## Problem Set \# 3

## Due September 17, 2008

## Part I: Computational (Due September 24, 2008)

Using MATLAB, compute $\int e^{A \sigma} B B^{T}\left(e^{A \sigma}\right)^{T} d \sigma$, investigate how you can stabilize an unstable system.

1. Consider both SISO and MIMO systems of order up to 6 .
2. Consider completely controllable and stabilizable systems.
3. Consider systems with clustered and widely separated eigen values. Especially, consider systems in standard controllable (or phase variable) form.

## Part II: Analytical (Due September 17, 2008): Do only Problems 2 and 4

1. Show that if a system $d \underline{x} / d t=A \underline{x}+B \underline{u}$ is completely controllable, then $\underline{u}=-\underline{x} \underline{\text { with }}$ $L=B^{T} W^{-1}\left(t_{f}, \beta\right)$, where

$$
W\left(t_{f}, \beta\right)=\int_{0}^{t_{f}} e^{-(A+\beta I) \sigma} B B^{T}\left[e^{-(A+\beta I) \sigma}\right]^{T} d \sigma ; \quad t_{f}=\text { arbitrary }
$$

results in a closed-loop system matrix $A=(A-B L)$ with $\operatorname{Re}\left[\lambda_{i}(A)\right]<-\beta(\beta \geq 0)$.
2. Suppose one has accurately computed $\Gamma=\int_{0}^{t_{f}} e^{A \sigma} B d \sigma$ and now wishes to compute $S=\int_{0}^{t_{f}} e^{A \sigma} B B^{T} e^{A^{T} \sigma} d \sigma$. Find a correlation scalar $c_{1}$ such that $\Gamma \Gamma^{T}+c_{1} A \Gamma \Gamma^{T} A^{T}$ is an approximation to $S$ that is valid through to terms in $T^{4}$. What is the error in the $T^{5}$ terms?
3. Show that $S=\int_{0}^{t_{f}} e^{A \sigma} \underline{b} \underline{b}^{T} e^{A^{T} \sigma} d \sigma$, where $\underline{b}$ is an n-column vector, can be written as an infinite summation of the form:

$$
\left.S=\left[\begin{array}{llll}
\underline{b} & A \underline{b} & A^{2} \underline{b} & \cdots
\end{array}\right]=\left[\begin{array}{cccc}
\frac{1}{1!} & \frac{1}{2!} & \frac{1}{3!} & \cdots \\
\frac{1}{2!} & \frac{2}{3!} & \frac{3}{4!} & \cdots \\
\frac{1}{3!} & \frac{3}{4!} & \ddots & \cdots \\
\cdots & \cdots & \cdots & \ddots
\end{array}\right]\left[\begin{array}{c}
\underline{b} \\
{[A \underline{b}}
\end{array}\right]^{T}\right]\left[\begin{array}{c} 
\\
\vdots \\
\vdots
\end{array}\right]
$$

4. Consider the following 3 by 3 block bi-diagonal matrix that arises in the modeling of fault-tolerant computer systems.

$$
R=\left[\begin{array}{lll}
0 & 0 & 0 \\
F & A & 0 \\
0 & F & A
\end{array}\right]
$$

(a) Show that $e^{R t}$ has a lower triangular block structure with only 4 distinct blocks and is of the form:

$$
e^{R t}=\left[\begin{array}{ccc}
I & 0 & 0 \\
\Gamma_{1} & \Phi_{1} & 0 \\
\Gamma_{2} & \Phi_{2} & \Phi_{1}
\end{array}\right]
$$

(b) Show that $\Gamma_{i}$ and $\Phi_{i}$ can be evaluated recursively via the doubling formulas for $i=$ 2, 1:

$$
\begin{aligned}
& \Gamma_{i}(2 t)=\Gamma_{i}(t)+\sum_{j=1}^{i} \Gamma_{j}(t) \Phi_{i-j+1}(t) \\
& \Phi_{i}(2 t)=\sum_{j=1}^{i} \Phi_{j}(t) \Phi_{i-j+1}(t)
\end{aligned}
$$

(c) (Bonus) How would you evaluate $\Gamma_{i}$ and $\Phi_{i}$ via the pade approximation and how would you generalize for $\mathrm{n} \times \mathrm{n}$ block bi-diagonal structures? See my 1990 paper in IEEE Trans. On Computers.

