ECE 357 Problem Set # 5 Due October 1, 2008

Part A: Analytical (Do Problems 1,2,3,4, 8, 9, 15 and 16)

- 1. The Cholesky decomposition discussed in class computed a column at a time. Formulate a Cholesky decomposition algorithm that computes a row at a time (row version).
- 2. Suppose $A \in R^{n \times n}$ is symmetric and positive definite. Give an algorithm for computing an upper triangular matrix $R \in R^{n \times n}$ such that $A = RR^T$.
- 3. Show that the Cholesky decomposition $A=SS^T$ is unique for positive definite symmetric matrices.
- 4. Suppose $A=I+\underline{uu}^T$ where $A \in R^{n \times n}$ and $||\underline{u}||_2=1$. Give explicit formulate for the diagonal and subdiagonal's of A's Choleskt factor.
- 5. Find the LDL^{T} and SS^{T} factorizations for the matrix:

$$A = \begin{bmatrix} 1 & 2 & 4 \\ 2 & 7 & 14 \\ 4 & 14 & 29 \end{bmatrix}$$

Solve $A\underline{x}=\underline{b}$ when $b=\begin{bmatrix}0 & 6 & 1\end{bmatrix}^T$ using the two triangular systems computed. How do you know that A is positive definite?

6. For any $\underline{y} \in R^n$, define the vectors $\underline{y}_+ = \frac{1}{2}[\underline{y} + E_n \underline{y}]$ and $\underline{y}_- = \frac{1}{2}[\underline{y} - E_n \underline{y}]$. For an $n \times n$ symmetric Toeplitz matrix T_n , show that $T_n \underline{x} = \underline{b}$ can be written as:

$$T_{n}\underline{x}_{+}=\underline{b}_{+}$$
 and $T_{n}\underline{x}_{-}=\underline{b}_{-}$.

- 7. If a new row \underline{v}^T is added to A, what is the change in A^TA ?
- 8. Under what conditions is a Householder matrix $[I-2\underline{v}\ \underline{v}^T/\underline{v}^T\underline{v}]$ persymmetric?
- 9. Suppose $\underline{x} \in R^n$ and that $Q \in R^{n \times n}$ is orthogonal. Show that if

$$S=[\underline{x}, Q\underline{x}, ..., Q^{n-1}\underline{x}]$$

Then S^TS is Toeplitz.

10. Explain (and if possible code) the following solution of $A\underline{x}=\underline{b}$ for positive definite tridiagonal A. The diagonal of A is originally in $d_1, d_2, ..., d_n$ and the subdiagonal and super diagonal in $l_1, l_2, ..., l_{n-1}$; the solution \underline{x} overwrites \underline{b} .

For
$$k=2, ..., n$$

 $t=l_{k-1}$
 $l_{k-1}=t/d_{k-1}$
 $d_k=d_k-tl_{k-1}$
EndDO
For $k=2, ..., n$
 $b_k=b_k-l_{k-1}b_{k-1}$

EndDO
For
$$k=1, 2, ..., n$$

 $b_k=b_k/d_k$
EndDO
For $k=n-1, ..., 1$
 $b_k=b_k-l_kb_{k+1}$
EndDO

show how this uses 5n multiplications and divisions, and give an example of failure when A is not positive definite.

11. Show the following equivalence:

$$\begin{bmatrix} A & B \\ B^T & C \end{bmatrix}^{-1} = \begin{bmatrix} A^{-1} + A^{-1}BSB^TA^{-1} & -A^{-1}BS \\ -SB^TA^{-1} & S \end{bmatrix}$$

where $S=(C-B^TA^{-1}B)^{-1}$, A and C are square, but B can be rectangular.

12. For the block quadratic form

$$f = \begin{bmatrix} \underline{x}^T & \underline{y}^T \end{bmatrix} \begin{bmatrix} A & B \\ B^T & C \end{bmatrix} \begin{bmatrix} \underline{x} \\ \underline{y} \end{bmatrix}$$

Find the term that completes the squares:

$$f = (\underline{x} + A^{-1}B\underline{y})^T A(\underline{x} + A^{-1}B\underline{y}) + \underline{y}^T(?)\underline{y}.$$

The block matrix is positive definite when A and $(C-B^TA^{-1}B)$ are positive definite

- 13. If each diagonal entry a_{ii} is larger than the sum of the absolute values $|a_{ij}|$ along the rest of its row, then the symmetric matrix A is positive definite. How large would c have to be in an $n \times n$ matrix $A = (c-1)I + \underline{e}e^T$, where \underline{e} is a vector of 1s for this statement to apply? How large does c actually have to be to assure that A is positive definite?
- 14. The inverse of $B = (I \underline{v}\underline{v}^T)$ has the form $B^{-1} = (I c\underline{v}\underline{v}^T)$. By multiplication, find the value of c. Under what condition on \underline{v} is B not invertible?
- 15. Prove that if $AA^T\underline{y}=0$ then $A^T\underline{y}=0$. The matrices AA^T and A^T have the same null space, the same row space, and the same rank. Find all three if:

$$A = \begin{bmatrix} 1 & 1 \\ 0 & -1 \\ -1 & 0 \end{bmatrix}$$

- 16. Given *n*-dimensional vectors \underline{x} and \underline{y} , what combination $(\underline{x}+a\underline{y})$ is *A*-orthogonal to \underline{x} ?
- 17. Using Caley-Hamilton theorem, show that $\underline{x}=A^{-1}\underline{b}$ is a linear combination of $(\underline{b}, A\underline{b}, ..., A_{n-1}\underline{b})$. If A has only two non-zero Eigen values λ_1, λ_2 , what combination cI+dA is equal to A^{-1} ?

Part B: Computational (Due October 22, 2008)

Extensively test MATLAB's Cholesky decomposition routine using the various test matrices.