ECE 41421 and 6095 <u>Problem Set # 3</u> (Due October 2, 2012)

1. Use the *c2d* function to compute $\Phi = e^{Ah}$ and $\Psi = \int_{0}^{h} e^{A\sigma} d\sigma$ to find the equivalent

discrete system $\underline{x}(k+1) = \Phi \underline{x}(k) + \Gamma u(k)$, $y(k) = C \underline{x}(k)$ for the continuous system models $\underline{\dot{x}}(t) = A \underline{x}(t) + B u(t)$, $y(t) = C \underline{x}(t)$:

(i)
$$A = \begin{bmatrix} 1.2 & 0 & 0.5 \\ 0.5 & -0.2 & 0.5 \\ 0.8 & 2.1 & -1.3 \end{bmatrix} B = \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} C = \begin{bmatrix} -1.2 & 2 & 1.5 \end{bmatrix}$$
 with $h = 0.3$ sec.

and

(ii)
$$A = \begin{bmatrix} 0 & 0.4 \\ 0.4 & 0 \end{bmatrix}$$
 $B = \begin{bmatrix} -0.5 \\ 1.2 \end{bmatrix}$ $C = \begin{bmatrix} 0 & 1.5 \end{bmatrix}$ with $h = 0.5$ sec.

(a) Obtain $\tilde{G}(z)$ for both cases using *ss2tf* function.

(b) ANALYTICALLY verify the results of $\tilde{G}(z)$ for system (ii) only. Compute $\tilde{G}(z)$ using both methods, i.e., via the discrete state equations, and directly from G(s). Note in the latter approach, it will be judicious to use the partial fraction expansion of G(s).

- (c) Do you think the suggested value for h is OK or too big or too small for use in the digital control of the above system (i)? Explain.
- 2. (a) Show the Bode plot of G(s) with $s = j\omega$ for both systems in problem 1.
 - (b) Show the Bode plot of $\tilde{G}(z)$ with $z = e^{j\omega h}$ for these systems.
 - (c) Over $\omega \in \left[0, \frac{\pi}{h}\right]$ how big is the difference between $\tilde{G}(e^{j\omega h})$ and $G(j\omega)e^{-\frac{j\omega h}{2}}$? Note that MATLAP's Pada function allows you to exactly 'indelays'

that MATLAB's Bode function allows you to specify 'iodelay'.

3. Compute Γ_1 and Γ_2 for the system in Prob. 1-(ii) with a delay $\in = 0.2 \text{ sec.}$ Compare the Bode plot of $\widetilde{G}(z)$ with $\in = 0.2 \text{ sec}$ with that of $\in = 0$.

- 4. (a) For a system with sample time h, what is the equivalent discrete system model $\tilde{G}(z)$ for a pure time delay $G(s) = e^{-sh}$?
 - (b) Why is the equivalent discrete system for a delay of $\frac{h}{2} \sec \neq z^{-\frac{1}{2}}$?
 - (c) Find an equivalent discrete system for a pure time-delay of $\frac{h}{2}$ sec in the (first-order) form $\tilde{G}(z) = (az+b)(cz+d)^{-1}$ by dividing the $\tilde{G}(z)$ for the system

$$G(s) = \frac{e^{-sh/2}}{(s+1)}$$
 with that of $G(s) = \frac{1}{s+1}$.

- (d) Compare Bode plots of your $\tilde{G}(z)$ and e^{-sh_2} .
- 5. Often in control design, the "input" is not u(t) but $\dot{u}(t)$ as shown below:

Consider the (n + 1)th order equivalent discrete system model for the above case in the form $\underline{x}(k+1) = \Phi_a \underline{x}(k) + \Gamma_a v(k)$ where $\underline{x}(k) = \begin{bmatrix} \underline{x}(k) \\ u(k) \end{bmatrix}$

and v(k) is the PW constant "input". Note that the resulting u(t) is PW linear.

(a) Show that

$$\Phi_a = \begin{bmatrix} \Phi & \Gamma \\ \underline{0} & 1 \end{bmatrix} \qquad \text{w}$$

where Φ and Γ are the usual matrices that are associated with A and B

- (b) What is Γ_a ?
- (c) What is the above discrete model for $\underline{\dot{x}}(t) = -1.4\underline{x}(t) + 0.5u(t)$ for h = 0.25?