Lecture 9:
 Maximum Flow in a Network

Prof. Krishna R. Pattipati

Dept. of Electrical and Computer Engineering
University of Connecticut
Contact: krishna@engr.uconn.edu; (860) 486-2890

Outline

- LP formulation and its dual
- Maximum flow \equiv Minimum cut
- A historical perspective on maximum flow algorithms
- Ford-Fulkerson labeling algorithm
- Dinic-Malhotra-Pramodh Kumar-Maheswari (DMKM) algorithm
- Push-pull algorithm
- Wave method
- Applications of maximum flow
- Mapping problem
- PERT networks

Preliminaries

- Suppose have a graph $G=\langle V, E\rangle$ with two distinguished (designated) nodes s and t
- $s=$ source node; $t=$ terminal node
- Consider edge between nodes i and j
- Edge $\langle i, j\rangle$ permits flow in both directions . . . undirected
\circ Edge $\langle i, j\rangle$ has a capacity $c_{i j}$ in the forward direction and $c_{j i}$ in the backward direction
- $c_{i j} \geq 0$ and $c_{j i} \geq 0$
- Usually, we assume $c_{i j}=c_{j i}$ (symmetric)
- Edge $\langle i, j>$ permits flow from node i to node j only
- Capacity $c_{i j} \geq 0$
- $c_{j i}=0 \rightarrow$ no flow allowed in reverse direction
- Since any undirected graph can be converted into a directed graph, we assume that G is directed

Preliminaries

- Let $x_{i j}$ be the flow of commodity (oil, messages, vehicles) from i to j
- By definition $x_{j i}=-x_{i j} \rightarrow$ flow matrix is skew symmetric
- $x_{i j} \leq c_{i j}$ and $x_{j i} \leq c_{j i} \rightarrow$ flows satisfy capacity constraints
- For any $\langle i, j\rangle$ if $x_{i j}=c_{i j}$ or $x_{j i}=c_{j i} \Rightarrow$ edge $\langle i, j\rangle$ is saturated
- If don't have an edge $\langle i, j\rangle \Rightarrow c_{i j}=c_{j i}=x_{i j}=x_{j i}=0$
- We can also look at flows in a network in terms of path flows
- Indeed, we can establish an equivalence between arc flows and path flows
- Let P be the set of paths in the network
- Let y_{p} be the flow on path p

$$
\text { Let } \delta_{i j}(p)=\left\{\begin{array}{ll}
1 & \text { if arc }\langle i, j>\text { is on path } p \\
0 & \text { otherwise }
\end{array} \quad \Rightarrow \quad x_{i j}=\sum_{p \in P} y_{p} \delta_{i j}(p)\right.
$$

Conservation of Flow

- Flow conservation constraints
- \forall node $i \neq s, t$, we have

$$
\text { flow in } \equiv \text { flow out }
$$

$$
\begin{aligned}
& \sum_{j=1}^{n} x_{j i} \equiv \sum_{k=1}^{n} x_{i k} \forall i \neq s, t \\
& \sum_{<j, i>\in E} x_{j i} \equiv \sum_{\langle i, k>\in E} x_{i k} \forall i \neq s, t
\end{aligned}
$$

- Flow in the network

$$
\begin{aligned}
f & =\sum_{i=1}^{n} x_{s i}-\sum_{k=1}^{n} x_{k s} \ldots \text { net flow out of source } \\
\text { (or) } f & =\sum_{k=1}^{n} x_{k t}-\sum_{i=1}^{n} x_{t i} \ldots \text { net flow into sink }
\end{aligned}
$$

- Max. flow problem:
- Want to find the maximum flow that the network can sustain from s to t
- What is the capacity of the network?

Max. flow problem

- LP formulation

$$
\begin{array}{ll}
\max f & \\
\text { s.t. } \sum_{i=1}^{n} x_{s i}-\sum_{k=1}^{n} x_{k s}-f=0 & \text { (source flow) } \\
\quad \sum_{j=1}^{n} x_{i j}-\sum_{k=1}^{n} x_{k i}=0, \forall i \neq s, t & \text { (Kirchoff's law) } \\
-\sum_{k=1}^{n} x_{k t}+\sum_{i=1}^{n} x_{t i}+f=0 & \text { (sink flow) } \\
0 \leq x_{i j} \leq c_{i j} & \text { (capacity constraints) }
\end{array}
$$

- Example:

