
Lecture 9:
Maximum Flow in a Network

Prof. Krishna R. Pattipati
Dept. of Electrical and Computer Engineering

University of Connecticut
Contact: krishna@engr.uconn.edu; (860) 486-2890

© K. R. Pattipati, 2001-2016

Outline

VUGRAPH 2

• LP formulation and its dual

 Maximum flow ≡ Minimum cut

 A historical perspective on maximum flow algorithms

• Ford-Fulkerson labeling algorithm

• Dinic-Malhotra-Pramodh Kumar-Maheswari (DMKM)
algorithm

 Push-pull algorithm

 Wave method

• Applications of maximum flow

 Mapping problem

 PERT networks

Preliminaries

VUGRAPH 3

• Suppose have a graph G = < V, E > with two distinguished
(designated) nodes s and t
 s = source node; t = terminal node

• Consider edge between nodes i and j
 Edge < i, j > permits flow in both directions . . . undirected

o Edge < i, j > has a capacity cij in the forward direction and cji in the
backward direction

o cij ≥ 0 and cji ≥ 0

o Usually, we assume cij = cji (symmetric)

 Edge < i, j > permits flow from node i to node j only

o Capacity cij 0

o cji = 0 → no flow allowed in reverse direction

• Since any undirected graph can be converted into a
directed graph, we assume that G is directed

Preliminaries

VUGRAPH 4

• Let xij be the flow of commodity (oil, messages, vehicles)
from i to j
 By definition xji = –xij → flow matrix is skew symmetric

• xij ≤ cij and xji ≤ cji → flows satisfy capacity constraints

• For any < i, j > if xij = cij or xji = cji  edge < i, j > is saturated

• If don't have an edge < i, j >  cij = cji = xij = xji = 0

• We can also look at flows in a network in terms of path
flows
 Indeed, we can establish an equivalence between arc flows and

path flows

 Let P be the set of paths in the network

 Let yp be the flow on path p

 
1 if arc < , > is on path

Let
0 otherwise

i j p
p

ij






  ij p ij

p P

x y p


⇒

Conservation of Flow

VUGRAPH 5

• Flow conservation constraints



• Flow in the network

• Max. flow problem:
 Want to find the maximum flow that the network can sustain from

s to t

o What is the capacity of the network?

∀ node 𝑖 ≠ 𝑠, 𝑡, we have

1 1

1 1

... net flow out of source

(or) ... net flow into sink

n n

si ks

i k

n n

kt ti

k i

f x x

f x x

 

 

 

 

 

 

1 1

, ,

,

,

n n

ji ik

j k

ji ik

j i E i k E

flow in flow out

x x i s t

x x i s t

 

   



  

  

 

 

Max. flow problem

VUGRAPH 6

• LP formulation

• Example:

1 1

1 1

1 1

max

s.t. 0 (source flow)

0, , (Kirchoff's law)

0 (sink flow)

0 (capacity constraints)

n n

si ks
i k

n n

ij ki
j k

n n

kt ti
k i

ij ij

f

x x f

x x i s t

x x f

x c

 

 

 

  

   

   

 

 

 

 

1 4 53 2

s t

a

b

c

d

e

f

5 7

9

2

2

1

14

1

1 8
6

51

Capacity of a cut

VUGRAPH 7

• Capacities provide a bound on the flow

• At the source: can’t send more than (5 + 7 + 9) = 21 units

• Can’t send this because at the sink: can’t receive more than

(6 + 8 + 5) = 19 units

• Can't send 19 units either because at the center: can't move
more than (14 + 1 + 1) = 16 units

• What we have defined are three cuts
 Cut  A partition (or separation) of nodes into two groups W and T

such that 𝑠 ∈ 𝑊 and 𝑡 ∈ 𝑇 = ഥ𝑊

 Capacity of the cut is the sum of capacity of edges crossing from W
to T

 
, :

,

cut at the source: 21

, cut at the sink: 19

cut in the middle: 16

ij

i j E
i W j W

C W W c
 
 




 





Max Flow  Min cut

VUGRAPH 8

• Know 𝑓 ≤ 𝐶 𝑊, ഥ𝑊 ,∀ 𝑊, ഥ𝑊 cut
 Can’t push through 16 units either!!

• Cut (4) → 7 + 2 + 1 + 2 + 1 = 13
 Can’t push through 13 units either!!

• Cut (5) → 1 + 1 + 8 + 1 + 1 = 12
 Cut(5) →𝑊 = 𝑠, 𝑎, 𝑏, 𝑐, 𝑒 ; ഥ𝑊 = 𝑡, 𝑑, 𝑓

• Property of a cut
 Each cut corresponds to a feasible solution of the dual of max. flow

problem …later

 Properties of cut(5):

o Every forward edge across the cut is saturated

o It is a cut of maximum capacity

→ Max. flow = min cut (?)

