Lecture 9:
W Maximum Flow in a Network

Prof. Krishna R. Pattipati
Dept. of Electrical and Computer Engineering

University of Connecticut
Contact: krishna@engr.uconn.edu; (860) 486-2890

© K. R. Pattipati, 2001-2016

@ Outline

 LP formulation and its dual
» Maximum flow = Minimum cut
= A historical perspective on maximum flow algorithms

» Ford-Fulkerson labeling algorithm

e Dinic-Malhotra-Pramodh Kumar-Maheswari (DMKM)
algorithm

= Push-pull algorithm
= Wave method

 Applications of maximum flow

= Mapping problem
= PERT networks

UCONN

@ Preliminaries

» Suppose have a graph G = <V, E > with two distinguished
(designated) nodes s and t

= 5 =source node; t = terminal node

» Consider edge between nodes i and |

» Edge <1, j > permits flow in both directions . . . undirected

o Edge <1i, j > has a capacity c;in the forward direction and c;;in the
backward direction

o ¢;=0andc;>0
o Usually, we assume c;= ¢;; (symmetric)
= Edge <1,] > permits flow from node i to node j only
o Capacity ¢;;> 0
o ¢ =0 — no flow allowed in reverse direction
» Since any undirected graph can be converted into a

directed graph, we assume that G is directed

UCONN

@ Preliminaries

* Let x;; be the flow of commodity (oil, messages, vehicles)
from i to j

= By definition x; = —x; — flow matrix is skew symmetric

* X; < C; and x; < ¢; — tlows satisty capacity constraints

* For any <i, j > it x;; = ¢;; or X;; = ¢; = edge </, j > is saturated
» It don't have an edge <1, j > = ¢;;=c; = X;; = %;; = 0
« We can also look at flows in a network in terms of path

flows

» Indeed, we can establish an equivalence between arc flows and
path flows

= Let P be the set of paths in the network
= Lety,be the flow on path p

1 ifarc<i, j>ison path p Xi =Dy 5..(p)
Let 5. (p) = ' |
€ 5!] (p) {O otherwise = J ; Y

UCONN

@ Conservation of Flow

« Flow conservation constraints
= Vnodei # s,t, we have

flow in = flow out

n n
D X =D X Vizst

j=1 k=1

Y oxi= D xVizst
<j,i>eE <i,k>eE

* Flow in the network

n n
f= Z Xy — Z X ... net flow out of source
i=1 k=1

(or) f :Z:xkt —qu ... net flow into sink
k=1 i=1

« Max. flow problem:

= Want to find the maximum flow that the network can sustain from
Stot

o What is the capacity of the network?

UCONN

@ Max. flow problem

e LP formulation

max f
s.t. Z.nl Xg; _Z:1 X.—f =0 (source flow)
Zjl X; — Zkl X, =0, Vi#s,t (Kirchoffs law)
3 X+ D K+ =0 (sink flow)
0<x; <¢y (capacity constraints)

o Example: @ @ @ @ @

a) 1 (d

UCONN

@ Capacity of a cut

» Capacities provide a bound on the flow

At the source: can’t send more than (5 + 7 + 9) = 21 units

« Can’t send this because at the sink: can’t receive more than
(6 + 8 + 5) = 19 units

« Can't send 19 units either because at the center: can't move
more than (14 + 1 + 1) = 16 units

« What we have defined are three cuts

= Cut = A partition (or separation) of nodes into two groups W and T
suchthatse W andteT =W

= Capacity of the cut is the sum of capacity of edges crossing from W
toT

cut at the source: 21
C(W.W)= Z c; 1 cut at the sink: 19
4w leutin the middle: 16

UCONN

@ Max Flow = Min cut

e Know f < c(W,W),v(W,W) cut

= Can’t push through 16 units either!! forward arcs = at cap.

cCut(g) >7+2+1+2+1=13 @ (W:T

= Can’t push through 13 units either!!

backwards arcs = 0
e Cut(5) >1+1+8+1+1=12

= Cut(5) >W = {s,a,b,c,e}; W = {t,d, f}

 Property of a cut

= Each cut corresponds to a feasible solution of the dual of max. flow
problem ...later

= Properties of cut(5):
o Every forward edge across the cut is saturated
o Itis a cut of maximum capacity
— Max. flow = min cut (?)
...Recall dual is a minimization problem!!

