ECE 41421 and 6095

Problem Set \# 3
(Due October 2, 2012)

1. Use the $\boldsymbol{c} 2 \boldsymbol{d}$ function to compute $\Phi=e^{A h}$ and $\Psi=\int_{0}^{h} e^{A \sigma} d \sigma$ to find the equivalent discrete system $\underline{x}(k+1)=\Phi \underline{x}(k)+\Gamma u(k), y(k)=C \underline{x}(k)$ for the continuous system models $\underline{\dot{x}}(t)=A \underline{x}(t)+B u(t), y(t)=C \underline{x}(t)$:
(i) $A=\left[\begin{array}{ccc}1.2 & 0 & 0.5 \\ 0.5 & -0.2 & 0.5 \\ 0.8 & 2.1 & -1.3\end{array}\right] \quad B=\left[\begin{array}{c}1 \\ 2 \\ -1\end{array}\right] \quad C=\left[\begin{array}{lll}-1.2 & 2 & 1.5\end{array}\right]$ with $h=0.3 \mathrm{sec}$. and
(ii) $A=\left[\begin{array}{cc}0 & 0.4 \\ 0.4 & 0\end{array}\right] \quad B=\left[\begin{array}{c}-0.5 \\ 1.2\end{array}\right] \quad C=\left[\begin{array}{ll}0 & 1.5\end{array}\right]$ with $h=0.5 \mathrm{sec}$.
(a) Obtain $\widetilde{G}(z)$ for both cases using $s s 2 t f$ function.
(b) ANALYTICALLY verify the results of $\widetilde{G}(z)$ for system (ii) only. Compute $\tilde{G}(z)$ using both methods, i.e., via the discrete state equations, and directly from G(s). Note in the latter approach, it will be judicious to use the partial fraction expansion of $\mathrm{G}(\mathrm{s})$.
(c) Do you think the suggested value for h is OK or too big or too small for use in the digital control of the above system (i)? Explain.
2. (a) Show the Bode plot of $\mathrm{G}(\mathrm{s})$ with $s=j \omega$ for both systems in problem 1.
(b) Show the Bode plot of $\tilde{G}(z)$ with $z=e^{j \omega h}$ for these systems.
(c) Over $\omega \in\left[0, \frac{\pi}{h}\right]$ how big is the difference between $\tilde{G}\left(e^{j \omega h}\right)$ and $G(j \omega) e^{-\frac{j \omega h}{2}}$? Note that MATLAB's Bode function allows you to specify 'iodelay'.
3. Compute Γ_{1} and Γ_{2} for the system in Prob. 1-(ii) with a delay $\in=0.2 \mathrm{sec}$. Compare the Bode plot of $\tilde{G}(z)$ with $\in=0.2 \mathrm{sec}$ with that of $\in=0$.
4. (a) For a system with sample time h, what is the equivalent discrete system model $\tilde{G}(z)$ for a pure time delay $G(s)=e^{-s h}$?
(b) Why is the equivalent discrete system for a delay of $h / 2 \sec \neq z^{-1 / 2}$?
(c) Find an equivalent discrete system for a pure time-delay of $h / 2 \mathrm{sec}$ in the (firstorder) form $\tilde{G}(z)=(a z+b)(c z+d)^{-1}$ by dividing the $\tilde{G}(z)$ for the system
$G(s)=\frac{e^{-s h / 2}}{(s+1)}$ with that of $G(s)=\frac{1}{s+1}$.
(d) Compare Bode plots of your $\tilde{G}(z)$ and $e^{-s h / 2}$.
5. Often in control design, the "input" is not $u(t)$ but $\dot{u}(t)$ as shown below:

Consider the $(\mathrm{n}+1)$ th order equivalent discrete system model for the above case in the form $\underline{x}(k+1)=\Phi_{a} \underline{x}(k)+\Gamma_{a} v(k) \quad$ where $\underline{x}(k)=\left[\begin{array}{l}\underline{x}(k) \\ u(k)\end{array}\right]$ and $v(k)$ is the PW constant "input". Note that the resulting $u(t)$ is PW linear.
(a) Show that

$$
\Phi_{a}=\left[\begin{array}{cc}
\Phi & \Gamma \\
\underline{0} & 1
\end{array}\right] \quad \begin{aligned}
& \text { where } \Phi \text { and } \Gamma \text { are the usual matrices } \\
& \text { that are associated with A and B }
\end{aligned}
$$

(b) What is Γ_{a} ?
(c) What is the above discrete model for $\underline{\dot{x}}(t)=-1.4 \underline{x}(t)+0.5 u(t)$ for $h=0.25$?