Capacity of a cut

- Capacities provide a bound on the flow
- At the source: can't send more than $(5+7+9)=21$ units
- Can't send this because at the sink: can't receive more than

$$
(6+8+5)=19 \text { units }
$$

- Can't send 19 units either because at the center: can't move more than $(14+1+1)=16$ units
- What we have defined are three cuts
- Cut \equiv A partition (or separation) of nodes into two groups W and T such that $s \in W$ and $t \in T=\bar{W}$
- Capacity of the cut is the sum of capacity of edges crossing from W to T

$$
C(W, \bar{W})=\sum_{\substack{i, j>\in E: \\
i \in W, j \in \bar{W}}} c_{i j}\left\{\begin{array}{l}
\text { cut at the source: } 21 \\
\text { cut at the sink: } 19 \\
\text { cut in the middle: } 16
\end{array}\right)
$$

Max Flow \equiv Min cut

- Know $f \leq C(W, \bar{W}), \forall(W, \bar{W})$ cut
- Can't push through 16 units either!!
- $\operatorname{Cut}(4) \rightarrow 7+2+1+2+1=13$
- Can't push through 13 units either!!
- $\operatorname{Cut}(5) \rightarrow 1+1+8+1+1=12$

- $\operatorname{Cut}(5) \rightarrow W=\{s, a, b, c, e\} ; \bar{W}=\{t, d, f\}$
- Property of a cut
- Each cut corresponds to a feasible solution of the dual of max. flow problem ...later
- Properties of cut(5):
- Every forward edge across the cut is saturated
- It is a cut of maximum capacity
\rightarrow Max. flow $=$ min cut (?)
...Recall dual is a minimization problem!!

Some observations from example

- Minimum cut is not unique
- Min. cut is not unique: e.g., if $14 \rightarrow 10$
\Rightarrow a second min. cut

- Maximum flow pattern is not unique
- Max. flow pattern is not unique. Degenerate bfs
- Max. flow value $f=12$ is unique: cap. of min cut is unique

Establishing feasibility

- Let us look at the dual to establish feasibility

Primal

$$
\begin{aligned}
& \min -f \\
& \text { s.t. } \sum_{i=1}^{n} x_{s i}-\sum_{k=1}^{n} x_{k s}-f=0 \\
& \quad \sum_{j=1}^{n} x_{i j}-\sum_{k=1}^{n} x_{k i}=0, \forall i \neq s, t \\
& \quad \sum_{i=1}^{n} x_{t i}+\sum_{k=1}^{n} x_{k t}+f=0 \\
& \quad-x_{i j} \geq-c_{i j} ; x_{i j} \geq 0
\end{aligned}
$$

$$
\begin{aligned}
\max - & \sum_{<i, j>\in E} \mu_{i j} c_{i j}=\min \sum_{<i, j>\in E} \mu_{i j} c_{i j} \\
& \text { s.t. }-\gamma_{s}+\gamma_{t} \leq-1 \\
& \gamma_{i}-\gamma_{j}-\mu_{i j} \leq 0 \\
& \gamma_{i} \text { unconstrained } \\
& \mu_{i j} \geq 0
\end{aligned}
$$

- Let $\gamma_{i}=-\lambda_{i}, \forall i$
- Final Dual form

$$
\begin{aligned}
\Rightarrow & \min \\
& \sum_{\langle i, j\rangle \in E} \mu_{i j} c_{i j} \\
& \text { s.t. } \lambda_{t}-\lambda_{s} \geq 1 \\
& \lambda_{i}-\lambda_{j}+\mu_{i j} \geq 0 \Rightarrow \lambda_{j}-\lambda_{i} \leq \mu_{i j} \\
& \mu_{i j} \geq 0
\end{aligned}
$$

Establishing dual feasibility of a cut

- Every $s-t \operatorname{cut}(W, \bar{W})$ determines a dual feasible solution with cost $C(W, \bar{W})$ as follows:

$$
\begin{gathered}
\mu_{i j}=\left\{\begin{array}{ll}
1 & i \in W ; j \in \bar{W} \\
0 & \text { otherwise }
\end{array}\right\} \\
\Rightarrow \sum_{<i, j>\in E} \mu_{i j} c_{i j}=\sum_{\substack{<i, j>\in E \\
i \in W, j \in \bar{W}}} c_{i j}=C(W, \bar{W}) \\
\\
\lambda_{i}=\left\{\begin{array}{ll}
0 & i \in W \\
1 & i \in \bar{W}
\end{array}\right. \text { dual feasible } \\
\\
\quad i \in W, j \in W: \text { OK } \\
\\
\left.\quad \begin{array}{l}
i \in \bar{W}, j \in \bar{W}: \text { OK } \\
\\
i \in W, j \in \bar{W}: \text { OK } \\
\\
i \in \bar{W}, j \in W: \text { OK }
\end{array}\right\} \Rightarrow \text { feasible }
\end{gathered}
$$