…Recall dual is a minimization problem!!

ഥ𝑊 = 𝑇

forward arcs = at cap.

backwards arcs = 0

W

Some observations from example

VUGRAPH 9

• Minimum cut is not unique

 Min. cut is not unique: e.g., if
14→10

 a second min. cut

• Maximum flow pattern is not
unique

 Max. flow pattern is not
unique. Degenerate bfs

 Max. flow value f = 12 is
unique: cap. of min cut is
unique

s t

a

b

c

d

e

f

5,3
7,7

9,2

2,2

2,2

14,10

1,1

1,1 8,8
6,2

5,2
1,1

1,1

s t

a

b

c

d

e

f

5,3
7,6

9,3

2,2

2,2

14,10

1,1

1,1 8,8
6,2

5,2
1,1

1,1

Establishing feasibility

VUGRAPH 10

• Let us look at the dual to establish feasibility

• Let 𝛾𝑖 = −𝜆𝑖 , ∀𝑖

• Final Dual form

1 1

1 1

1 1

min

s.t. 0

0, ,

0

; 0

n n

si ks
i k

n n

ij ki
j k

n n

ti kt
i k

ij ij ij

f

x x f

x x i s t

x x f

x c x

 

 

 



  

   

  

   

 

 

 

Primal Dual

, ,
max min

s.t. 1

0

unconstrained

0

ij ij ij ij
i j E i j E

s t

i j ij

i

ij

c c 

 

  





   
 

   

  



 

,
min

s.t. 1

0

0

ij ij
i j E

t s

i j ij j i ij

ij

c

 

     



 


 

   





• Every s – t cut (𝑊, ഥ𝑊) determines a dual feasible solution
with cost 𝐶(𝑊, ഥ𝑊) as follows:

• ⇒ note that 𝜆𝑡 = 1 and 𝜆𝑠 = 0 always

Establishing dual feasibility of a cut

VUGRAPH 11

1 ;

0 otherwise
ij

i W j W


  
 


 
, ,

,

,ij ij ij

i j E i j E
i W j W

c c C W W
   

 

   

0
dual feasible

1
i

i W

i W



 



, : OK

, : OK
feasible

, : OK

, : OK

i W j W

i W j W

i W j W

i W j W

  


  


  
  

Max. flow ≡ Min. cut

VUGRAPH 12

• Flow 𝑥𝑖𝑗
∗ and 𝑊, ഥ𝑊 are jointly optimal iff

 𝑥𝑖𝑗
∗ = 0, ∀< 𝑖, 𝑗 > ∈ 𝐸 ∍ 𝑖 ∈ ഥ𝑊 and 𝑗 ∈ 𝑊

⇒ Zero flows on backward arcs

 𝑥𝑖𝑗 = 𝑐𝑖𝑗 , ∀< 𝑖, 𝑗 > ∈ 𝐸 ∍ 𝑖 ∈ 𝑊 and 𝑗 ∈ ഥ𝑊

⇒ Saturated flows on forward arcs

• If 𝑖 ∈ ഥ𝑊 and 𝑗 ∈ 𝑊

⇒ 𝜆𝑖 − 𝜆𝑗 + 𝜇𝑖𝑗 = 1 − 0 + 0 = 1 > 0 ⇒ 𝑥𝑖𝑗
∗ = 0

• If 𝑖 ∈ W and 𝑗 ∈ ഥ𝑊

⇒ 𝜆𝑖 − 𝜆𝑗 + 𝜇𝑖𝑗 = 0 − 1 + 1 = 0 ⇒ 𝑥𝑖𝑗
∗ = 𝑐𝑖𝑗

• To see this duality more clearly, consider a graph with 𝑐𝑖𝑗 = 𝑐𝑗𝑖 = 1

• Minimal cut ≡ smallest number of edges across it ≡ # of edges from 𝑊
to ഥ𝑊

• Maximal flow ≡ # of disjoint paths from s to t
⇒ Max. # of disjoint paths from s to t  min. # of edges across a cut (or)

⇒ Capacity of a network  sum of capacities of its weakest links

Historical perspective on max. flow
algorithms

VUGRAPH 13

Year Algorithm Complexity

1956 Ford & Fulkerson can be exponential

1969 Edmonds & Karp O(nm
2
)

1970 Dinic O(n
2
m)

1974 Karzanov O(n
3
)

1978
Malhotra,

Kumar, Maheswari
O(n3)

1977 Cherkaski O(n
2
m

l/2
)

1978 Galil O(n
5/3

m
1/2

)

1979 Galil, Naamad, Shiloach O(nm(log n)
2
)

1980 Sleator & Tarjan O(nm log n)

1986,87 Goldberg & Tarjan O(n
3
)

1987 Bertsekas O(n
3
)

1989 Ahuja & Orlin survey of max. flow algorithms

Historical perspective on max. flow
algorithms

VUGRAPH 14

• Ford-Fulkerson & Edmonds & Karp

 Try to push flow on one path at a time called an augmentation
path

 If can't find a path from s to t, we are done!!