UCONN

@ Some observations from example

e Minimum cut is not unique

= Min. cut is not unique: e.g., if a 1,1
— a second min. cut S 7,7 14,10
Py
9,2
C 11

e Maximum flow pattern is not
unique

= Max. flow pattern is not

unique. Degenerate bfs 11
= Max. flow value f= 12 is 14.10
unique: cap. of min cut is
unique
1,1

UCONN

@ Establishing feasibility

* Let us look at the dual to establish feasibility

Primal Dual
min _ fn n max Z<| ,j>€E 'JC'J - mln Z<| ,j>€E ” ”
s.t. X — x.—f=0
Zinl si anl ks 7/ +?/t 1
j=1X‘j_Zk:1X"i:O’ vizst Vi = Vi~ My <0
DX X+ =0 ¥, unconstrained
—X; = —C;; X; =0 ;i =0

°ﬁLet}q==-—ﬂi}Vi
e Final Dual form
= min Z:<i,j>eE'uijC:ij
st. 4A-4A 21
A=A+ 1ty 202 A=A <
NUZO

UCONN

@ Establishing dual feasibility of a cut

» Every s —t cut (W, W) determines a dual feasible solution
with cost C(W, W) as follows:
1 ieW;jeW
i = 0 otherwise

0 eW _
A :{ . — dual feasible
1 1eW
ieW, jeW:OK)|
ieW, jeW:OK
ieW,jeW:OK
ieWLjEVV:OK)

> — feasible

« = note that A, = 1 and A, = 0 always

UCONN

@ Max. flow = Min. cut

» Flow x{; and (W, W) are jointly optimal iff
= xg"j=0, V<i,j>€EEsi€eWandjeW
= Zero flows on backward arcs
Xij =Cj, V<UiL,j> € EsieWandjeW
= Saturated flows on forward arcs
e IfieWandjew
S>A—A+uj=1-0+0=1>0>x;=0
e Ifi€e Wandj e W
Sh—A+u;=0-1+1=0 = xj; =,
» To see this duality more clearly, consider a graph with ¢;; = ¢;; = 1

 Minimal cut = smallest number of edges across it = # of edges from W
toW

« Maximal flow = # of disjoint paths from s to t
= [Max. # of disjoint paths from s to t = min. # of edges across a cut |(or)
= |Capacity of a network = sum of capacities of its weakest links

UCONN

Historical perspective on max. flow

2 algorithms
Year Algorithm Complexity
1956 Ford & Fulkerson can be exponential
1969 Edmonds & Karp O(nmz)
1970 Dinic O(nzm)
1974 Karzanov O(n3)
Malhotra, 3
Oipe Kumar, Maheswari O(n?)
1977 Cherkaski O(nzm"z)
: 5/3__1/2
1978 Galil o(n""m)
1979 Galil, Naamad, Shiloach O(nm(log n)2)
1980 Sleator & Tarjan O(nm Igg n)
1086,87 Goldberg & Tarjan O(n3)
1987 Bertsekas O(n")
1989 Ahuja & Orlin survey of max. flow algorithms

UCONN

Historical perspective on max. flow
algorithms

» Ford-Fulkerson & Edmonds & Karp

= Try to push flow on one path at a time called an augmentation
path

= If can't find a path from s to ¢, we are done!!

 Other algorithms

= Several paths at once
= We construct a series of layered Networks
= If can't construct a layered network from s — ¢, we are done!

» More recent algorithms

= Work on arcs = distributed computation

UCONN

@ Idea of Ford-Fulkerson labeling algorithm

» Ford-Fulkerson labeling algorithm
= Given: a directed graph G = <V,E> and a feasible flow (x;)

= An augmentation path (or augmenting path) p is a path from sto t
in the undirected graph resulting from G by ignoring edge
directions with the following properties:

o V < i,j >€ E that is traversed by P in the forward direction (called

forward arc <i, j> or forward labeling of j), we have This idea is
(we can forward label jif similar to
. .. Hungarian
xij < cjj = x;; T4 Uis labeled and j is not algorithm for
° xl-j < Cij the
\ assignment

o V (j, i) € E that is traversed by P in the backward direction problem
backward labeling of j), we have

(we can backward label jif
xj; >0 — x;; { { * lislabeled and j is not
) i in >0

UCONN

A £

= We can increase the flow on the augmenting path p until we violate
the capacity constraint of a forward arc or empty a backward arc

Residual network

7
G =X <i, j> forward
o= min .
(L3P | X;; < J,i> backward
97
0= —>0=4
4

UCONN

@ How to find augmentation paths?

