Problem Set #12 Singular Value Decomposition (Due Nov 19, 2008)

1)

- (a) Show that if $(A^T A + \lambda I)\underline{x} = A^T \underline{b} \lambda > 0$, and $\|\underline{x}\|_2 = \alpha$, then $\underline{z} = (A\underline{x} \underline{b})/\lambda$ solves the dual equations $(AA^T + \lambda I)\underline{z} = -\underline{b}$, $\|A^T \underline{z}\|_2 = \alpha$.
- (b) Show that if $(AA^T + \lambda I)\underline{z} = -\underline{b}$, $\|A^T \underline{z}\|_2 = \alpha$, then $\underline{x} = -A^T \underline{z}$ satisfies $(A^T A + \lambda I)\underline{x} = A^T \underline{b}$, $\|\underline{x}\|_2 = \alpha$.
- Suppose $A \in \mathbb{R}^{mxn}$ and that $\|\underline{u}^T A\|_2 = \sigma$ with $\underline{u}^T \underline{u} = 1$. Show that if $\underline{u}^T (A\underline{x} \underline{b}) = \underline{0}$ for $\underline{x} \in \mathbb{R}^n$ and $\underline{b} \in \mathbb{R}^m$, then $\|\underline{x}\|_2 \ge |\underline{u}^T \underline{b}| / \sigma$.
- Show that if *A* and *B* are *m* by *p* matrices, with $p \le m$, then $\min_{\mathbf{Q}^{\mathsf{T}} \mathbf{Q} = \mathbf{I}_p} \|A B\mathbf{Q}\|_F^2 = \sum_{i=1}^p (\sigma_i^2(A) 2\sigma_i(B^T A) + \sigma_i^2(B))$
- 4) For the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \end{bmatrix}$$

find R(A), N(A), $R(A^T)$ and $N(A^T)$ using SVD.