• Other algorithms

 Several paths at once

 We construct a series of layered Networks

 If can't construct a layered network from s – t, we are done!

• More recent algorithms

 Work on arcs ⇒ distributed computation

Idea of Ford-Fulkerson labeling algorithm

VUGRAPH 15

• Ford-Fulkerson labeling algorithm
 Given: a directed graph G = <V,E> and a feasible flow (xij)

 An augmentation path (or augmenting path) p is a path from s to t
in the undirected graph resulting from G by ignoring edge
directions with the following properties:

o ∀ < 𝑖, 𝑗 >∈ 𝐸 that is traversed by P in the forward direction (called
forward arc <i, j> or forward labeling of j), we have

o ∀ (𝑗, 𝑖) ∈ 𝐸 that is traversed by P in the backward direction (called
backward labeling of j), we have

𝑥𝑖𝑗 < 𝑐𝑖𝑗 → 𝑥𝑖𝑗 ↑ ൞

we can forward label 𝑗 if
• 𝑖 is labeled and 𝑗 is not
• 𝑥𝑖𝑗 < 𝑐𝑖𝑗

𝑥𝑗𝑖 > 0 → 𝑥𝑗𝑖 ↓ ൞

we can backward label 𝑗 if
• 𝑖 is labeled and 𝑗 is not
• 𝑥𝑗𝑖 > 0

This idea is
similar to
Hungarian
algorithm for
the
assignment
problem

Example

VUGRAPH 16

s t

a

c

b

d

15,6

4,4

12,10

10,7

7,7

10,3

5,4

3,3

 We can increase the flow on the augmenting path p until we violate
the capacity constraint of a forward arc or empty a backward arc

s

a

c

b

d10,7

t

15,10

4,4

12,10

7,7

10,7

5,0

3,3

s

a

c

b

d
3

t5

4

2
7

3

5

3

10

7

7

10

Residual network

 ,

, forward
min

, backward

9 7
4

4

ij ij

i j P
ji

c x i j

x j i


 



  
 

 


  


How to find augmentation paths?

VUGRAPH 17

 We propagate labels from s to t or get stuck

 Each node i has a two part label: label(i) = < Li , Fi >

o 𝐿𝑖 = from where 𝑖 was labeled ቊ
• Parent of 𝑖 for forward arc
• Son of 𝑖 for backward arc

o 𝐹𝑖 = amount of extra flow that can be brought to i from s

When label all nodes adjacent to i, we are said to scan i

 We add all nodes labeled by scanning i to a LIST

o So, to find augmenting path, scan s
𝑖=𝑠

add to LIST all nodes labeled
from i → pick a node from LIST

 Outcome

o t gets labeled  found an augmentation path

o LIST becomes empty  can't find a path  optimal

i

j

i

j

𝑖, min 𝐹𝑖 , 𝑐𝑖𝑗 − 𝑥𝑖𝑗 −𝑖,min 𝐹𝑖 , 𝑥𝑗𝑖

𝐿𝑖 , 𝐹𝑖 𝐿𝑖 , 𝐹𝑖

Algorithm Procedure

VUGRAPH 18

∀i,j ∊ E, let xij = 0

repeat
set all labels to 0; LIST = {s}

while LIST ≠ ∅ do
pick any node i ∊ LIST and remove it
scan i ⇒ add to list all nodes on augmenting path
if t is labeled

augment flow xij

goto repeat
end if

end do

• What does scan i mean?
• Procedure scan i

 Label forward to all unlabeled nodes adjacent to i by arcs that are
unsaturated, putting newly labeled nodes on LIST

 Label backward to all unlabeled nodes from which i is adjacent by
arcs that have positive flows, putting newly labeled nodes on LIST

Example

VUGRAPH 19

• Example

s

a

c

b

d5,0

t

5,0

5,0

5,0

5,0

5,0

5,0
5,0

s

a

c

b

d5,0

t

5,0

5,5

5,0

5,5

5,0

5,0 5,5

s

a

c

b

d5,5

t

5,5

5,5

5,5
5,5

5,5

5,0 5,0

augmenting path: s-c-b-t augmenting path: s-a-b-c-d-t

⇒ max. flow = 10

Cost analysis

VUGRAPH 20

• When cij are integers ⇒ Ford-Fulkerson takes at most f augmentations

• When cij are rational

 Write as ratio of integers with a common denominator D

 Scale each cost by D ⇒ takes at most Df iterations

• When cij are irrational (of infinite precision), Ford-Fulkerson may not
terminate