= We propagate labels from s to t or get stuck
= Each node i has a two part label: label(i) = <L, F;>

e Parent of i for forward arc

o L; = from where i was 1abeled{. Son of i for backward arc
o F; = amount of extra flow that can be brought to i from s

] J

/ (i, min{Fi, Cij — xij}) / (—i, min{Fi,xji})

i Lok i Lok
When label all nodes adjacent to i, we are said to scan i
= We add all nodes labeled by scanning i to a LIST

o So, to find augmenting path, scan s add to LIST all nodes labeled
from i — pick a node from LIST

= Outcome
o t gets labeled = found an augmentation path
o LIST becomes empty = can't find a path = optimal

UCONN

@ Algorithm Procedure

VijeE,letx; =0
repeat
set all labels to 0; LIST = {s}
while LIST # @ do
pick any node i € LIST and remove it
scan | = add to list all nodes on augmenting path
if tis labeled
augment flow x;
goto repeat
end if
end do

« What does scan i mean?
* Procedure scan i
= Label forward to all unlabeled nodes adjacent to i by arcs that are
unsaturated, putting newly labeled nodes on LIST
= Label backward to all unlabeled nodes from which i is adjacent by
arcs that have positive flows, putting newly labeled nodes on LIST

UCONN

@ Example

« Example

C 50 d
/ augmenting path: s-a-b-c-d-t

t = max. flow = 10

UCONN

@ Cost analysis

* When c; are integers = Ford-Fulkerson takes at most f augmentations
u

M

M M

v
(suvt)-(svut)->(suvt)->-— 2M iterations
 When cj; are rational

= Write as ratio of integers with a common denominator D
= Scale each cost by D = takes at most Df iterations

* When cj; are irrational (of infinite precision), Ford-Fulkerson may not
termlnate

= In fact, may converge to a non-optimal value
= If use shortest augmenting path, all these problems go away . . . In fact,

2_
Edmonds & Karp showed that the # of augmenting paths < () w1th this
strategy (3 even better algorithms)

UCONN

@ Pathological Example (Ford and Fulkerson, 1962)

< Xxj,y; >= arcs 4;
Al =d0ag =

1
V5-1
2
A3=a2=a0—a1=0'
A4=a2=a0—a1=0'

=0.618...=0
2

2

A2=a1=

All other arcs have capacity s = Tla

In general, for this network, at the nt"

Step, flow augmentation will be a,,; ¢

and a, ;, suchthata,;», = a,, — a,41

UCONN

@ Pathological Example (Ford and Fulkerson, 1962)

 Atstepn..adda., &a,,,
1
=ao+ (g taz)+ - + (a1 +ape2) =7-=5

o Startwith (s x; y; t)=(4; A, A3 A,) =(0 a; a, a,) = flow q,

 Atstepn(n=>1):

" Suppose at step n, we order arcs A7, A5, A3, A, 3 residual capacities are: 0, a,, a4,
a,.; , respectively

» Order <x;,y; > accordingly
» Flowsofar:a,+a;+...+ta,,

» Step:n (a):
= Choose flow augmenting path
= Residual cap: 0, a,,, , 0, a,,; , respectively

UCONN

@ Pathological Example (Ford and Fulkerson, 1962)

X1 V1
« Step: n-Dh:
» Choose flow augmenting path
= A4z 0, An+2 5 g
= Flowsofar:ay + a; + - + a, so/gé \;ﬁ t
= Step n ends with appropriate residual
capacities for step (n+1) x4 V3
As n — oo, flow converges to s = R
1-aq 1-0 /

 However, max. flow = 4s

» Ford-Fulkerson terminates with non-optimal flows !!

UCONN

@ DMKM Algorithm

« Two phase algorithm executed iteratively

 Phase 1
= Obtain an auxiliary layered network (i.e., an acyclic graph) from
the original network G with a feasible flow pattern
 Phase 2

* Find saturating flow in a layered network . . . also called blocking
flows

= Phase 2 takes O(n?) or O(m log n) steps depending on
implementation

« We will show that phase 1 need be executed at most n times
= O(n3) or O(mn log n) steps for the algorithm

UCONN

@ DMKM Algorithm (Phase 2)