$\cdot \Rightarrow$ note that $\lambda_{t}=1$ and $\lambda_{s}=0$ always

Max. flow \equiv Min. cut

- Flow $x_{i j}^{*}$ and (W, \bar{W}) are jointly optimal iff
- $x_{i j}^{*}=0, \forall<i, j>\in E \ni i \in \bar{W}$ and $j \in W$
\Rightarrow Zero flows on backward arcs
- $x_{i j}=c_{i j}, \forall<i, j>\in E \ni i \in W$ and $j \in \bar{W}$
\Rightarrow Saturated flows on forward arcs
- If $i \in \bar{W}$ and $j \in W$
$\Rightarrow \lambda_{i}-\lambda_{j}+\mu_{i j}=1-0+0=1>0 \Rightarrow x_{i j}^{*}=0$
- If $i \in W$ and $j \in \bar{W}$
$\Rightarrow \lambda_{i}-\lambda_{j}+\mu_{i j}=0-1+1=0 \Rightarrow x_{i j}^{*}=c_{i j}$
- To see this duality more clearly, consider a graph with $c_{i j}=c_{j i}=1$
- Minimal cut \equiv smallest number of edges across it \equiv \# of edges from W to \bar{W}
- Maximal flow \equiv \# of disjoint paths from s to t

$$
\begin{aligned}
& \Rightarrow \text { Max. \# of disjoint paths from } s \text { to } t \equiv \text { min. \# of edges across a cut } \\
& \Rightarrow \text { (or) } \\
& \text { Capacity of a network } \equiv \text { sum of capacities of its weakest links }
\end{aligned}
$$

Historical perspective on max. flow algorithms

Year	Algorithm	Complexity
1956	Ford \& Fulkerson	can be exponential
1969	Edmonds \& Karp	$O\left(n m^{2}\right)$
1970	Dinic	$O\left(n^{2} m\right)$
1974	Karzanov	$O\left(n^{3}\right)$
1978	Malhotra,	$O\left(n^{3}\right)$
1977	Kumar, Maheswari	$O\left(n^{2} m^{1 / 2}\right)$
1978	Cherkaski	$O\left(n^{5 / 3} m^{1 / 2}\right)$
1979	Galil, Naamad, Shiloach	$O\left(n m(\log n)^{2}\right)$
1980	Sleator \& Tarjan	$O\left(n m l^{2} \log n\right)$
1986,87	Goldberg \& Tarjan	$O\left(n^{3}\right)$
1987	Bertsekas	$O\left(n^{3}\right)$
1989	Ahuja \& Orlin	survey of max. flow algorithms

Historical perspective on max. flow algorithms

- Ford-Fulkerson \& Edmonds \& Karp
- Try to push flow on one path at a time called an augmentation path
- If can't find a path from s to t, we are done!!
- Other algorithms
- Several paths at once
- We construct a series of layered Networks
- If can't construct a layered network from s - t, we are done!
- More recent algorithms
- Work on arcs \Rightarrow distributed computation

Idea of Ford-Fulkerson labeling algorithm

- Ford-Fulkerson labeling algorithm
- Given: a directed graph $G=\langle V, E\rangle$ and a feasible flow $\left(x_{i j}\right)$
- An augmentation path (or augmenting path) p is a path from s to t in the undirected graph resulting from G by ignoring edge directions with the following properties:
- $\forall<i, j>\in E$ that is traversed by P in the forward direction (called forward arc $\langle i, j>$ or forward labeling of j), we have

$$
x_{i j}<c_{i j} \rightarrow x_{i j} \uparrow\left\{\begin{array}{l}
\text { we can forward label } j \text { if } \\
\bullet i \text { is labeled and } j \text { is not } \\
\bullet x_{i j}<c_{i j}
\end{array}\right.
$$

This idea is similar to Hungarian algorithm for the assignment

- $\forall(j, i) \in E$ that is traversed by P in the backward direction problem backward labeling of j), we have

$$
x_{j i}>0 \rightarrow x_{j i} \downarrow\left\{\begin{array}{l}
\text { we can backward label } j \text { if } \\
\bullet i \text { is labeled and } j \text { is not } \\
\bullet x_{j i}>0
\end{array}\right.
$$

Example

- We can increase the flow on the augmenting path p until we violate the capacity constraint of a forward arc or empty a backward arc

$$
\begin{aligned}
& \delta=\min _{(i, j) \in P}\left\{\begin{array}{l}
c_{i j}-x_{i j} \\
x_{j i}
\end{array}\right. \\
& \delta=\left\{\begin{array}{l}
7 \\
4
\end{array} \rightarrow \delta=4\right.
\end{aligned}
$$

$<i, j>$ forward
$<j, i>$ backward

How to find augmentation paths?

