Spring 2016 KRP

Homework Set #1 (Due January 28, 2016)

- 1. Consider an *m* by *m* matrix *B*. Suppose that we want to replace the ith column of *B* by another *m* vector \underline{a} . That is, we remove the ith column \underline{b}_i from *B* and put \underline{a} in its place. Write this operation in matrix form. This will be useful in the revised simplex algorithm.
- 2. (a) Is the product of two convex functions convex? If yes, prove it. If not, give a counter example.
 - (b) Using the fact that the Hessian of a strictly convex function is positive definite, determine whether or not the following functions are strictly convex in the indicated domains.

(i) $f = x_1 x_2$, $X = R^2$; (ii) $f = exp(x_1 + x_2)$, $X = R^2$; (iii) $f = tan x_1$, $X = \{x_1 : 0 < x_1 < 1\}$; (iv) $f = exp(-x_1 - x_2) + x_1^2 - 2x_1$ (v) $f = max(f_1, f_2)$ where $f_1 = x_1^2 + x_2^2$ and $f_2 = 2x_1^2 - x_2$

- 3. Let f(x) be convex in Rⁿ.
 (a) is f (Ax + b), where A is an m by n matrix and b is an m vector, convex
 (b) Fix components x₂,, x_n. Consider g (x₁) = f (x₁, x₂,, x_n). Is g (x₁) convex?
- 4. Prove that $f(\underline{x}) = \underline{x}^T Q \underline{x}$ is convex, if Q is positive definite.
- 5. Suppose that f_1, f_2, \dots, f_n are convex functions from \mathbb{R}^n into \mathbb{R} and let $f(\underline{x}) = \sum_{i=1}^n f_i(\underline{x})$. Show that if each f_i is convex, so is f.
- 6. Show that a hyperplane $H = \{ \underline{x} : \underline{c}^T \underline{x} = k \}$ and halfspace $H^+ = \{ \underline{x} : \underline{c}^T \underline{x} \le k \}$ are convex sets.
- 7. Exercise 2.1 of Text, Page 75.
- 8. Exercise 2.2 of Text, Page 76.
- 9. Suppose that we have the LU decomposition of an *m* by *m* matrix *B*. Suppose we replace column *i* of *B* (i.e., \underline{b}_i) by a new column \underline{a} of the same dimension. Devise an $O(m^2)$ algorithm to find new *L* and *U*. This will be useful in efficient implementation of revised simplex algorithm. See Golub and Van Loan or a similar book on Matrix Computations.
- 10. Suppose that we have the QR decomposition of an *m* by *m* matrix *B*. Suppose we replace column *i* of *B* (i.e., \underline{b}_i) by a new column \underline{a} of same dimension. Devise an $O(m^2)$ algorithm to find new *Q* and *R*. This will be useful in the efficient implementation of revised simplex algorithm. See Golub and Van Loan or a similar book on Matrix Computations.