» Consider phase 2 first
= Want to find saturation flows in a layered network

= What is a layered network?
o An acyclic graph G; =< V;, E; >3 V, is partitioned into layers
VO! Vl’ e, VL
o Vo = {s}, V; = set of nodes adjacent to s
o V., = set of nodes adjacent to all nodes of V,,_{,k > 1

o Finally, V;, = {t}

a 3,0 C

How to find saturating flows?
UCONN

@ DMKM Algorithm (Phase 2)

» Repeat until s and t are disconnected
= Saturate some of the edges

= Remove edges (& nodes if either all incoming or outgoing edges
are saturated)

» The process is called “finding saturating flows” or
“finding blocking flows”

» Two algorithms for finding blocking flows
= “Push-pull" algorithm
= Wave method

UCONN

@ DMKM Algorithm (Phase 2)

* “Push-pull method”
= Define throughput of anodei,i#s,tas: TR = min{ Z (G — %) Z (c5 =%,)}
((

i,j)eE

k,i)eE

= min{potential input to i, potential output from i}
= Similarl
Y TR = Z (Csi — X);Tpt = Z (th _th)
(S,i)eE (k,t)eE

= Suppose

TP =minTP &r=argminTP
= ris called the reference node

» For the example problem

TP, =7,TP, =3, TR, =3, TP, =3, TP, =3, TR, =7 | | | |
r=aorborcord Vo V, Vy Vs

« Key: guaranteed at least TP. units of flow from sto t

* Q: How to “pull” TPB. units of flow from s to t & how to “push” TPB. units
from r to t?

UCONN

@ DMKM Algorithm (Phase 2)

e “Push” TP. units from r to t
= Distribute TP. units to the outgoing edges from r

o Take these edges one by one & saturate them until all T2, units are
exhausted

o Flow reaching the next layer is distributed among its outgoing edges
& pushed to the next layer

« Example:
= Pickr=a

UCONN

@ DMKM Algorithm (Phase 2)

e “Pull” TP. units fromstor
= Pull TB. from immediate predecessors of r
» Then from their immediate predecessors & so on

« Example:

a 3,1 C

b 3,0 d

 Delete all saturated edges & nodes that have all their
incoming or outgoing edges saturated
= Deletion of a node = deletion of all its incoming or outgoing edges

UCONN

@ DMKM Algorithm (Phase 2)

e Result
TP, =4
TPb - 3
Tpd - 1
l
a 3,1 ¢ a 3,1 ¢
O i O >N’\1©
S t = s t
04’1\0 3,3 41 >O
b 3,1 q b 3,1 q

= Saturating flow = 4, since s and t are disconnected
* Note: saturating flow # maximum flow

UCONN

@ DMKM Algorithm (Phase 1)

« Phase 1 ... construct a layered network from a graph with a feasible
flow pattern

= We do it in two steps
o Construct a network G, with a feasible flow pattern (x;;) from G
o Then, construct a layered network from G,

= How to construct G,?

o If <i J>€Eandx Ciis
capacity of edge <i J>EG, = x; T

o If <i, j> € E and x;; > 0, then <j, |> € G, and d;; = x;; = X;; {
= Network G, is called the “residual graph” (residual network)

then <i, j> € G, and d; = ¢;; — X;;, where d;; =

 Layered network example

d 31 . C
S t =
b 3,1 d
If f*is max. flow on G = f* - f is max. flow on G,

UCONN

@ DMKM Algorithm (Phase 1)

 Construction of a layered network from G,

= Use breadth-first search
3 2 2 2 3

b d a C
LO® @ e
= saturating flow = 2
total saturating flowso far=4+2=6

* Rules
= If any node is in a higher layer than t, then discard the node & all edges incident on it
= Discard all nodes other than t that are in the same layer as t
= Discard all edges that go from a higher layer to a lower layer
= Discard any edge that joins two nodes of the same layer

« Example: next G, for our layered network example
a 3 c

UCONN

@ DMKM Algorithm (Phase 1)

« Example 2:

G, & saturating flow = 4

3,1 ¢

G, saturating flow =1

a 3,2 C a 2.1 c
=
' t s 11 t

3,1

UCONN

@ DMKM Algorithm (Phase 1)

« Example 2 continued:

U G, saturating flow = 1

= >CC\©

> max. flow=4+1+1=6
min. cut

¢ a 3,3 A/C

s O—%—0O—x*x—0O—x0
b d a =
disconnected

UCONN

@ DMKM algorithm

» Initialize flows x;; = 0, done = “false”, f=0
« While not (done) do

» Construct G, = <V, , E, > with capacity matrix D
= Iftis not reachable from s € G,
o done = “true”