- We propagate labels from s to t or get stuck
- Each node i has a two part label: label $(i)=\left\langle L_{i}, F_{i}\right\rangle$
$\circ L_{i}=$ from where i was labeled $\left\{\begin{array}{l}\bullet \text { Parent of } i \text { for forward arc } \\ \bullet \text { Son of } i \text { for backward arc }\end{array}\right.$
- $F_{i}=$ amount of extra flow that can be brought to i from s

When label all nodes adjacent to i, we are said to scan i

- We add all nodes labeled by scanning i to a LIST

○ So, to find augmenting path, scan $s \xrightarrow{i=s}$ add to LIST all nodes labeled from $i \rightarrow$ pick a node from LIST

- Outcome
$\circ t$ gets labeled \Rightarrow found an augmentation path
- LIST becomes empty \Rightarrow can't find a path \Rightarrow optimal

Algorithm Procedure

```
\foralli,j\inE, let }\mp@subsup{x}{ij}{}=
repeat
    set all labels to 0; LIST = {s}
    while LIST # }\varnothing\mathrm{ do
        pick any node i\in LIST and remove it
        scan i=> add to list all nodes on augmenting path
        if t is labeled
        augment flow }\mp@subsup{x}{ij}{
        goto repeat
        end if
    end do
```

- What does scan i mean?
- Procedure scan i
- Label forward to all unlabeled nodes adjacent to i by arcs that are unsaturated, putting newly labeled nodes on LIST
- Label backward to all unlabeled nodes from which i is adjacent by arcs that have positive flows, putting newly labeled nodes on LIST

Example

- Example

UCDNN

Cost analysis

- When $c_{i j}$ are integers \Rightarrow Ford-Fulkerson takes at most f augmentations

$$
\langle s u v t\rangle \rightarrow\langle s v u t\rangle \rightarrow\langle s u v t\rangle \rightarrow \cdots \rightarrow 2 M \text { iterations }
$$

- When $c_{i j}$ are rational
- Write as ratio of integers with a common denominator D
- Scale each cost by $D \Rightarrow$ takes at most $D f$ iterations
- When $c_{i j}$ are irrational (of infinite precision), Ford-Fulkerson may not terminate
- In fact, may converge to a non-optimal value
- If use shortest augmenting path, all these problems go away . . . In fact, Edmonds \& Karp showed that the \# of augmenting paths $\leq \frac{n\left(n^{2}-1\right)}{4}$ with this strategy (\exists even better algorithms)

Pathological Example (Ford and Fulkerson, 1962)

$$
\begin{aligned}
& <x_{i}, y_{i}>=\operatorname{arcs} A_{i} \\
& A_{1}=a_{0}=1 \\
& A_{2}=a_{1}=\frac{\sqrt{5}-1}{2}=0.618 \ldots=\sigma \\
& A_{3}=a_{2}=a_{0}-a_{1}=\sigma^{2} \\
& A_{4}=a_{2}=a_{0}-a_{1}=\sigma^{2}
\end{aligned}
$$

All other arcs have capacity $s=\frac{1}{1-\sigma}$
In general, for this network, at the $n^{\text {th }}$ Step, flow augmentation will be a_{n+1} and a_{n+2} such that $a_{n+2}=a_{n}-a_{n+1}$

Pathological Example (Ford and Fulkerson, 1962)

- At step $n \ldots$ add $a_{n+1} \& a_{n+2}$

$$
\Rightarrow a_{0}+\left(a_{1}+a_{2}\right)+\cdots+\left(a_{n+1}+a_{n+2}\right)=\frac{1}{1-\sigma}=s
$$

