Dept. of ECE
Univ. of Conn.

Spring 2004

KRP

Homework Set \# 4 (Due March 3, 2004)

1. Consider an $\mathrm{M}|\mathrm{M}| 1$ system with parameters λ, μ in which the customers are impatient. Specifically, upon arrival, customers estimate their queuing time w and then join the queue with probability $e^{-\alpha w} ; \alpha \geq 0$ (or leave with probability $1-e^{-\alpha w}$). The estimate is $w=\frac{n}{\mu}$, when the new arrival finds n in the system.
a. Draw the state transition diagram and write the global balance equations. Give an expression for steady-state p_{0} in terms of the system parameters.
b. For $\alpha \rightarrow \infty$, find p_{n} explicitly and find the average number in the system.
2. Consider a birth-death queuing system in which $\lambda(n)=(n+2) \lambda$ and $\mu(n)=n \mu$. Solve for steady-state $\left\{p_{n}\right\}$ in terms of λ, μ and n only. Also, find the average system length.
3. Consider an $\mathrm{M}|\mathrm{M}| \mathrm{m}$ system that is to serve the pooled sum of two Poisson arrival streams; the $i^{\text {th }}$ stream has an average arrival rate given by λ_{i} and exponentially distributed service times with mean $1 / \mu_{i}(i=1,2)$. The first stream is an ordinary stream with whereby each arrival requires exactly one of the m servers; if all m servers are busy then any newly arriving customer of type 1 is lost. Customers from the second class each require the simultaneous use of m_{0} servers 9 (and will occupy them all simultaneously for the same exponentially distributed amount of time whose mean is $1 / \mu_{2}$ seconds); if a customer from this class finds less than m_{0} idle servers, then he too is lost to the system. Find the fraction of type 1 customers and type 2 the fraction of type 2 customers that are lost.
4. Show that the waiting time distribution for a FCFS queuing discipline at an $\mathrm{M}|\mathrm{M}| 1$ queue, $F_{W}(t)=P(W \leq t)=1-\rho \exp [-\mu(1-\rho) t]$. What is the density $f_{W}(t)$?
5. Suppose that the birth-death coefficients are as follows: $\lambda(n)=\lambda /(n+1)$ and $\mu(n)=\mu$. Show that the steady-state distribution $\left\{p_{n}\right\}$ takes the same form as that of $\mathrm{M}|\mathrm{M}| \infty$ system. Find the throughput.
6. Consider a system that is identical to $\mathrm{M}|\mathrm{M}| 1$ except that when the system empties out, service does not begin again until K customers are present in the system (K is given). Once service begins, it proceeds normally until the system becomes empty again. Find the steady-state probabilities of the number in the system, the system length, and the average delay per customer (Hint: the state description for the number of customers in the system $1,2, \ldots, K-1$ should include the service mode; waiting for customers to exceed the threshold or serving customers proceeds normally).
7. Derive the waiting time and response time distributions, $F_{W}(t)$ and $F_{R}(t)$, for $\mathrm{M}|\mathrm{M}| 1$ queue.
8. Consider an $\mathrm{M}|\mathrm{M}| 1$ queue in which the server has an exponentially distributed lifetime with mean $1 / f$. Once failed, the server is repaired; such a repair takes an exponentially distributed amount of time, with mean $1 / r$. Customer arrivals from a Poisson process with rate λ and services last a negative exponentially distributed time with mean $1 / \mu$. For the time being, assume that the arrival process is stopped as soon as the server breaks down.
a. Draw the state-transition diagram for this model and derive the global balance equations.
b. Derive a formula for the average system length.
c. Now assume that arrivals continue to occur, even if the server has broken down. How does this change the state-transition diagram and the global balance equations? What is the stability condition in this situation?
(Hint: Read section 4.6 of [VIS94] and references cited in section 4.15 on queues with breakdowns).
9. Consider the time-shared computer system model consisting of a terminal node and the computer system node with population N. The recursive MVA equations for the queue length, response time, and the throughput were derived in class as:

$$
\begin{align*}
& R(n)=\frac{1}{\mu}[1+Q(n-1)] ; Q(0)=0 \tag{1}\\
& X(n)=\frac{n}{R(n)+\lambda^{-1}} \tag{2}\\
& Q(n)=X(n) R(n) \tag{3}
\end{align*}
$$

where $Q(n), R(n)$, and $X(n)$ are the queue length, response time, and the throughput with population n, λ^{-1} is the mean think time, and μ is the service rate of the computer system. The problem with recursive MVA equations (1)-(3) is that the performance measures for all intermediate populations $n=1,2, \ldots, N-1$ must be obtained before the performance measures for population N can be obtained. To avoid this complexity, the following approximation is proposed. Assume that the queue length is proportional to population, i.e., $\frac{Q(n-1)}{n-1}=\frac{Q(n)}{n}$. Using this approximation for $n=N$, show that $X(N)$ satisfies the quadratic equation: $(N-1) X^{2}(N)-N(N \lambda+\mu) X(N)+\lambda \mu N^{2}=0$. (Hint: use the fact that $\left.Q(N)+\frac{X(N)}{\lambda}=N\right)$. Solve several problems using this approximation. What is the maximum relative error in throughput?

