Problem Set \# 6

(Due October 8, 2008)

ORTHOGONALIZATION METHODS

Part A: Analytical (Do only 1, 2, 4, 5, 9, 10)

1. Compute the QR decomposition of:

$$
A=\left[\begin{array}{cc}
5 & 9 \\
12 & 7
\end{array}\right]
$$

using (a) Householder and (b) Gram-Schmidt orthogonalization procedures.
2. Factor the following matrix into $A=Q R$:

$$
A=\left[\begin{array}{cc}
\frac{2}{3} & 0 \\
\frac{2}{3} & 2 \\
\frac{1}{3} & -1
\end{array}\right]
$$

3. If A contains the first n columns of the m by m identity matrix, what is the best leastsquares solution to $A \underline{x}=\underline{b}$ where $\underline{x} \in R^{n}$ and $\underline{b} \in R^{n}$.
4. The squared Euclidean distance from the point \underline{b} to the line through \underline{a} is

$$
\|\underline{b}-\underline{p}\|^{2}=\left\|\underline{b}-\frac{\underline{a}^{T} \underline{b}}{\underline{a}^{T} \underline{a}} \underline{a}\right\|^{2}=\frac{\left(\underline{b}^{T} \underline{b}\right)\left(\underline{a}^{T} \underline{a}\right)-\left(\underline{a}^{T} \underline{b}\right)^{2}}{\underline{a}^{T} \underline{a}}
$$

Since this cannot be negative, the numerator gives the Schwartz inequality:

$$
\left(\underline{a}^{T} \underline{b}\right)^{2} \leq\left(\underline{b}^{T} \underline{b}\right)\left(\underline{a}^{T} \underline{a}\right)
$$

(a) How does this inequality come from:

$$
\underline{a}^{T} \underline{b}=\|a\|_{2}\|b\|_{2} \cos \theta
$$

(b) By making the right choice of \underline{b}, show that:

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{2} \leq n \sum_{i=1}^{n} a_{i}^{2}
$$

5. Find the best least squares solution to:

$$
\frac{1}{2}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1 \\
-1 & -1 \\
-1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
1 \\
1 \\
1
\end{array}\right]
$$

What is the projection of \underline{b} onto the space spanned by these two columns? What is its projection orthogonal to this space?
6. When can the points x_{1} and x_{2} on the x-axis be the projections of two orthonormal vectors $\left(x_{1}, y_{1}\right)$ and $\left(x_{2}, y_{2}\right)$? Draw a figure and prove that $\left(x_{1}{ }^{2}+x_{2}{ }^{2}\right)=1$.
7. The projection matrix onto the column space of A is $P=A\left(A^{T} A\right)^{-1} A^{T}$. If $A=Q R$, find a simpler formula for P.
8. Find the Householder matrix H_{1} that produces zeros below the first entry in

$$
A=\left[\begin{array}{ll}
2 & 1 \\
1 & 0 \\
2 & 2
\end{array}\right]
$$

Compute $H_{1} A$.
9. If $H=I-2 \underline{u u}^{T}$, show that the unit vector \underline{u} is an eigen vector and find the eigen value. Show also that vector \underline{x} perpendicular to \underline{u} is an eigen vector with eigen value $\lambda=1$; in other words, $H \underline{x}=\underline{x}$. What is the determinant and trace of H ?
10. Consider an n by n matrix A such that $A=Q R$. Show that $A_{1}=R Q$ is similar to A. This will be the basis of eigen value-eigen vector computation.

Part B: Computational (October 22, 2008)

Compare the accuracy of $L U$ decomposition vs Householder orthogonalization for obtaining the solution of $A \underline{x}=\underline{b}$. Examine several test cases of your choice and present your results. Assume that A is $n \times n$.

