Problem: minimize (processing time + communication time)

Tasks for  $P_2 = \{F\}$ Tasks for  $P_1 = \{A, B, C, D, E\}$ 

- Total cost: 36 = cap. min. cut
- Makes sense since for an arbitrary partition of tasks: (*W*, *W*)



total cost: 
$$\sum_{i \in W} t_{i1} + \sum_{i \in \overline{W}} t_{i2} + \sum_{\substack{\langle i,j \rangle \\ i \in W \\ j \in \overline{W}}} c_{ij}$$

• Establishing formal equivalence:

$$\begin{array}{l} \operatorname{let} x_i = \begin{cases} 1 & \text{if task } i \text{ is allocated to } P_1 \\ 0 & \text{otherwise} \end{cases} \\ y_i = \begin{cases} 1 & \text{if task } i \text{ is allocated to } P_2 \\ 0 & \text{otherwise} \end{cases}$$

 $\Rightarrow$  Need:  $x_i + y_i = 1, \forall i$ 



#### **Mapping Problem**

• Cost function: 
$$\sum_{i=1}^{n} t_{i1} x_i + \sum_{j=1}^{n} t_{i2} y_j + \sum_{i=1}^{n} \sum_{\substack{j=1 \\ j \neq i}}^{n} c_{ij} x_i y_j$$

- Define  $x_i y_j = \mu_{ij}$  Then  $x_i + y_j \mu_{ij} \ge 0$
- The problem is:

$$\min \sum_{i} t_{i1} x_{i} + \sum_{j} t_{i2} y_{j} + \sum_{i} \sum_{\substack{j=1 \\ j \neq i}} c_{ij} \mu_{ij}$$
s.t.  $x_{i} + y_{j} \ge 1$   
 $x_{i} + y_{j} - \mu_{ij} \ge 0$   
 $\mu_{ij} \ge 0$ 
Similar to dual of max. flow

• Note: can't extend to more than two processors





- If spend \$0; project completes in 3 + 2 + 6 = 11 days
  - Critical path 1 2 3 4
- If want to reduce the time, must spend \$'s on tasks 1 2, 2 3, 3 4, since they are on the critical path
- Also, must spend on tasks with lowest cost per unit time  $\Rightarrow$  task 2 3
- Q: How far should we reduce?
- Answer
  - Till the arc is reduced to the minimum time *a<sub>ij</sub>* 
    - $\circ$  If this occurs, pick arc with the next lower cost per unit time
  - (or) path is no longer the critical path



#### How to decide where to invest?



• Reduce <2, 3> by one unit

 $\Rightarrow$  Two critical paths 1 - 2 - 3 - 4 and 1 - 3 - 4



- To shorten longest paths, have three choices:
  - 1-2 & 1-3 with  $c_{12} + c_{13} = 3+1 = 4$
  - 2-3 & 1-3 with  $c_{23} + c_{13} = 1+1=2$
  - 3 4 with cost  $c_{34} = 3$



- Looks like a min. cut of a graph of active arcs
  - 2-3 & 1-3
- Note: Can't reduce 2 3 any further



• Reduce  $c_{34}$  by one unit, since then 1 - 2 - 4 is also a critical path



• Now 1 – 2, 2 – 4, & 2 – 3 are rigid

#### UCONN



If we reduce 1 – 3 & 3 – 4 to their value & increase 2 – 3 w/o affecting the longest path
 \*0 > 11 down \*1 > 10 down \*2 > 0 down \*4 > 8 down \*22 > 4 down

 $0 \Rightarrow 11$  days;  $1 \Rightarrow 10$  days;  $3 \Rightarrow 9$  days;  $4 \Rightarrow 8$  days;  $22 \Rightarrow 4$  days; 27 for 3 days





- Max. flow  $\equiv$  Min. cut
- Ford-Fulkerson labeling algorithm
  - Exponential and can converge to non-optimal solutions
  - Can fix the problem by computing shortest augmenting paths rather than any augmenting path
- DMKM algorithm
  - Push-pull version
  - Wave method
- Applications of maximum flow (mapping, PERT)