- Start with $\left\langle\begin{array}{llllll}s & x_{1} & y_{1} & t\end{array}\right\rangle \Rightarrow\left\langle\begin{array}{lllll}A_{1} & A_{2} & A_{3} & A_{4}\end{array}\right\rangle=\left\langle\begin{array}{llll}0 & a_{1} & a_{2} & a_{2}\end{array}\right\rangle \Rightarrow$ flow a_{0}
- At $\operatorname{step} n(n \geq 1)$:
- Suppose at step n, we order $\operatorname{arcs} A_{1}^{\prime}, A_{2}^{\prime}, A_{3}^{\prime}, A_{4}^{\prime} \ni$ residual capacities are: $0, a_{n}, a_{n+1}$, a_{n+1}, respectively
- Order $\left\langle x_{i}^{\prime}, y_{i}^{\prime}>\right.$ accordingly
- Flow so far: $a_{0}+a_{1}+\ldots+a_{n-1}$
- Step: n (a):
- Choose flow augmenting path

$$
\Rightarrow \text { Residual cap: } 0, a_{n+2}, 0, a_{n+1}, \text { respectively }
$$

Pathological Example (Ford and Fulkerson, 1962)

- Step: $n-b$:
- Choose flow augmenting path

$$
\Rightarrow a_{n+2}, 0, a_{n+2}, a_{n+1}
$$

\Rightarrow Flow so far: $a_{0}+a_{1}+\cdots+a_{n}$
\Rightarrow Step n ends with appropriate residual capacities for step ($n+1$)

As $n \rightarrow \infty$, flow converges to $s=\frac{1}{1-a_{1}}=\frac{1}{1-\sigma}=s$

- However, max. flow $=4 s$
- Ford-Fulkerson terminates with non-optimal flows !!

DMKM Algorithm

- Two phase algorithm executed iteratively
- Phase 1
- Obtain an auxiliary layered network (i.e., an acyclic graph) from the original network G with a feasible flow pattern
- Phase 2
- Find saturating flow in a layered network . . . also called blocking flows
- Phase 2 takes $O\left(n^{2}\right)$ or $O(m \log n)$ steps depending on implementation
- We will show that phase 1 need be executed at most n times
$\Rightarrow O\left(n^{3}\right)$ or $O(m n \log n)$ steps for the algorithm

DMKM Algorithm (Phase 2)

- Consider phase 2 first
- Want to find saturation flows in a layered network
- What is a layered network?
- An acyclic graph $G_{L}=<V_{L}, E_{L}>\ni V_{L}$ is partitioned into layers $V_{0}, V_{1}, \cdots, V_{L}$
- $V_{0}=\{s\}, V_{1}=$ set of nodes adjacent to s
- $V_{k}=$ set of nodes adjacent to all nodes of $V_{k-1}, k \geq 1$
- Finally, $V_{L}=\{t\}$

How to find saturating flows?

DMKM Algorithm (Phase 2)

- Repeat until s and t are disconnected
- Saturate some of the edges
- Remove edges (\& nodes if either all incoming or outgoing edges are saturated)
- The process is called "finding saturating flows" or "finding blocking flows"
- Two algorithms for finding blocking flows
- "Push-pull" algorithm
- Wave method

DMKM Algorithm (Phase 2)

- "Push-pull method"
- Define throughput of a node $i, i \neq s, t$ as: $\quad T P_{i}=\min \left\{\sum_{(k, i) \in E}\left(c_{k i}-x_{k i}\right), \sum_{(i, j) \in E}\left(c_{i j}-x_{i j}\right)\right\}$
$=\min \{$ potential input to i, potential output from $i\}$
- Similarly

$$
T P_{s}=\sum_{(s, i) \in E}\left(c_{s i}-x_{s i}\right) ; T P_{t}=\sum_{(k, t) \in E}\left(c_{k t}-x_{k t}\right)
$$

- Suppose

$$
T P_{r}=\min _{i} T P_{i} \& r=\arg \min _{i} T P_{i}
$$

- r is called the reference node
- For the example problem

$$
\begin{aligned}
& T P_{s}=7, T P_{a}=3, T P_{b}=3, T P_{c}=3, T P_{d}=3, T P_{t}=7 \\
& r=a \text { or } b \text { or } c \text { or } d
\end{aligned}
$$

- Key: guaranteed at least $T P_{r}$ units of flow from s to t
- Q: How to "pull" $T P_{r}$ units of flow from s to t \& how to "push" $T P_{r}$ units from r to t ?