 In fact, may converge to a non-optimal value

 If use shortest augmenting path, all these problems go away . . . In fact,

Edmonds & Karp showed that the # of augmenting paths ≤
𝑛 𝑛2−1

4
with this

strategy (∃ even better algorithms)

u

ts

M

1

v

M

M M

𝑠 𝑢 𝑣 𝑡 → 𝑠 𝑣 𝑢 𝑡 → 𝑠 𝑢 𝑣 𝑡 →⋅⋅⋅→ 2𝑀 iterations

Pathological Example (Ford and Fulkerson, 1962)

VUGRAPH 21

< 𝑥𝑖 , 𝑦𝑖 >= arcs 𝐴𝑖
𝐴1 = 𝑎0 = 1

𝐴2 = 𝑎1 =
5−1

2
= 0.618. . . = 𝜎

𝐴3 = 𝑎2 = 𝑎0 − 𝑎1 = 𝜎2

𝐴4 = 𝑎2 = 𝑎0 − 𝑎1 = 𝜎2

All other arcs have capacity 𝑠 =
1

1−𝜎

In general, for this network, at the nth

Step, flow augmentation will be 𝑎𝑛+1

and 𝑎𝑛+2 such that 𝑎𝑛+2 = 𝑎𝑛 − 𝑎𝑛+1

s t

x3

A1

A3

A4

A2

y3

x2

x1 y1

y2

x4
y4

VUGRAPH 22

• At step n … add an+1 & an+2

⇒ 𝑎0 + 𝑎1 + 𝑎2 + ⋅⋅⋅ + 𝑎𝑛+1 + 𝑎𝑛+2 =
1

1−𝜎
= 𝑠

• Start with 𝑠 𝑥1 𝑦1 𝑡  𝐴1 𝐴2 𝐴3 𝐴4 = 0 𝑎1 𝑎2 𝑎2 ⇒ flow 𝑎0

• At step 𝑛 𝑛 ≥ 1 :

 Suppose at step n, we order arcs 𝐴1
′ , 𝐴2

′ , 𝐴3
′ , 𝐴4

′ ∍ residual capacities are: 0, an , an+1 ,
an+1 , respectively

 Order <𝑥𝑖
′, 𝑦𝑖

′> accordingly

 Flow so far: a0 + a1 + … + an-1

• Step: n (a):

 Choose flow augmenting path

⇒ Residual cap: 0, an+2 , 0, an+1 , respectively

s t

𝑥2
′ 𝑦2

′

𝑥3
′ 𝑦3

′ an+1

Pathological Example (Ford and Fulkerson, 1962)

VUGRAPH 23

• Step: n – b:

 Choose flow augmenting path

⇒ an+2 , 0, an+2 , an+1

⇒ Flow so far: 𝑎0 + 𝑎1 +⋯ + 𝑎𝑛

⇒ Step n ends with appropriate residual
capacities for step (n+1)

As n →∞, flow converges to 𝑠 =
1

1−𝑎1
=

1

1−σ
= 𝑠

• However, max. flow = 4s

• Ford-Fulkerson terminates with non-optimal flows !!

s

𝑥1
′

t

𝑦1
′

𝑥2
′ 𝑦2

′

𝑥3
′ 𝑦3

′

𝑦4
′

an+2

Pathological Example (Ford and Fulkerson, 1962)

DMKM Algorithm

VUGRAPH 24

• Two phase algorithm executed iteratively

• Phase 1
 Obtain an auxiliary layered network (i.e., an acyclic graph) from

the original network G with a feasible flow pattern

• Phase 2
 Find saturating flow in a layered network . . . also called blocking

flows

 Phase 2 takes O(n2) or O(m log n) steps depending on
implementation

• We will show that phase 1 need be executed at most n times
⇒ O(n3) or O(mn log n) steps for the algorithm

DMKM Algorithm (Phase 2)

VUGRAPH 25

• Consider phase 2 first

 Want to find saturation flows in a layered network

 What is a layered network?

o An acyclic graph 𝐺𝐿 =< 𝑉𝐿, 𝐸𝐿 >∋ 𝑉𝐿 is partitioned into layers
𝑉0, 𝑉1, ⋯ , 𝑉𝐿

o 𝑉0 = 𝑠 , 𝑉1 = set of nodes adjacent to s

o 𝑉𝑘 = set of nodes adjacent to all nodes of 𝑉𝑘−1, 𝑘 ≥ 1

o Finally, 𝑉𝐿 = 𝑡

s

a

b

c

d3,0

t

3,0

4,0

3,0

4,0

3,0

2,0

V0 V2 V3V1

How to find saturating flows?

