Dept. of ECE Univ. of Conn.

Spring 2004 KRP

Homework Set # 3 (Due February 18, 2004)

- 1. Properties of Poisson Distribution
 - a. Show that the superposition of m independent Poisson streams with rates

 $\{\lambda_i\}_{i=1}^m$ results in a Poisson stream with rate $\lambda = \sum_{i=1}^m \lambda_i$.

- b. Show that the decomposition of a Poisson stream with rate λ into *m* independent streams, where each stream is chosen independently with probability $\{p_i\}_{i=1}^m$ results in *m* Poisson streams with rates $\{p_i\lambda\}_{i=1}^m$.
- c. Suppose we know that in an interval $[t_1, t_2]$ only one arrival of a Poisson process has occurred. Show that, conditional on this knowledge, the time of this arrival is uniformly distributed in $[t_1, t_2]$.
- d. Given that the number of arrivals X(t) = n, show that the *n* arrival times $\{S_i\}_{i=1}^n$ have the same distribution as *order statistics* corresponding to *n* independent random variables uniformly distributed on the interval [0,t].
- e. Consider a system in which customers at any time are classified as being in one of *r* possible classes, and assume that a customer changes class in accordance with a Markov chain having transition probabilities $P = [P_{ij}]_{i,j=1}^r$.

That is, if a customer is in class *i* during a time period then, independently of his previous classes, he will be in class *j* during the next time period with probability P_{ij} . The customers are assumed to move through the system independently of each other. Suppose that the number of customers initially in states 1, 2, ..., r are independent Poisson random variables with respective means $\{\lambda_i\}_{i=1}^r$. Determine the joint distribution of the numbers of customers in states 1, 2, ..., r at some time *n*.

f. A stochastic process $\{Z(t), t \ge 0\}$ is said to be a compound Poisson process if it can be represented as $Z(t) = \sum_{i=1}^{X(t)} \tau_i$ where $\{X(t), t \ge 0\}$ is a Poisson process and $\{\tau, i \ge 1\}$ are i.i.d. rendem variables with mean $\overline{\tau}$ and variance σ^2 . Find

and $\{\tau_i, i \ge 1\}$ are i.i.d. random variables with mean $\overline{\tau}$ and variance σ_{τ}^2 . Find the mean and variance of Z(t).

2. Consider a birth-death queuing system in which $\lambda(n) = \lambda$ and $\mu(n) = n\mu$. For all n, find the differential-difference equations for $p_n(t)$, the probability that there are n customers in the system. Find the partial differential equation for the evolution of G(z,t), the z-transform of $p_n(t)$. Show that: $G(z,t) = \exp(\frac{\lambda}{\mu}(1-e^{-\mu t})(z-1))$.

Recalling its similarity to the z-transform of the Poisson distribution, find $p_n(t)$. What happens to $p_n(t)$ as $t \to \infty$.

- 3. Let X and Y be independent exponential random variables with respective means $1/\lambda_1$ and $1/\lambda_2$. Further, let $Z = \min(X, Y)$. What is the conditional distribution of Z given that Z=X. Also, argue why the conditional distribution of Y-Z, given that Z=X, is exponential with mean $1/\lambda_2$.
- 4. Let *X* and *Y* be independent exponential random variables, each with mean $1/\mu$. Further, let $Z = \min(X, Y)$, and $W = \max(X, Y)$. Find E(Z), E(W), Var(Z) and Var(W).