» Else

o Construct a layered network G, from G,
o Find saturating flow g of G,
of=f+g¢g

» End if

 End do

UCONN

@ Time complexity

 Finding saturating flows in a layered network (phase 2)
= At least one node is deleted at each iteration
= At most n iterations
= In the ith iteration
o Work involved is related to the # of times different edges are processed
T=T+ Tp
where T; ...saturated to capacity and T, ...partial
o If an arc is saturated, delete it

=T,=0(m)
o # of partial steps < n (1 for each node)
=T, =0(n?)
= Total work = O(m) + O(n?) = O(n?)
« Phasel

= There are at most (n — 1) steps since the layers increase by at least one &
s—tpathlength<n -1

= Constructing layered network ... O(m)
= Total work: O(nm) + O(n%) = O(n3)

UCONN

A £

« To present the method, we need the concept of preflow
= A preflow (x;) satisfies skew symmetry (x; = —X;;) and capacity constraints
The conservation constraints are not satisfied

o Flow (x;) is such that inflow > outflow for every node # s
= Total inflow into any node i # s must be at least as great as the total outflow from i

Blocking flow computation via “wave method”

A, = iji —ink >0
j k
o Since X; = — X,;, we can also write this as:

A, =iji >0
j

where j is over all edges incident to i (both incoming and outgoing edges)

Balanced node A; = 0, (i # s,t)

Unbalanced node A; = 0, (i # s,t)

A preflow is blocking if it saturates every path
An edge on each path is at its capacity

« Key idea of wave method

Start with a blocking preflow
Iteratively convert it into a balanced blocking flow
= A flow that satisfies conservation constraints

e How?

» Increase the outgoing flow of an unblocked & unbalanced node (or)
» Decrease the incoming flow of a blocked node

UCONN

¥7 Illustrative Example

Start with a preflow that saturates every edge out of s & zero flow on all other edges

3.0 g

Blocked node = decrease incoming flow; unblocked node = increase outgoing flow
Increase step:
= If (i, j) is an unsaturated edge such that j is unblocked, increase x;; via: x;; < x;; +
min{cij - xijr AL}
Decrease step:
* Ifnode i is blocked and 3 a positive flow x;;, then: x;; « x;; — min{x;;, A;}
a

UCONN

V2 Mechanization of the wave method

« Start with a preflow 3 every edge out of s is saturated & has zero flow on all other edges
» Repeat increase flow & decrease flow until all nodes are balanced

 Increase flow
= Scan nodes other than s and t in topological order (reverse post-order visit)
= Balance each node i that is unbalanced & unblocked when it is scanned
» If balancing fails, label node i blocked (permanently)

» Decrease flow
» Scan vertices other than s and t in reverse topological order (i.e., post-order visit)
= Balance each vertex that is unbalanced & blocked when it is scanned

« Example: ,
dfs scanning: sbhdtac

Post order: t d b ¢ a s (reverse topological order)
Topological order: sacbdt

Easy problem!

UCONN

V2 Mechanization of the wave method

Example:

dfs scanning:sacftdeb d blocked = initiate decrease flow
Post ord.er: tfedcbas and result of iteration 1: make
Topological order:sabcdeft flow in (c,d) = 0

e Second flow increase (c is blocked. Balance)

 Third flow increase
= ais blocked = make flow <s,a>=5
= We are done since every path from s to t is blocked
» Blocking flow = 5 units

UCONN

@ Complexity result

« Wave method computes blocking flow of an acyclic graph in O(n?) time (&
blocking flow of a general graph in O(n°) time)

e Proof:

UCONN

If a node i is blocked, every path from i to t is blocked
Initially s is blocked

After increase flow step, if the balancing is a success, 3 no unblocked, unbalanced
nodes

If balancing fails, 3 a blocked, unbalanced node

This blocked node is balanced during decrease flow step & remains balanced
during subsequent increase flow steps

= We block at least one node in each step
= At most (n — 1) steps

= At each step of increase flow, either an edge is saturated or terminates in a
balance

= Similarly at each step of decrease flow either an edge flow is set to zero or
terminates in a balance

= 0O(2m) + (n-1) (n—2) operations = O(n?)
O(n®) complexity for max. flow follows from our earlier discussion w.r.t.
DMKM algorithm

@ More Recent Algorithms

* D. D. Sleator and R. Tarjan, “A data structure for dynamic
trees,” J. of Comput. Sys. Sci., vol. 26, pp. 362-91, 1983