DMKM Algorithm (Phase 2)

VUGRAPH 26

• Repeat until s and t are disconnected
 Saturate some of the edges

 Remove edges (& nodes if either all incoming or outgoing edges
are saturated)

• The process is called “finding saturating flows” or
“finding blocking flows”

• Two algorithms for finding blocking flows
 “Push-pull" algorithm

 Wave method

• “Push-pull method”

 Define throughput of a node i, i ≠ s, t as:

= min{potential input to i, potential output from i}

 Similarly

 Suppose

 r is called the reference node

• For the example problem

• Key: guaranteed at least 𝑇𝑃𝑟 units of flow from s to t

• Q: How to “pull” 𝑇𝑃𝑟 units of flow from s to t & how to “push” 𝑇𝑃𝑟 units
from r to t?

min & arg minr i i
i i

TP TP r TP 

DMKM Algorithm (Phase 2)

VUGRAPH 27

 
 

 
 , ,

min ,i ki ki ij ij

k i E i j E

TP c x c x
 

  
   

  
 

 
 

 
 , ,

;s si si t kt kt

s i E k t E

TP c x TP c x
 

    

7, 3, 3, 3, 3, 7s a b c d tTP TP TP TP TP TP     

r = a or b or c or d

s

a

b

c

d3,0

t

3,0

4,0

3,0

4,0

3,0

2,0

V0 V2 V3V1

DMKM Algorithm (Phase 2)

VUGRAPH 28

• “Push” 𝑇𝑃𝑟 units from r to t
 Distribute 𝑇𝑃𝑟 units to the outgoing edges from r

o Take these edges one by one & saturate them until all 𝑇𝑃𝑟 units are
exhausted

o Flow reaching the next layer is distributed among its outgoing edges
& pushed to the next layer

• Example:
 Pick r = a

s

a

b

c

d3,0

t

3,0

4,0

3,1

4,1

3,2

2,2

DMKM Algorithm (Phase 2)

VUGRAPH 29

• “Pull” 𝑇𝑃𝑟 units from s to r
 Pull 𝑇𝑃𝑟 from immediate predecessors of r

 Then from their immediate predecessors & so on

• Example:

• Delete all saturated edges & nodes that have all their
incoming or outgoing edges saturated
 Deletion of a node ⇒ deletion of all its incoming or outgoing edges

s

a

b

c

d3,0

t

3,3

4,0

3,1

4,1

3,2

2,2

DMKM Algorithm (Phase 2)

VUGRAPH 30

• Result
𝑇𝑃𝑠 = 4

𝑇𝑃𝑏 = 3

𝑇𝑃𝑑 = 1

↓

s

a

b

c

d3,1

t

4,1

3,1

4,1

3,3

s

a

b

c

d3,1

t

4,1

3,1

4,1

⇒

⇒ Saturating flow = 4, since s and t are disconnected

• Note: saturating flow ≠ maximum flow

DMKM Algorithm (Phase 1)

VUGRAPH 31

• Phase 1 … construct a layered network from a graph with a feasible
flow pattern

 We do it in two steps

o Construct a network Gx with a feasible flow pattern 𝑥𝑖𝑗 from G

o Then, construct a layered network from Gx

 How to construct Gx?

o If <i, j> ∈ E and xij < cij, then <i, j> ∈ Gx and dij = cij – xij, where dij =
capacity of edge <i, j> ∈ Gx  xij ↑

o If <i, j> ∈ E and xij > 0, then <j, i> ∈ Gx and dji = xji  xji ↓

 Network Gx is called the “residual graph” (residual network)

• Layered network example
a c a c

s

b d3,1

t

3,3

4,1

3,1

4,1

3,3

2,2 ⇒ s

b d2

t
3

1

2

3

3

2

3 1

1
1

If f* is max. flow on G ⇒ f* - f is max. flow on Gx

• Construction of a layered network from Gx

 Use breadth-first search

• Rules

 If any node is in a higher layer than t, then discard the node & all edges incident on it

 Discard all nodes other than t that are in the same layer as t

 Discard all edges that go from a higher layer to a lower layer

 Discard any edge that joins two nodes of the same layer

• Example: next Gx for our layered network example

DMKM Algorithm (Phase 1)

VUGRAPH 32

2 3
t

b d a c
s

1 32 4 65

3 2 2

⇒ saturating flow = 2

total saturating flow so far = 4 + 2 = 6

a c

s

b d3

t

3

3

3
1

3

2

1
3

s & t disconnected ⇒ max. flow = 6

DMKM Algorithm (Phase 1)

