The University of Connecticut Dept. of ECE

Fall 2008 KRP

Problem set # 1 REVIEW of LINEAR ALGEBRA (Due September 3, 2008)

- 1. For a symmetric matrix A with distinct eigen values, show that:
 - (a) All eigen values must be real
 - (b) Eigen vectors associated with distinct eigen values are orthogonal
 - (c) The matrix can be diagonalized using an orthogonal transform
- 2. The Rayleigh quotient for a symmetric matrix is defined as:

$$r = \frac{x^T A x}{\underline{x}^T \underline{x}}$$

Show that

$$\lambda_{\min}(A) \le r \le \lambda_{\max}(A)$$

- 3. What is the condition number (using the p=2 norm) of a n orthogonal matrix Q? Show that the eigen values of an orthogonal matrix satisfy $|\lambda_i|=1$.
- 4. Show that if S is skew symmetric (i.e., $S^{T} = -S$), then (*I*–S) is nonsingular and (*I*–S)⁻¹(*I*+S) is orthogonal. (This is known as the Caley transformation of S.)
- 5. If *A* and *B* are *n* × *r* and *r* × *m* matrices, respectively, show that the product *C* = *AB* can be written as a dyadic summation of the form

$$C = \sum_{i=1}^{r} \underline{a}_{i} \underline{b}_{i}^{T}$$
 and

where \underline{a}_i is the *i*th column of A and \underline{b}_i^T is the *i*th row of *B*. Thus, show that *C* may be recursively computed via

$$C_i = C_{i-1} + \underline{a}_i \underline{b}_i^T; \qquad i = 1, 2, \dots, r$$

with the initialization $C_0 = [0]$. Comment on the efficient use of this scheme when A is "sparse".

- 9. Approximately how many multiplies and adds (MADDS) are needed to multiply two $n \times n$ upper triangular matrices (a lower triangular matrix has $a_{ij} = 0$ for j > 1)? How many MADDS are needed to form C = AB where A is an upper triangular matrix and B is a lower triangular matrix.
- 6. If <u>a</u> and <u>b</u> are n vectors, what are the eigen values of the matrix $C = \underline{ab'}$?
- 7. An $n \ge n$ matrix A is said to be elementary if it differs from the identity matrix by a matrix of rank one, i.e., $A = I - \underline{x} \underbrace{y}^{T}$ for some vectors \underline{x} and \underline{y} . Under what conditions on \underline{x} and \underline{y} , does A have an inverse. Show that $A^{-1} = I - \sigma \underline{x} y^{T}$ for some scalar σ .

- 8. For an $m \times n$ matrix A, prove the following relations:
 - (a) $\rho(A) \le ||A||_p$ for any *p*-norm; $\rho(A)$ = spectral radius of A
 - (b) $\max_{i,j} a_{ij} \le ||A||_2 \le (mn)^{1/2} \max_{i,j} a_{ij}$
 - (c) $||A||_1 = \max_j \sum_{i=1}^m |a_{ij}| = \text{maximum column sum}$

(d)
$$||A||_{\infty} = \max_{i} \sum_{j=1}^{n} |a_{ij}| = \text{maximum row sum}$$

- (e) $\|A\|_{2} \leq \left[\|A\|_{1} \|A\|_{\infty}\right]^{1/2}$
- (f) $(n)^{-1/2} \|A\|_{\infty} \le \|A\|_{2} \le (m)^{1/2} \|A\|_{\infty}$
- (g) $(m)^{-1/2} \|A\|_{1} \le \|A\|_{2} \le (n)^{1/2} \|A\|_{1}$
- (h) For all orthogonal matrices Q and Z of appropriate dimension, the Frobenius and 2-norms satisify:

$$\|QAZ\|_{F} = \|A\|_{F}$$
 and $\|QAZ\|_{2} = \|A\|_{2}$

- 9. True/False Questions
 - a. For a symmetric matrix A, it is always the case that $\|A\|_1 = \|A\|_{\infty}$.
 - b. If a triangular matrix has a zero entry on its main diagonal, then the matrix is necessarily singular.
 - c. The product of two symmetric matrices is symmetric.
 - d. A symmetric positive definite matrix is always well-conditioned.
 - e. $||A||_1 = ||A^T||_{\infty}$.
 - f. Can a system of linear equations $A\underline{x} = \underline{b}$ have exactly two distinct solutions?
 - g. If \underline{x} is any vector, then $\|\underline{x}\|_1 \ge \|\underline{x}\|_{\infty}$
 - h. If A is any $n \ge n$ nonsingular matrix, then $\kappa(A) = \kappa(A^{-1})$.
 - i. A system of linear equations $A\underline{x} = \underline{b}$ has a solution if and only if the $m \ge n$ matrix A and the augmented $m \ge (n+1)$ matrix $[A \underline{b}]$ have the same rank.
 - j. The product or inverse of an upper triangular matrix is upper triangular.
- 10. Classify each of the following matrices as well-conditioned or ill-conditioned:

(a)
$$A = \begin{bmatrix} 10^{10} & 0 \\ 0 & 10^{-10} \end{bmatrix}$$
; (b) $B = \begin{bmatrix} 10^{10} & 0 \\ 0 & 10^{10} \end{bmatrix}$
(c) $C = \begin{bmatrix} 10^{-10} & 0 \\ 0 & 10^{-10} \end{bmatrix}$; (d) $D = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$