DMKM Algorithm (Phase 2)

- "Push" $T P_{r}$ units from r to t
- Distribute $T P_{r}$ units to the outgoing edges from r
- Take these edges one by one \& saturate them until all $T P_{r}$ units are exhausted
- Flow reaching the next layer is distributed among its outgoing edges \& pushed to the next layer
- Example:
- Pick $r=a$

DMKM Algorithm (Phase 2)

- "Pull" $T P_{r}$ units from s to r
- Pull $T P_{r}$ from immediate predecessors of r
- Then from their immediate predecessors \& so on
- Example:

- Delete all saturated edges \& nodes that have all their incoming or outgoing edges saturated
- Deletion of a node \Rightarrow deletion of all its incoming or outgoing edges

DMKM Algorithm (Phase 2)

- Result

$$
\begin{gathered}
T P_{s}=4 \\
T P_{b}=3 \\
T P_{d}=1 \\
\downarrow
\end{gathered}
$$

\Rightarrow Saturating flow $=4$, since s and t are disconnected

- Note: saturating flow \neq maximum flow

DMKM Algorithm (Phase 1)

- Phase 1 ... construct a layered network from a graph with a feasible flow pattern
- We do it in two steps
- Construct a network G_{x} with a feasible flow pattern $\left\langle x_{i j}\right\rangle$ from G
- Then, construct a layered network from G_{x}
- How to construct G_{x} ?
\circ If $\langle i, j\rangle \in E$ and $x_{i j}\left\langle c_{i j}\right.$, then $\langle i, j\rangle \in G_{x}$ and $d_{i j}=c_{i j}-x_{i j}$, where $d_{i j}=$ capacity of edge $\langle i, j\rangle \in G_{x} \Rightarrow x_{i j} \uparrow$
\circ If $\langle i, j\rangle \in E$ and $x_{i j}>0$, then $\langle j, i\rangle \in G_{x}$ and $d_{j i}=x_{j i} \Rightarrow x_{j i} \downarrow$
- Network G_{x} is called the "residual graph" (residual network)
- Layered network example

DMKM Algorithm (Phase 1)

- Construction of a layered network from G_{x}
- Use breadth-first search

\Rightarrow saturating flow $=2$ total saturating flow so far $=4+2=6$
- Rules
- If any node is in a higher layer than t, then discard the node \& all edges incident on it
- Discard all nodes other than t that are in the same layer as t
- Discard all edges that go from a higher layer to a lower layer
- Discard any edge that joins two nodes of the same layer
- Example: next G_{x} for our layered network example

$s \& t$ disconnected \Rightarrow max. flow $=6$

DMKM Algorithm (Phase 1)

- Example 2:

DMKM Algorithm (Phase 1)

- Example 2 continued:

DMKM algorithm

- Initialize flows $x_{i j}=0$, done $=$ "false", $f=0$
- While not (done) do
- Construct $G_{x}=\left\langle V_{x}, E_{x}>\right.$ with capacity matrix D
- If t is not reachable from $s \in G_{x}$
- done = "true"
- Else
- Construct a layered network G_{L} from G_{x}
- Find saturating flow g of G_{L}
- $f=f+g$
- End if
- End do

Time complexity

- Finding saturating flows in a layered network (phase 2)
- At least one node is deleted at each iteration
\Rightarrow At most n iterations
- In the $i^{\text {th }}$ iteration
- Work involved is related to the \# of times different edges are processed

$$
T=T_{s}+T_{p}
$$

where $T_{s} \ldots$ saturated to capacity and $T_{p} \ldots$ partial

- If an arc is saturated, delete it

$$
\Rightarrow T_{s}=O(\mathrm{~m})
$$

- \# of partial steps $\leq n$ (1 for each node)
\Rightarrow Total work $=O(m)+O\left(n^{2}\right)=O\left(n^{2}\right)$
- Phase 1
- There are at most $(n-1)$ steps since the layers increase by at least one \& $s-t$ path length $\leq n-1$
- Constructing layered network ... $O(m)$
\Rightarrow Total work: $O(n m)+O\left(n^{3}\right)=O\left(n^{3}\right)$

Blocking flow computation via "wave method"

- To present the method, we need the concept of preflow
- A preflow $\left(x_{i j}\right)$ satisfies skew symmetry $\left(x_{i j}=-x_{j i}\right)$ and capacity constraints
- The conservation constraints are not satisfied
- Flow $\left(x_{i j}\right)$ is such that inflow \geq outflow for every node $\neq s$
\Rightarrow Total inflow into any node $i \neq s$ must be at least as great as the total outflow from i

$$
\Delta_{i}=\sum_{j} x_{j i}-\sum_{k} x_{i k} \geq 0
$$

- Since $x_{i k}=-x_{k i}$, we can also write this as:

$$
\Delta_{i}=\sum_{j} x_{j i} \geq 0
$$

where j is over all edges incident to i (both incoming and outgoing edges)

