ECE 6095

Problem Set \# 2

(Due September 18, 2012)
(Homework can be done in teams of two students. Use MATLAB when necessary)

1. In this problem, we go through a step-by-step process for computing the torque and efficiency of an induction motor. Consider the equivalent circuit of a $460-\mathrm{V}, 25-\mathrm{hp}^{1}$, 60 Hz , four-pole, Y-connected induction motor shown in Figure 1 with the impedances parameters in ohms per phase referred to the stator circuit as follows:

$$
\begin{gathered}
R_{l}=0.641 \Omega, \quad R_{2}=0.332 \Omega \\
X_{l}=1.106 \Omega, X_{2}=0.464 \Omega, X_{M}=26.3 \Omega
\end{gathered}
$$

The total frictional and rotational losses, $P_{F R}$, are 1100 W and are assumed to be constant. The core loss is lumped in with the rotational losses.

Figure 1: Equivalent Circuit of an Induction Motor
Find the synchronous speed in rpm, n_{s} and radian frequency, ω_{s}. For a rotor slip of 2.2 percent at the rated voltage and rated frequency, find the motor's (a) Speed in rpm, n_{m} and radian frequency, ω_{m}; (b) Stator current, I_{l} (c) Power factor (cosine of the angle, θ of stator current, I_{1}), (d) Input power, $P_{\text {in }}=\sqrt{3} V_{\phi} I_{1} \cos \theta$, (e) stator core losses, $P_{S C L}=3 I_{1}^{2} R_{1}$, (f) air gap power, $P_{A G}=P_{i n}-P_{S C L}$, (g) Converted power, $P_{\text {conv }}=$ (1-s) $P_{A G}$, where s is the slip, (h) output power, $P_{\text {out }}=P_{\text {conv }}-P_{F R}$, (i) efficiency, $\eta=P_{\text {out }} / P_{\text {in }}$ and (j) output torque, $T_{\text {out }}=\frac{P_{\text {out }}}{\omega_{m}}$.
2. (Background) Show that for a continuous state variable feedback system

$$
\underline{\dot{x}}(t)=A \underline{x}(t)+B \underline{u}(t), \quad \underline{u}(t)=K_{r} \underline{r}(t)-K_{c} \underline{x}(t)
$$

the loop gain is given by $L G(s)=K_{c}(s I-A)^{-1} B$. For the single input system, if

$$
A=\left[\begin{array}{cc}
1 & 1 \\
-3 & 0
\end{array}\right] \quad B=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \quad K_{c}=\left[\begin{array}{ll}
\alpha & 3
\end{array}\right]
$$

[^0]for what range of α is the closed-loop system stable? For $\alpha=2$ what is the crossover frequency ω_{c} and the phase margin ϕ_{m} of the closed-loop system?
3. What are the points in the z-plane that correspond to the following points in the s plane when $h=0.628$?
(a) $s=-2$
(b) $s=-8$
(c) $s=1$
(d) $s=-2+j 2$
(e) $s=-2+j 7$
(f) $s=-j 5$
(g) What point(s) in the s-plane coorespond to $z=-0.5$?
4. What region in the z-plane corresponds to the following regions in the s-plane $z=e^{s h}$ when $\mathrm{h}=0.25 \mathrm{sec}$

(a)

(b)

(c)
5. Consider the all pass filter $H_{a p}(z)=\frac{1-a z}{z-a} ;|a|<1$ (poles and zeros are mirror images around unit circle). These will be useful in loop shaping. By evaluating $H\left(e^{j \omega}\right) H\left(e^{-j \omega}\right)$ or $H(z) H\left(z^{-1}\right)$, show that the magnitude is one. Determine an expression for the phase angle of $H_{a p}(z)$.

[^0]: ${ }^{1} 1 \mathrm{hp}=746$ watts

