The University of Connecticut Dept. of ECE

Fall 2008 KRP

Problem Set # 13

(Due Nov 19, 2008)

(Do problems 1, 2, 3 and 5 only)

1. Solve $A^T X + XA = I$, when

<i>A</i> =	-0.15365	0.0040173	0.17786	-0.99009	0.075158	0.0	0.0	0.0
	-1.2482	2.8543	0.0	1.4324	-0.72689	4.0383	0.0	0.0
	0.0000	1.0000000	0.00000	0.00000	0.000000	0.0	0.0	0.0
	0.56788	-0.27685	0.0	-0.28366	-2.0496	-0.13886	0.0	0.0
	0.00000	0.000000	0.00000	0.0000	-10.00000	0.0	0.00000	0.0
	0.00000	0.000000	0.0	0.0	0.0	-20.000	0.0	0.0000
	0.00000	0.000000	0.0000	0.00000	0.000000	0.0	-3.00000	-2.0
	0.00000	0.000000	0.0	0.0	0.0	0.0000	1.0	0.0000

2. Consider a second order system

with the initial conditions $x_1(0)$ and $x_2(0)$. Find the optimal value of the damping ration ζ to minimize the quadratic cost function:

$$J = \int_{0}^{\infty} (\underline{x}^{T} Q \underline{x}) dt$$

where $Q = Diag(1, \mu)$. What is the optimal ζ when $x_2(0) = 0$. What is the optimal ζ when $x_2(0) = 0$ and when (i) $\mu = 0$, and (ii) $\mu = 1$.

3. One of the problems with the optimization in problem 2 is that the optimal ζ depends on the initial conditions $x_1(0)$ and $x_2(0)$. In order to remove this dependence, it is suggested that we optimize:

$$\tau = \max_{\underline{x}^{(0)}} \left\{ \min_{\zeta} \frac{\underline{x}^{T}(0) P \underline{x}(0)}{\underline{x}^{T}(0) \underline{x}(0)} \right\}$$

where *P* is the solution of the Lyapunov equation. You can think of this as a game between nature and human designer: nature tries to maximize the initial state, while the human minimize the time constant. Show (after lengthy calculations) that when $\mu = 1$, the optimal parameters are:

$$x_{1}^{*}(0) = 0.899 || \underline{x}(0) ||_{2}$$

$$x_{2}^{*}(0) = 0.437 || \underline{x}(0) ||_{2}$$

$$\zeta^{*} = 0.786$$

$$\tau^{*} = 1/2(\zeta^{*} + 1/\zeta^{*} + [\zeta^{*2} + 1]^{1/2}) = 1.665$$

This agrees with the rule of thumb that the optimal damping ratio should be approximately 0.7.

4. Consider a linear dynamic system:

•

$$\underline{x} = A\underline{x}(t) + B\underline{u}(t)$$

where the control variables are subject to the constraints:

$$|u_i(t)| < a_i < \infty, \ i = 1, 2, ..., m$$

It is well known from the so-called second theorem of Lyapunov that if $V(\underline{x}(t),t) = \underline{x}^{T}(t)P, \ \underline{x}(t)$ is a Lyapunov function and $dV(\underline{x}(t),t)/dt < 0$, the system is asymptotically stable. So, a natural criterion for optimization is to make $dV(\underline{x}(t),t)/dt$ as negative as possible. Show that the optimal control is the bang-bang control given by:

$$u_i(t) = -a_i \operatorname{sgn}(B^T P \underline{x}(t))_i$$

where *sgn x* is given by:

$$sgn(x) = \begin{cases} 1 & \text{if } x > 0 \\ 0 & \text{if } x = 0 \\ -1 & \text{if } x < 0 \end{cases}$$

One problem with the bang-bang control is this: When the optimal control is substituted into the state equation, there is no guarantee that the resulting differential equation has a solution, since sgn(x) is discontinuous. This difficulty may be avoided by rewriting the control equation as:

$$u_i(t) = -a_i \operatorname{s} at[k(B^T P \underline{x}(t))_i]$$

where

$$sat(x) = \begin{cases} 1 & \text{if } x > 1 \\ x & \text{for } |x| \le 1 \\ -1 & \text{if } x < -1 \end{cases}$$

By selecting k as large as desired, we can approximate the sgn(x) function arbitrarily closely. In order to test the above theory, consider the plant specified by:

$$A = \begin{bmatrix} -0.01 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & -2.26 & -0.2 \end{bmatrix}; B = \begin{bmatrix} 0 \\ 0 \\ 2.5 \end{bmatrix}$$

Using Q = I, solve the Lyapunov equation $A^T P + PA = -Q$, and use $V(\underline{x}(t), t) = \underline{x}^T(t)P\underline{x}(t)$ as a Lyapunov function. Assume that $a_i = 1$.

- (a) Compute the responses of the system with no control (i.e., u(t) = 0 for all t) and two initial conditions: (i) $\underline{x}(0) = (0, 0, 10)^{T}$, (ii) $\underline{x}(0) = (0, 0, 3)^{T}$
- (b) Implement the optimal bang-bang control for the two initial conditions
- (c) Implement the approximation to bang-bang control using k = 1, 10, 100, 1000, 10000.
- (d) Discuss results of (a-c).
- 5. Consider a linear time-variant system

$$\dot{\underline{x}}(t) = A\underline{x}(t) + B\underline{u}(t)$$
$$y(t) = C\underline{x}(t)$$

The objective is to find an output feedback control law of the form:

$$\underline{u}(t) = -Ly(t)$$

such that the following quadratic cost function is minimized:

$$J = \frac{1}{2} \int_0^\infty [\underline{x}^T(t) Q \underline{x}(t) + \underline{u}^T(t) R \underline{u}(t)] dt$$

Show that the optimal feedback gains *L** satisfy the following necessary conditions of optimality:

$$0 = (A - BL^{*}C)^{T} P + P(A - BL^{*}C) + Q + C^{T}L^{T}RLC$$

$$0 = (A - BL^{*}C)\Lambda + \Lambda(A - BL^{*}C)^{T} + \underline{x}(0)\underline{x}(0)^{T}$$

$$L^{*} = R^{-1}B^{T}P\Lambda C^{T}[C^{T}AC]^{-1}$$

Note: in order to remove the dependence of the optimal control on the initial state $\underline{x}(0)$, it is often assumed that $\underline{x}(0)$ is random with mean \underline{m} (typically 0) and covariance \sum (typically, identity matrix). In this case, $\underline{x}(0)\underline{x}(0)^{\mathrm{T}}$ in the Λ equation is replaced by ($\underline{m}\underline{m}^{\mathrm{T}} + \sum$).