Problem Set # 11

SYMMETRIC EIGEN VALUE PROBLEM

(Due Nov 19 2008)

(Do only problems 1 and 2)

1. Suppose *A* and *A*+*E* are *n* x *n* symmetric matrices. Then, for k = 1, 2, ..., n, show that: $\lambda_k(A) + \lambda_n(E) \le \lambda_k (A+E) \le \lambda_k (A) + \lambda_l(E)$

Assume $\lambda_n \leq \lambda_{n-1} \leq ... \leq \lambda_1$. Use this to show that $\lambda_i(A + \tau \underline{c} \ \underline{c}^T) = \lambda_I(A) + m_i \tau$ where $m_1 + m_2 + ..., m_n = 1, \ m_i \geq 0, \ \underline{c}$ has unit 2-norm.

2. Suppose *A* is symmetric and positive definite. Consider the following iteration:

$$A_0 = A$$

For $k = 1, 2, ...$
$$A_{k-1} = L_k L_k^T (Cholesky)$$

$$A_k = L_k^T L_k$$

Show that this iteration provides similarity transformations and work out a 2 x 2 example to show that A_k converges to Diag (λ_i) .

- 3. Suppose *A* has the special form $(I+\underline{v} \underline{v}^T)$ where \underline{v} is a combination $c\underline{q}^I + d\underline{w}$ of unit vectors.
 - (a) If the Lanczos algorithm starts with q_1 , show that its next vector is q_2 is w_2 .
 - (b) Compute $a_1 = \underline{q_1}^T A \underline{q_1}$, $b_1 = \underline{q_2}^T A \underline{q_1}$, $a_2 = \underline{q_2}^T A \underline{q_2}$ in terms of c and d.
 - (c) Show that the 2 by 2 matrix T_2 with these entries has the same Eigen values 1 and $(1 + c^2 + d^2)$ as A itself.
- 4. Show that Aq_i is orthogonal to q_j when $i \le (j-2)$, by using the two Lanczos properties: q_i is a linear combination of q_1 ,, $A^{i-1} q_1$, and q_j is orthogonal to all combinations of q_1 , ..., $A^{j-1}q_1$.
- 5. Show from the Lanczos recursion that \underline{q}_{j+1} is orthogonal to \underline{q}_j if $a_j = \underline{q}_j^T A \underline{q}_j$. Further, show that \underline{q}_{j+1} is also orthogonal to \underline{q}_{j-1} for i = j-1.