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Problem Set # 13 

(Due Nov 19, 2008) 

(Do problems 1, 2, 3 and 5 only) 

1. Solve TA X XA I  , when 
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2. Consider a second order system 
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with the initial conditions 
1
(0)x and 

2
(0)x . Find the optimal value of the damping ration  to 

minimize the quadratic cost function: 
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where (1, )Q Diag  . What is the optimal  when 
2
(0) 0x  . What is the optimal  when 

2
(0) 0x  and when (i) 0, and (ii) 1.    

3. One of the problems with the optimization in problem 2 is that the optimal  depends on the 

initial conditions 
1
(0)x and 

2
(0)x . In order to remove this dependence, it is suggested that we 

optimize:  
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where P is the solution of the Lyapunov equation. You can think of this as a game between 

nature and human designer: nature tries to maximize the initial state, while the human minimize 

the time constant. Show (after lengthy calculations) that when 1  , the optimal parameters 

are:  
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 This agrees with the rule of thumb that the optimal damping ratio should be approximately 0.7. 

4. Consider a linear dynamic system:  

( ) ( )x Ax t Bu t

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 where the control variables are subject to the constraints: 

  | ( ) | ,  1,2,...,
i i

u t a i m    

It is well known from the so-called second theorem of Lyapunov that if 

( ( ), ) ( ) ,  ( )
T

V x t t x t P x t is a Lyapunov function and ( ( ), ) / 0dV x t t dt  , the system is 

asymptotically stable. So, a natural criterion for optimization is to make ( ( ), ) /dV x t t dt as 

negative as possible. Show that the optimal control is the bang-bang control given by: 
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 where sgn x is given by:  
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One problem with the bang-bang control is this: When the optimal control is substituted into 

the state equation, there is no guarantee that the resulting differential equation has a solution, 

since sgn(x) is discontinuous. This difficulty may be avoided by rewriting the control equation as:  
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By selecting k as large as desired, we can approximate the sgn(x) function arbitrarily closely. In 

order to test the above theory, consider the plant specified by:  
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Using Q I , solve the Lyapunov equation TA P PA Q   , and use ( ( ), ) ( ) ( )
T

V x t t x t Px t as 

a Lyapunov function. Assume that 1
i

a  . 

(a) Compute the responses of the system with no control (i.e., ( ) 0u t  for all t) and two initial 

conditions: ( ) (0) (0,0,10)  , (ii) (0) (0,0,3)T Ti x x   

(b) Implement the optimal bang-bang control for the two initial conditions 

(c) Implement the approximation to bang-bang control using k = 1, 10, 100, 1000, 10000. 

(d) Discuss results of (a-c). 

    

5. Consider a linear time-variant system 
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The objective is to find an output feedback control law of the form:  

  ( ) ( )u t Ly t   

such that the following quadratic cost function is minimized: 
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Show that the optimal feedback gains L* satisfy the following necessary conditions of optimality: 
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Note: in order to remove the dependence of the optimal control on the initial state (0)x , it is 

often assumed that (0)x  is random with mean m (typically 0) and covariance  (typically, 

identity matrix). In this case, (0) (0)Tx x in the  equation is replaced by ( )
T

mm  . 