* Y. Shiloach and U. Vishkin, “An O(n?log n) parallel max-
flow algorithm”, J. of Algorithms, vol. 3, pp. 128-46, 1982

* N. Gabow, “Scaling algorithms for network problems”, J.
of Comput. Sys. Sci., pp.260-270, 1981

 R. E. Tarjan, “A simple version of Karzanov's blocking flow
algorithm,” OR letters, vol. 2, pp 265-268, 1984

» Goldberg, A. V., “Efficient graph algorithms for sequential
& parallel computers,” Ph.D. thesis, LCS, MIT, 1987

 Bertsekas, D. P., Linear network optimization, MIT press,
1901

UCONN

Processing times

Y. Mapping Problem Processing times on P,

on P, /

» Set of tasks A B, ..., F with a graph structure \

* Arcs = communication time
* Processing times on two processors: t;;, ti,

« Problem: minimize (processing time +
communication time)

Tasks for P, = {F} | '
Tasks for P, ={A,B,C, D, E} 5

» Total cost: 36 = cap. min. cut

« Makes sense since for an arbitrary partition of g3 cost: zt'l n th n ZC"
taSkS: (W, W) iew | ieW | <i,j> ’
iew
jew

 Establishing formal equivalence: let x — {1 if task i is allocated to P,
' otherwise

1 if task i is allocated to P,
= {O otherwise

= Need: x; + y; = 1,Vi
UCONN

@ Mapping Problem
Cost function: Zn:tilxi + itiz i+ anznlcij XiYi

i=1 j=1
j#i

Define X y; = g

Then X +Y;— 44520

The problem is:

min Ztilxi +Zti2yj +ZZCij:uij
i j !
J=i
st x+y; 21 Similar to dual of max. flow
X +Y;—#; =20

Hij >0

» Note: can’t extend to more than two processors

UCONN

@ PERT networks

a = Min. time to perform a task

b = Normal completion time

¢ = $ to be spent to reduce
completion time by one unit

If spend $0; project completesin 3 + 2 + 6 = 11 days
» Critical path1-2-3-4

If want to reduce the time, must spend $’s on tasks 1 -2, 2 — 3, 3 — 4, since they
are on the critical path

Also, must spend on tasks with lowest cost per unit time = task 2 - 3

Q: How far should we reduce?

Answer
= Till the arc is reduced to the minimum time q;;
o If this occurs, pick arc with the next lower cost per unit time

= (or) path is no longer the critical path

UCONN

@ How to decide where to invest?

(a, c,b)

a = amount spent on arc

¢ = $/unit time

b = current processing time

« Reduce <2, 3> by one unit
= Two critical paths 1 -2-3-4and1-3-4

» To shorten longest paths, have three choices:
» 1-2&1-3with¢j,+ci3=3+1=4
» 2-3&1-3withcys+ci3=1+1=2
= 3-4 with costc3, =3
UCONN

Where to invest?

Looks like a min. cut of a graph of active arcs
= 2-3&1-3
Note: Can’t reduce 2 — 3 any further

1—2&1—3W1th C12 +C13 =4
two choices <

3 — 4 with cost c3, = 3

>
(¢0)
o
c
o
(@)
a
w
N
U‘
<
@)
=
(@)
e
=
\J:.
n
o o
o]
o
(@)
r—'-
=
)
=
H
|
N
|
N
o o
»n
Qo
e
wn
(@)
Qo
(@)
-3
=
@)
Qo
e
4]
oo
'—'-
=

(3,1,2)

Ciztciz=4 '3,
two
choices = e (21,0 ° a

(6,3,2)

C24+C34 =4

« Nowl-2,2-4,&2-3arerigid

UCONN

@ Trade-off curve

» If wereduce 1 - 3 & 3 — 4 to their value & increase 2 -3 w/o
affecting the longest path

$0 = 11 days; $1=10 days; $3 = 9 days; $4 = 8 days; $22 = 4 days;
$27 for 3 days

30
25
20

$ 15

10

3 4 5 6 7 8 9 10 1
Project Duration

UCONN

@ Summary

e« Max. flow = Min. cut

» Ford-Fulkerson labeling algorithm
= Exponential and can converge to non-optimal solutions

» Can fix the problem by computing shortest augmenting paths
rather than any augmenting path

« DMKM algorithm

= Push-pull version

= Wave method

 Applications of maximum flow (mapping, PERT)

UCONN