VUG

RAP

• Example 2:
G0 & saturating flow = 4

Gx

1

a c

⇒ s

b d2

t

3

1

2

3

3

2

3 1

1
1

a c

s

b d3, 1

t

3, 3

4, 1

3, 1

4, 1

3, 3

2, 2
1, 0

a c

s

b d3

t

3

4

3

4

3

2 ⇒

a c

s

b d
3, 1

t

3, 3

4, 1

3, 1

4, 1

3, 3

2, 2
1, 01

⇓

GL saturating flow = 1

1,1

a c

⇐ s

b d

t

2, 1

3, 1

3, 1

a c

s

b d
3, 1

t

3, 3

4, 2

3, 2

4, 2

3, 3

2, 2
1, 1

⇓

DMKM Algorithm (Phase 1)

VUGRAPH 34

• Example 2 continued:

1

a c

s

b d
2

t

3

2

2

2

3

2

2 1

1
2

GL saturating flow = 1

⇒

a c

s

b d2, 1

t

2, 2

2, 1

2, 2

2, 2

⇓

⇓
a c

s

b d
3, 2

t

3, 3

4, 3

3, 3

4,3

3,3

2, 1

1, 1

ca

s

b d

2

t

3

3

3

2

3

11

1
1

1

2 ⇐

⇓

X X X
b d a

disconnected

⇒ max. flow = 4 + 1 + 1 = 6

s

a c

b d3, 2

t

3, 3

4, 3

3, 3

4, 3

3, 3

2, 1
1, 1

min. cut

s

⇒

DMKM algorithm

VUGRAPH 35

• Initialize flows xij = 0, done = “false”, f = 0

• While not (done) do
 Construct Gx = <Vx , Ex> with capacity matrix D

 If t is not reachable from 𝑠 ∈ 𝐺𝑥
o done = “true”

 Else

o Construct a layered network GL from Gx

o Find saturating flow g of GL

o f = f + g

 End if

• End do

• Finding saturating flows in a layered network (phase 2)

 At least one node is deleted at each iteration

⇒ At most n iterations

 In the ith iteration

o Work involved is related to the # of times different edges are processed

where Ts …saturated to capacity and Tp …partial

o If an arc is saturated, delete it

o # of partial steps ≤ 𝑛 (1 for each node)

⇒ Total work = O(m) + O(n2) = O(n2)

• Phase 1

 There are at most (n – 1) steps since the layers increase by at least one &
s – t path length ≤ 𝑛 − 1

 Constructing layered network … O(m)

⇒ Total work: O(nm) + O(n3) = O(n3)

Time complexity

VUGRAPH 36

s pT T T 

 sT O m 

 2

pT O n 

Blocking flow computation via “wave method”

VUGRAPH 37

• To present the method, we need the concept of preflow

 A preflow (xij) satisfies skew symmetry (xij = –xji) and capacity constraints

 The conservation constraints are not satisfied

o Flow (xij) is such that inflow ≥ outflow for every node ≠ s

⇒ Total inflow into any node 𝑖 ≠ 𝑠 must be at least as great as the total outflow from 𝑖

o Since xik = – xki, we can also write this as:

where j is over all edges incident to i (both incoming and outgoing edges)

 Balanced node Δ𝑖 = 0, (𝑖 ≠ 𝑠, 𝑡)

 Unbalanced node Δ𝑖 ≥ 0, (𝑖 ≠ 𝑠, 𝑡)

 A preflow is blocking if it saturates every path

 An edge on each path is at its capacity

• Key idea of wave method

 Start with a blocking preflow

 Iteratively convert it into a balanced blocking flow

⇒ A flow that satisfies conservation constraints

• How?

 Increase the outgoing flow of an unblocked & unbalanced node (or)

 Decrease the incoming flow of a blocked node

0i ji ik

j k

x x    

0i ji

j

x  

• Start with a preflow that saturates every edge out of s & zero flow on all other edges

• Blocked node ⇒ decrease incoming flow; unblocked node ⇒ increase outgoing flow
• Increase step:

 If (i, j) is an unsaturated edge such that j is unblocked, increase xij via: 𝑥𝑖𝑗 ← 𝑥𝑖𝑗 +
min 𝑐𝑖𝑗 − 𝑥𝑖𝑗 , Δ𝑖

• Decrease step:
 If node i is blocked and ∃ a positive flow xji, then: 𝑥𝑗𝑖 ← 𝑥𝑗𝑖 −min 𝑥𝑗𝑖 , Δ𝑖

