Problem Set \# 11

SYMMETRIC EIGEN VALUE PROBLEM

(Due Nov 19 2008)

(Do only problems 1 and 2)

1. Suppose A and $A+E$ are $n x n$ symmetric matrices. Then, for $k=1,2, \ldots, n$, show that:

$$
\lambda_{k}(A)+\lambda_{n}(E) \leq \lambda_{k}(A+E) \leq \lambda_{k}(A)+\lambda_{l}(E)
$$

Assume $\lambda_{n} \leq \lambda_{n-1} \leq \ldots \leq \lambda_{I}$. Use this to show that $\lambda_{i}\left(A+\tau \underline{c} \underline{c}^{T}\right)=\lambda_{I}(A)+m_{i} \tau$ where $m_{1}+m_{2}+\ldots m_{n}=1, m_{i} \geq 0, \underline{c}$ has unit 2-norm.
2. Suppose A is symmetric and positive definite. Consider the following iteration:

$$
\begin{aligned}
& A_{0}=A \\
& \text { For } k=1,2, \ldots \\
& \quad A_{k-1}=L_{k} L_{k}^{T} \text { (Cholesky) } \\
& \quad A_{k}=L_{k}^{T} L_{k}
\end{aligned}
$$

Show that this iteration provides similarity transformations and work out a 2×2 example to show that A_{k} converges to $\operatorname{Diag}\left(\lambda_{i}\right)$.
3. Suppose A has the special form $\left(I+\underline{v} \underline{v}^{T}\right)$ where \underline{v} is a combination $c q^{l}+d \underline{w}$ of unit vectors.
(a) If the Lanczos algorithm starts with q_{1}, show that its next vector is q_{2} is \underline{w}.
(b) Compute $a_{1}=q_{1}{ }^{T} A q_{1}, b_{1}=q_{2}{ }^{T} A q_{1}, a_{2}=q_{2}{ }^{T} A q_{2}$ in terms of c and d.
(c) Show that the 2 by 2 matrix T_{2} with these entries has the same Eigen values 1 and (1 $+c^{2}+d^{2}$) as A itself.
4. Show that $A q_{i}$ is orthogonal to q_{j} when $i \leq(j-2)$, by using the two Lanczos properties: q_{i} is a linear combination of $q_{1}, \ldots \ldots, A^{i-1} q_{l}$, and q_{j} is orthogonal to all combinations of q_{1}, \ldots, $A^{j-1} q_{1}$.
5. Show from the Lanczos recursion that q_{j+l} is orthogonal to q_{j} if $a_{j}=q_{j}^{T} A q_{j}$. Further, show that q_{j+l} is also orthogonal to q_{j-1} for $i=j-1$.