- Balanced node $\Delta_{i}=0,(i \neq s, t)$
- Unbalanced node $\Delta_{i} \geq 0,(i \neq s, t)$
- A preflow is blocking if it saturates every path
- An edge on each path is at its capacity
- Key idea of wave method
- Start with a blocking preflow
- Iteratively convert it into a balanced blocking flow
\Rightarrow A flow that satisfies conservation constraints
- How?
- Increase the outgoing flow of an unblocked \& unbalanced node (or)
- Decrease the incoming flow of a blocked node

Illustrative Example

- Start with a preflow that saturates every edge out of s \& zero flow on all other edges

- Blocked node \Rightarrow decrease incoming flow; unblocked node \Rightarrow increase outgoing flow
- Increase step:
- If (i, j) is an unsaturated edge such that j is unblocked, increase $x_{i j}$ via: $x_{i j} \leftarrow x_{i j}+$ $\min \left\{c_{i j}-x_{i j}, \Delta_{i}\right\}$
- Decrease step:
- If node i is blocked and \exists a positive flow $x_{j i}$, then: $x_{j i} \leftarrow x_{j i}-\min \left\{x_{j i}, \Delta_{i}\right\}$

Mechanization of the wave method

- Start with a preflow \ni every edge out of s is saturated $\&$ has zero flow on all other edges
- Repeat increase flow \& decrease flow until all nodes are balanced
- Increase flow
- Scan nodes other than s and t in topological order (reverse post-order visit)
- Balance each node i that is unbalanced \& unblocked when it is scanned
- If balancing fails, label node i blocked (permanently)
- Decrease flow
- Scan vertices other than s and t in reverse topological order (i.e., post-order visit)
- Balance each vertex that is unbalanced \& blocked when it is scanned
- Example:

dfs scanning: sbdtac Post order: $t d b$ c as (reverse topological order) Topological order: sacbdt

Easy problem!

Mechanization of the wave method

Example:

dfs scanning: $s a c f t d e b$
Post order: tfedcbas
Topological order: $s a b c d e f t$

d blocked \Rightarrow initiate decrease flow and result of iteration 1: make flow in $(c, d)=0$

- Second flow increase (c is blocked. Balance)

- Third flow increase
- a is blocked \Rightarrow make flow $\langle s, a\rangle=5$
- We are done since every path from s to t is blocked
- Blocking flow $=5$ units

Complexity result

- Wave method computes blocking flow of an acyclic graph in $O\left(n^{2}\right)$ time (\& blocking flow of a general graph in $O\left(n^{3}\right)$ time)
- Proof:
- If a node i is blocked, every path from i to t is blocked
- Initially s is blocked
- After increase flow step, if the balancing is a success, \exists no unblocked, unbalanced nodes
- If balancing fails, \exists a blocked, unbalanced node
- This blocked node is balanced during decrease flow step \& remains balanced during subsequent increase flow steps
\Rightarrow We block at least one node in each step
\Rightarrow At most ($n-1$) steps
\Rightarrow At each step of increase flow, either an edge is saturated or terminates in a balance
\Rightarrow Similarly at each step of decrease flow either an edge flow is set to zero or terminates in a balance

$$
\Rightarrow O(2 m)+(n-1)(n-2) \text { operations } \Rightarrow O\left(n^{2}\right)
$$

- $O\left(n^{3}\right)$ complexity for max. flow follows from our earlier discussion w.r.t. DMKM algorithm

More Recent Algorithms

- D. D. Sleator and R. Tarjan, "A data structure for dynamic trees," J. of Comput. Sys. Sci., vol. 26, pp. 362-91, 1983
- Y. Shiloach and U. Vishkin, "An $O\left(n^{2} \log n\right)$ parallel maxflow algorithm", J. of Algorithms, vol. 3, pp. 128-46, 1982
- N. Gabow, "Scaling algorithms for network problems", J. of Comput. Sys. Sci., pp.260-270, 1981
- R. E. Tarjan, "A simple version of Karzanov's blocking flow algorithm," OR letters, vol. 2, pp 265-268, 1984
- Goldberg, A. V., "Efficient graph algorithms for sequential \& parallel computers," Ph.D. thesis, LCS, MIT, 1987
- Bertsekas, D. P., Linear network optimization, MIT press, 1991