Illustrative Example

VUGRAPH 38

a c

s

b d3, 0

t

3, 3

4, 4

3, 0

4, 0

3, 0

2, 0 ⇒

a c

s

b d3, 0

t

3, 3

4, 4

3, 1

4, 1

3, 2

2, 2

a c

s

b d3, 3

t

3, 3

4, 3

3, 1

4, 1

3, 3

2, 2 ⇒

a c

s

b d3, 3

t

3, 3

4, 3

3, 1

4, 1

3, 3

2, 0⇒

a c

s

b d3, 3

t

3, 3

4, 3

3, 3

4, 3

3, 3

2, 0

⇓

⇐Finally, blocking flow = max. flow

Mechanization of the wave method

VUGRAPH 39

• Start with a preflow ∋ every edge out of 𝑠 is saturated & has zero flow on all other edges

• Repeat increase flow & decrease flow until all nodes are balanced

• Increase flow

 Scan nodes other than s and t in topological order (reverse post-order visit)

 Balance each node i that is unbalanced & unblocked when it is scanned

 If balancing fails, label node i blocked (permanently)

• Decrease flow

 Scan vertices other than s and t in reverse topological order (i.e., post-order visit)

 Balance each vertex that is unbalanced & blocked when it is scanned

• Example: a c

s

b d3, 0

t

3, 3

3, 3

3, 0

3, 0

3, 0

2, 0

a c

s

b d3, 3

t

3, 3

3, 3

3, 3

3, 3

3, 3

2, 0

dfs scanning: s b d t a c

Post order: t d b c a s (reverse topological order)
Topological order: s a c b d t

Easy problem!

Mechanization of the wave method

VUGRAPH 40

• Second flow increase (c is blocked. Balance)

• Third flow increase

 a is blocked ⇒ make flow <s, a> = 5

 We are done since every path from s to t is blocked

 Blocking flow = 5 units

a

s

b

d

2, 2

t

3, 3

4, 2

2, 2

3, 3

3, 2

e

f

6, 6

2, 2

2, 0

4, 0

1, 1

c

a

s

b

d

2, 1

t

3, 3

4, 3

2, 2

3, 3

3, 1

e

f

6, 6

2, 2

2, 2

4, 0

1, 1

c

a

s

b

d

2, 1

t

3, 3

4, 3

2, 2

3, 3

3, 1

e

f

6, 6

2, 2

2, 0

4, 0

1, 1

c

d blocked ⇒ initiate decrease flow

and result of iteration 1: make
flow in (c,d) = 0

dfs scanning: s a c f t d e b

Post order: t f e d c b a s

Topological order: s a b c d e f t

Example:

Complexity result

VUGRAPH 41

• Wave method computes blocking flow of an acyclic graph in O(n2) time (&
blocking flow of a general graph in O(n3) time)

• Proof:

 If a node i is blocked, every path from i to t is blocked

 Initially s is blocked

 After increase flow step, if the balancing is a success, ∃ no unblocked, unbalanced
nodes

 If balancing fails, ∃ a blocked, unbalanced node

 This blocked node is balanced during decrease flow step & remains balanced
during subsequent increase flow steps

⇒ We block at least one node in each step

⇒ At most 𝑛 − 1 steps

⇒ At each step of increase flow, either an edge is saturated or terminates in a
balance

⇒ Similarly at each step of decrease flow either an edge flow is set to zero or
terminates in a balance

⇒ O(2m) + (n–1) (n–2) operations ⇒ O(n2)

 O(n3) complexity for max. flow follows from our earlier discussion w.r.t.
DMKM algorithm

More Recent Algorithms

VUGRAPH 42

• D. D. Sleator and R. Tarjan, “A data structure for dynamic
trees,” J. of Comput. Sys. Sci., vol. 26, pp. 362-91, 1983

• Y. Shiloach and U. Vishkin, “An O(n2 log n) parallel max-
flow algorithm”, J. of Algorithms, vol. 3, pp. 128-46, 1982

• N. Gabow, “Scaling algorithms for network problems”, J.
of Comput. Sys. Sci., pp.260-270, 1981

• R. E. Tarjan, “A simple version of Karzanov's blocking flow
algorithm,” OR letters, vol. 2, pp 265-268, 1984

• Goldberg, A. V., “Efficient graph algorithms for sequential
& parallel computers,” Ph.D. thesis, LCS, MIT, 1987

• Bertsekas, D. P., Linear network optimization, MIT press,
1991

Mapping Problem

VUGRAPH 48

• Set of tasks A,B,…, F with a graph structure

• Arcs ⇒ communication time

• Processing times on two processors: 𝑡𝑖1, 𝑡𝑖2

• Problem: minimize (processing time +
communication time)

• Total cost: 36 = cap. min. cut

• Makes sense since for an arbitrary partition of
tasks: 𝑊, ഥ𝑊

• Establishing formal equivalence:

⇒ Need: 𝑥𝑖 + 𝑦𝑖 = 1, ∀𝑖

2

∞
∞

10

4

2

3

3

6

8

4

A

12

F

2

5

4

6

5

5E

D

C

B 12

 

 

2

1Tasks for

Tasks for

,

, , ,

P F

P A B C D E



1 2

,

total cost: i i ij

i W i W i j
i W
j W

t t c
   




   

1

2

1 if task is allocated to
let

0 otherwise

1 if task is allocated to

0 otherwise

i

i

i P
x

i P
y


 



 


s

t

2

Processing times
on P1

Processing times
on P2

• Cost function:

• Define

• Then

• The problem is:

• Note: can’t extend to more than two processors

1 2

1 1 1 1

n n n n

i i i j ij i j

i j i j
j i

t x t y c x y
   



   

Mapping Problem

VUGRAPH 49

i j ijx y 

0i j ijx y   

1 2

1

min

s.t. 1 Similar to dual of max. flow

0

0

i i i j ij ij

i j i j
j i

i j

i j ij

ij

t x t y c

x y

x y










 




  


  

 

  

PERT networks

VUGRAPH 52

• If spend $0; project completes in 3 + 2 + 6 = 11 days

 Critical path 1 – 2 – 3 – 4

• If want to reduce the time, must spend $’s on tasks 1 – 2, 2 – 3, 3 – 4, since they
are on the critical path

• Also, must spend on tasks with lowest cost per unit time ⇒ task 2 – 3

• Q: How far should we reduce?

• Answer

 Till the arc is reduced to the minimum time 𝑎𝑖𝑗

o If this occurs, pick arc with the next lower cost per unit time

 (or) path is no longer the critical path

1

2

4

3

a = 1, b =3, c =$ 3

2, 4, 1

0, 2, 1

1, 6, 3

2, 5, 1
a = Min. time to perform a task
b = Normal completion time
c = $ to be spent to reduce

completion time by one unit

1

2

4

3

(0, 3, 3)

(0, 1, 4)

(0, 1, 2)

(0, 3, 6)

(0, 1, 5)

(a, c, b)

a = amount spent on arc
c = $/unit time
b = current processing time

• Reduce <2, 3> by one unit

⇒ Two critical paths 1 – 2 – 3 – 4 and 1 – 3 – 4

• To shorten longest paths, have three choices:

 1 – 2 & 1 – 3 with 𝑐12 + 𝑐13 = 3 + 1 = 4

 2 – 3 & 1 – 3 with 𝑐23 + 𝑐13 = 1 + 1 = 2

 3 – 4 with cost 𝑐34 = 3

How to decide where to invest?

VUGRAPH 53

1

2

4

3

(0,3,3)

(0,1,4)

(1,1,1)

(0,3,6)

(0,1,5)

• Looks like a min. cut of a graph of active arcs

 2 – 3 & 1 – 3

• Note: Can’t reduce 2 – 3 any further

• Reduce 𝑐34 by one unit, since then 1 – 2 – 4 is also a critical path

• Now 1 – 2, 2 – 4, & 2 – 3 are rigid

Where to invest?

VUGRAPH 54

1

2

4

3

(0, 3, 3)

(1, 1, 3)

(2, 1, 0)

(0, 3, 6)

(0, 1, 5)

two choices

1 – 2 & 1 – 3 with 𝑐12 + 𝑐13 = 4

3 – 4 with cost 𝑐34 = 3

1

2

4

3

(0, 3, 3)

(1, 1, 3)

(2,1,0)

(1, 3, 5)

(0, 1, 5)

two
choices

𝑐12 + 𝑐13 = 4

𝑐24 + 𝑐34 = 4
1

2

4

3

(3, 3, 2)

(2, 1, 2)

(2,1,0)

(12, 3, 5)

(3, 1, 2)

1

2

4

3

(6, 3, 2)

(2, 1, 2)

(1,1,1)

(15, 3, 1)

(3, 1, 2)

⇒

• If we reduce 1 – 3 & 3 – 4 to their value & increase 2 – 3 w/o
affecting the longest path

$0 ⇒ 11 days; $1⇒10 days; $3 ⇒ 9 days; $4 ⇒ 8 days; $22 ⇒ 4 days;
$27 for 3 days

Trade-off curve

VUGRAPH 55

0

5

10

15

20

25

30

3 4 5 6 7 8 9 10 11

$

Project Duration

Summary

VUGRAPH 57

• Max. flow ≡ Min. cut

• Ford-Fulkerson labeling algorithm

 Exponential and can converge to non-optimal solutions

 Can fix the problem by computing shortest augmenting paths
rather than any augmenting path

• DMKM algorithm

 Push-pull version

 Wave method

• Applications of maximum flow (mapping, PERT)

