Problem Set \#14
 Riccati Equation

(Do only problems 4 and 6)

1. Solve the algebraic Riccati equation: $A^{T} P+P A+C C^{T}-P B B^{T} P=0$ with the following parameters (A,B,C):

$$
A=\left[\begin{array}{ccc}
-4 & -2 & 0 \\
-1 & -4 & -1 \\
-1 & -1 & -4
\end{array}\right] ; C=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] ; B=\left[\begin{array}{cc}
-1 & 2 \\
1 & -2 \\
1 & -2
\end{array}\right]
$$

2. Solve Problem 1 when:

$$
B=\left[\begin{array}{ll}
1 & 2 \\
1 & 2 \\
1 & 2
\end{array}\right]
$$

3. Solve the Riccati equation $A^{T} P+P A+Q-P B R^{-1} B^{T} P=0$ when:

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
-1 & 0 & 1 \\
2 & 0 & 3 \\
-1 & -2 & 1
\end{array}\right] ; B=\left[\begin{array}{ccc}
1 & 0 & 1 \\
-1 & 1 & 0 \\
2 & 0 & -1
\end{array}\right] \\
& Q=\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right] ; R=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
\end{aligned}
$$

4. A 30 MW generator connected to an infinite bus bar is modeled by:

$$
\underline{\dot{x}}=\left[\begin{array}{ccc}
0 & 1 & 0 \\
-64.3 & -89 & -79.1 \\
-0.756 & 0 & -0.885
\end{array}\right] \underline{x}+\left[\begin{array}{c}
0 \\
0 \\
0.166
\end{array}\right] u
$$

Solve the optimal linear regulator problem when $R=1$ and

$$
Q=10^{4} \times\left[\begin{array}{ccc}
3.901 & 5.915 & 3.703 \\
5.915 & 8.97 & 5.798 \\
3.703 & 5.798 & 10.622
\end{array}\right]
$$

Plot the root locus of the closed-loop poles as R is varied.
5. One approach to designing controllers that are insensitive to plant parameter variations is to append sensitivity related terms to the quadratic objective function.
Consider a scalar parameter α that is subject to variation. In this approach to insensitive controller design, we optimize:

$$
J=\frac{1}{2} \int_{0}^{\infty}\left[\underline{x}^{T}(t) Q_{1} \underline{x}(t)+\beta \underline{y}^{T}(t) Q_{2} \underline{y}(t)+\underline{u}^{T}(t) R \underline{u}(t)\right] d t
$$

where $\underline{y}(t)=d \underline{x}(t) / d \alpha$.
(a) Develop a procedure for designing a feedback control law of the form $\underline{u}(t)=-L_{1} \underline{x}(t)-L_{2} \underline{y}(t)$ to minimize the above cost function.
(b) A major problem with the control law in (a) is the need for computing or estimating $\underline{y}(t)$. A practical approach is to design a control law of the form $\underline{u}(t)=-L \underline{x}(t)$ to minimize the above cost function. Develop a procedure for finding the optimal gains L^{*}.
(c) Apply the design procedures to the following scalar problem:

$$
\dot{x}=-\alpha^{2} x+u
$$

with $x(0)=1$ and he nominal value of $\alpha=1$. Assume $B=1, Q=1$, and $R=1$. Compare your designs to the case when $\beta=0$.
6. Design a linear quadratic regulator for the plant given by:

$$
\underline{\dot{x}}=\left[\begin{array}{ccc}
-0.074 & 1 & -0.012 \\
-8.0 & -0.055 & -6.2 \\
0 & 0 & -6.67
\end{array}\right] \underline{x}+\left[\begin{array}{c}
0 \\
0 \\
6.67
\end{array}\right] u
$$

Assume that $Q=\operatorname{Diag}\left(q_{1}, q_{2}\right)$ and $R=1$. Perform your design for the following three cases:
(i) $q_{1}=10, q_{2}=0.5$
(ii) $q_{1}=1000, q_{2}=2.0$
(iii) $q_{1}=10^{7}, q_{2}=2000$

Which design would you prefer and why?

