ECE 357

Problem Set \# 5

Due October 1, 2008

Part A: Analytical (Do Problems 1,2,3,4, 8, 9, 15 and 16)

1. The Cholesky decomposition discussed in class computed a column at a time. Formulate a Cholesky decomposition algorithm that computes a row at a time (row version).
2. Suppose $A \in R^{n \times n}$ is symmetric and positive definite. Give an algorithm for computing an upper triangular matrix $R \in R^{n \times n}$ such that $A=R R^{T}$.
3. Show that the Cholesky decomposition $A=S S^{T}$ is unique for positive definite symmetric matrices.
4. Suppose $A=I+\underline{u}^{T}$ where $A \in R^{n \times n}$ and $\|\underline{u}\|_{2}=1$. Give explicit formulate for the diagonal and subdiagonal's of A 's Choleskt factor.
5. Find the $L D L^{\mathrm{T}}$ and $S S^{T}$ factorizations for the matrix:

$$
A=\left[\begin{array}{ccc}
1 & 2 & 4 \\
2 & 7 & 14 \\
4 & 14 & 29
\end{array}\right]
$$

Solve $A \underline{x}=\underline{b}$ when $b=\left[\begin{array}{lll}0 & 6 & 1\end{array}\right]^{T}$ using the two triangular systems computed. How do you know that A is positive definite?
6. For any $y \in R^{n}$, define the vectors $y_{+}=1 / 2\left[y+E_{n} y\right]$ and $y=1 / 2\left[y-E_{n} y\right]$. For an $n \times n$ symmetric Toeplitz matrix T_{n}, show that $T_{n} \underline{x}=\underline{b}$ can be written as:

$$
T_{n} \underline{x}_{+}=\underline{b}_{+} \text {and } T_{n} \underline{x} \underline{\underline{x}}=\underline{b} .
$$

7. If a new row \underline{v}^{T} is added to A, what is the change in $A^{T} A$?
8. Under what conditions is a Householder matrix $\left[I-2 \underline{v} \underline{v}^{T} / \underline{v}^{T} \underline{v}\right]$ persymmetric?
9. Suppose $\underline{x} \in R^{n}$ and that $Q \in R^{n \times n}$ is orthogonal. Show that if

$$
S=\left[\underline{x}, Q \underline{x}, \ldots, Q^{n-1} \underline{x}\right]
$$

Then $S^{T} S$ is Toeplitz.
10. Explain (and if possible code) the following solution of $A \underline{x}=\underline{b}$ for positive definite tridiagonal A. The diagonal of A is originally in $d_{1}, d_{2}, \ldots, d_{n}$ and the subdiagonal and super diagonal in $l_{1}, l_{2}, \ldots, l_{n-1}$; the solution \underline{x} overwrites \underline{b}.

For $k=2, \ldots, n$

$$
\begin{aligned}
& t=l_{k-1} \\
& l_{k-1}=t / d_{k-1} \\
& d_{k}=d_{k}-t l_{k-1}
\end{aligned}
$$

EndDO
For $k=2, \ldots, n$

$$
b_{k}=b_{k}-l_{k-1} b_{k-1}
$$

EndDO

For $k=1,2, \ldots, n$

$$
b_{k}=b_{k} / d_{k}
$$

EndDO
For $k=n-1, \ldots, 1$

$$
b_{k}=b_{k}-l_{k} b_{k+1}
$$

EndDO
show how this uses $5 n$ multiplications and divisions, and give an example of failure when A is not positive definite.
11. Show the following equivalence:

$$
\left[\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right]^{-1}=\left[\begin{array}{cc}
A^{-1}+A^{-1} B S B^{T} A^{-1} & -A^{-1} B S \\
-S B^{T} A^{-1} & S
\end{array}\right]
$$

where $S=\left(C-B^{T} A^{-1} B\right)^{-1}, A$ and C are square, but B can be rectangular.
12. For the block quadratic form

$$
f=\left[\begin{array}{ll}
\underline{x}^{T} & \underline{y}^{T}
\end{array}\right]\left[\begin{array}{cc}
A & B \\
B^{T} & C
\end{array}\right]\left[\begin{array}{l}
\underline{x} \\
\underline{y}
\end{array}\right]
$$

Find the term that completes the squares:

$$
f=\left(\underline{x}+A^{-1} B y\right)^{T} A\left(\underline{x}+A^{-1} B \underline{y}\right)+y^{T}(?) \underline{y} .
$$

The block matrix is positive definite when A and $\left(C-B^{T} A^{-1} B\right)$ are positive definite
13. If each diagonal entry $a_{i i}$ is larger than the sum of the absolute values $\left|a_{i j}\right|$ along the rest of its row, then the symmetric matrix A is positive definite. How large would c have to be in an $n \times n$ matrix $A=(c-1) I+\underline{e}^{T}$, where \underline{e} is a vector of 1 s for this statement to apply? How large does c actually have to be to assure that A is positive definite?
14. The inverse of $B=\left(I-\underline{v v^{T}}\right)$ has the form $B^{-1}=\left(I-c \underline{v v}^{T}\right)$. By multiplication, find the value of c. Under what condition on \underline{v} is B not invertible?
15. Prove that if $A A^{T} y=0$ then $A^{T} y=0$. The matrices $A A^{T}$ and A^{T} have the same null space, the same row space, and the same rank. Find all three if:

$$
A=\left[\begin{array}{cc}
1 & 1 \\
0 & -1 \\
-1 & 0
\end{array}\right]
$$

16. Given n-dimensional vectors \underline{x} and \underline{y}, what combination $(\underline{x}+a y)$ is A-orthogonal to \underline{x} ?
17. Using Caley-Hamilton theorem, show that $\underline{x}=A^{-1} \underline{b}$ is a linear combination of $(\underline{b}, A \underline{b}, \ldots$, $A_{n-1} \underline{b}$). If A has only two non-zero Eigen values λ_{1}, λ_{2}, what combination $c I+d A$ is equal to A^{-1} ?

Part B: Computational (Due October 22, 2008)

Extensively test MATLAB's Cholesky decomposition routine using the various test matrices.

