Dept. of ECE
 Univ. of Conn.

Spring 2004

KRP
Homework Set \# 3 (Due February 18, 2004)

1. Properties of Poisson Distribution
a. Show that the superposition of m independent Poisson streams with rates $\left\{\lambda_{i}\right\}_{i=1}^{m}$ results in a Poisson stream with rate $\lambda=\sum_{i=1}^{m} \lambda_{i}$.
b. Show that the decomposition of a Poisson stream with rate λ into m independent streams, where each stream is chosen independently with probability $\left\{p_{i}\right\}_{i=1}^{m}$ results in m Poisson streams with rates $\left\{p_{i} \lambda\right\}_{i=1}^{m}$.
c. Suppose we know that in an interval $\left[t_{1}, t_{2}\right]$ only one arrival of a Poisson process has occurred. Show that, conditional on this knowledge, the time of this arrival is uniformly distributed in $\left[t_{1}, t_{2}\right]$.
d. Given that the number of arrivals $X(t)=n$, show that the n arrival times $\left\{S_{i}\right\}_{i=1}^{n}$ have the same distribution as order statistics corresponding to n independent random variables uniformly distributed on the interval $[0, t]$.
e. Consider a system in which customers at any time are classified as being in one of r possible classes, and assume that a customer changes class in accordance with a Markov chain having transition probabilities $P=\left[P_{i j}\right]_{i, j=1}^{r}$. That is, if a customer is in class i during a time period then, independently of his previous classes, he will be in class j during the next time period with probability $P_{i j}$. The customers are assumed to move through the system independently of each other. Suppose that the number of customers initially in states $1,2, . . r$ are independent Poisson random variables with respective means $\left\{\lambda_{i}\right\}_{i=1}^{r}$. Determine the joint distribution of the numbers of customers in states $1,2, \ldots, r$ at some time n.
f. A stochastic process $\{Z(t), t \geq 0\}$ is said to be a compound Poisson process if it can be represented as $Z(t)=\sum_{i=1}^{X(t)} \tau_{i}$ where $\{X(t), t \geq 0\}$ is a Poisson process and $\left\{\tau_{i}, i \geq 1\right\}$ are i.i.d. random variables with mean $\bar{\tau}$ and variance σ_{τ}^{2}. Find the mean and variance of $Z(t)$.
2. Consider a birth-death queuing system in which $\lambda(n)=\lambda$ and $\mu(n)=n \mu$. For all n , find the differential-difference equations for $p_{n}(t)$, the probability that there are n customers in the system. Find the partial differential equation for the evolution of $G(z, t)$, the z-transform of $p_{n}(t)$. Show that: $G(z, t)=\exp \left(\frac{\lambda}{\mu}\left(1-e^{-\mu t}\right)(z-1)\right)$. Recalling its similarity to the z-transform of the Poisson distribution, find $p_{n}(t)$. What happens to $p_{n}(t)$ as $t \rightarrow \infty$.
3. Let X and Y be independent exponential random variables with respective means $1 / \lambda_{1}$ and $1 / \lambda_{2}$. Further, let $Z=\min (X, Y)$. What is the conditional distribution of Z given that $Z=X$. Also, argue why the conditional distribution of $Y-Z$, given that $Z=X$, is exponential with mean $1 / \lambda_{2}$.
4. Let X and Y be independent exponential random variables, each with mean $1 / \mu$. Further, let $Z=\min (X, Y)$, and $W=\max (X, Y)$. Find $E(Z), E(W), \operatorname{Var}(Z)$ and $\operatorname{Var}(W)$.
