The University of Connecticut
Dept. of ECE

Fall 2008
KRP

Problem Set \#12

Singular Value Decomposition (Due Nov 19, 2008)

1)

(a) Show that if $\left(A^{T} A+\lambda I\right) \underline{x}=A^{T} \underline{b}, \lambda>0$, and $\|-\|_{2}=\alpha$, thenz $=(A \underline{x}-\underline{b}) / \lambda$ solves the dual equations $\left(A A^{T}+\lambda I\right) \underline{z}=-\underline{b},\left\|A^{T} \underline{z}\right\|_{2}=\alpha$.
(b) Show that if $\left(A A^{T}+\lambda I\right) \underline{z}=-\underline{b},\left\|A^{T} \underline{z}\right\|_{2}=\alpha$, then $\underline{x}=-A^{T} \underline{z}$ satisfies $\left(A^{T} A+\lambda I\right) \underline{x}=A^{T} \underline{b}$, $\|\underline{\mathrm{x}}\|_{2}=\alpha$.
2) Suppose $\mathrm{A} \in \mathrm{R}^{\mathrm{mxn}}$ and that $\left\|\underline{u}^{T} A\right\|_{2}=\sigma$ with $\underline{u}^{T} \underline{u}=1$. Show that if $\underline{u}^{T}(A \underline{x}-\underline{b})=\underline{0}$ for $\underline{\mathrm{x}} \in R^{n}$ and $\underline{b} \in R^{m}$, then $\|\underline{x}\|_{2} \geq\left|\underline{u}^{T} \underline{b}\right| / \sigma$.
3) Show that if A and B are m by p matrices, with $p \leq m$, then

$$
\operatorname{Qin}^{\operatorname{T}} Q=I_{p}\|A-B Q\|_{F}^{2}=\sum_{i=1}^{p}\left(\sigma_{i}^{2}(A)-2 \sigma_{i}\left(B^{T} A\right)+\sigma_{i}^{2}(B)\right)
$$

4) For the matrix

$$
A=\left[\begin{array}{llll}
1 & 2 & 3 & 4 \\
5 & 6 & 7 & 8
\end{array}\right]
$$

find $R(A), N(A), R\left(A^{T}\right)$ and $N\left(A^{T}\right)$ using SVD.

