Homework Set \# 5

(Due: March 10, 2016)

1. Solve the following problem by the dual simplex method:

$$
\begin{aligned}
& \min -7 x_{1}+7 x_{2}-2 x_{3}-x_{4}-6 x_{5} \\
& \text { s.t. } 3 x_{1}-x_{2}+x_{3}-2 x_{4}=-3 \\
& 2 x_{1}+x_{2}+x_{4}+x_{5}=4 \\
& -x_{1}+3 x_{2}-3 x_{4}+x_{6}=12 \\
& x_{i} \geq 0, i=1,2, . ., 6
\end{aligned}
$$

2. A textile firm is capable of producing three products - $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}$. Its production plan for next month must satisfy the constraints:

$$
\begin{aligned}
& x_{1}+2 x_{2}+2 x_{3} \leq 12 \\
& 2 x_{1}+4 x_{2}+x_{3} \leq f \\
& x_{i} \geq 0, i=1,2,3
\end{aligned}
$$

The first constraint is determined by equipment availability and is fixed. The second constraint is determined by the availability of cotton. The net profits of the products are 2,3 , and 3 , respectively, exclusive of the cost of cotton and fixed costs. Find the shadow price λ_{2} of the cotton input as a function of f. (Hint: Use the dual simplex method). Plot $\lambda_{2}(f)$ and the net profit $\mathrm{z}(f)$ exclusive of the cost for cotton.
3. a) Use the revised simplex method and solve:

$$
\begin{array}{ll}
\min & 2 x_{1}+3 x_{2}+2 x_{3}+2 x_{4} \\
\text { s.t. } & x_{1}+2 x_{2}+x_{3}+2 x_{4}=3 \\
& x_{1}+x_{2}+2 x_{3}+4 x_{4}=5 \\
& x_{i} \geq 0, i=1,2,3,4
\end{array}
$$

b) Using the work done in Part (a) and the dual simplex method, solve the same problem but with the right-hand sides of the equations changed to 8 and 7 , respectively.
4. Consider the problem:

$$
\begin{array}{lc}
\min & 2 x_{1}+x_{2}+4 x_{3} \\
\text { s.t. } & x_{1}+x_{2}+2 x_{3}=3 \\
& 2 x_{1}+x_{2}+3 x_{3}=5 \\
& x_{i} \geq 0, i=1,2,3
\end{array}
$$

a) What is the dual problem?
b) Note that $\boldsymbol{\lambda}=(1,0)$ is feasible for the dual. Starting with this $\boldsymbol{\lambda}$, solve the primal using the primal-dual algorithm.
5. Exercise 9.11 of Text (Hint: convert to two variable problem via $x_{3}=1-x_{1}-x_{2}$.)