Mapping Problem

Processing times

Processing times on P_{1}

- Set of tasks A,B,..., F with a graph structure
- $\operatorname{Arcs} \Rightarrow$ communication time
- Processing times on two processors: $t_{i 1}, t_{i 2}$
- Problem: minimize (processing time + communication time)

$$
\begin{aligned}
& \text { Tasks for } P_{2}=\{F\} \\
& \text { Tasks for } P_{1}=\{A, B, C, D, E\}
\end{aligned}
$$

- Total cost: 36 = cap. min. cut
- Makes sense since for an arbitrary partition of tasks: (W, \bar{W})

$$
\text { total cost: } \sum_{i \in W} t_{i 1}+\sum_{i \in \bar{W}} t_{i 2}+\sum_{\substack{i, j, j \\ i \in N \\ j \in \bar{W}}} c_{i j}
$$

- Establishing formal equivalence:

$$
\text { let } \begin{aligned}
x_{i} & = \begin{cases}1 & \text { if task } i \text { is allocated to } P_{1} \\
0 & \text { otherwise }\end{cases} \\
y_{i} & = \begin{cases}1 & \text { if task } i \text { is allocated to } P_{2} \\
0 & \text { otherwise }\end{cases}
\end{aligned}
$$

$$
\Rightarrow \text { Need: } x_{i}+y_{i}=1, \forall i
$$

Mapping Problem

- Define $x_{i} y_{j}=\mu_{i j}$
- Then $x_{i}+y_{j}-\mu_{i j} \geq 0$
- The problem is:

$$
\left.\begin{array}{ll}
\min & \sum_{i} t_{i 1} x_{i}+\sum_{j} t_{i 2} y_{j}+\sum_{i} \sum_{\substack{j=1 \\
j \neq i}} c_{i j} \mu_{i j} \\
\text { s.t. } & x_{i}+y_{j} \geq 1 \\
& x_{i}+y_{j}-\mu_{i j} \geq 0 \\
& \mu_{i j} \geq 0
\end{array}\right\}
$$

Similar to dual of max. flow

- Note: can't extend to more than two processors

PERT networks

$a=$ Min. time to perform a task
$b=$ Normal completion time
$c=\$$ to be spent to reduce completion time by one unit

- If spend $\$ 0$; project completes in $3+2+6=11$ days
- Critical path 1-2-3-4
- If want to reduce the time, must spend $\$$'s on tasks $1-2,2-3,3-4$, since they are on the critical path
- Also, must spend on tasks with lowest cost per unit time \Rightarrow task 2 - 3
- Q: How far should we reduce?
- Answer
- Till the arc is reduced to the minimum time $a_{i j}$
- If this occurs, pick arc with the next lower cost per unit time
- (or) path is no longer the critical path

How to decide where to invest?

(a, c, b)
$a=$ amount spent on arc
$c=\$ /$ unit time
$b=$ current processing time

- Reduce $\langle 2,3>$ by one unit
\Rightarrow Two critical paths $1-2-3-4$ and $1-3-4$

- To shorten longest paths, have three choices:
- $1-2 \& 1-3$ with $c_{12}+c_{13}=3+1=4$
- $2-3 \& 1-3$ with $c_{23}+c_{13}=1+1=2$
- $3-4$ with $\operatorname{cost} c_{34}=3$

Where to invest?

- Looks like a min. cut of a graph of active arcs
- 2-3\&1-3
- Note: Can't reduce $2-3$ any further

- Reduce c_{34} by one unit, since then $1-2-4$ is also a critical path

- Now $1-2,2-4, \& 2-3$ are rigid

Trade-off curve

- If we reduce $1-3 \& 3-4$ to their value $\&$ increase $2-3$ w/o affecting the longest path
$\$ 0 \Rightarrow 11$ days; $\$ 1 \Rightarrow 10$ days; $\$ 3 \Rightarrow 9$ days; $\$ 4 \Rightarrow 8$ days; $\$ 22 \Rightarrow 4$ days; $\$ 27$ for 3 days

Summary

- Max. flow \equiv Min. cut
- Ford-Fulkerson labeling algorithm
- Exponential and can converge to non-optimal solutions
- Can fix the problem by computing shortest augmenting paths rather than any augmenting path
- DMKM algorithm
- Push-pull version
- Wave method
- Applications of maximum flow (mapping, PERT)

